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Preface

The 14th International Conference on Medical Image Computing and Com-
puter Assisted Intervention, MICCAI 2011, was held in Toronto, Canada during
September, 18–22, 2011. The venue was the Westin Harbour Castle Hotel and
Conference Centre on the waterfront of Lake Ontario in Downtown Toronto, the
world’s most ethnically diverse city.

MICCAI is the foremost international scientific event in the field of medical
image computing and computer-assisted intervention. The annual conference
has a high scientific standard by virtue of the threshold for acceptance, and
accordingly MICCAI has built up a track record of attracting leading scientists,
engineers and clinicians from a wide range of technical and biomedical disciplines.
The year 2011 saw a record 819 paper submissions.

The Program Committee (PC) of MICCAI 2011 comprised 53 members. Each
of the 819 papers was assigned to two PC members (a primary and a secondary)
according to their expertise and the subject matter of the paper. The primary
member knew the identity of the authors, but the secondary one did not. Each
PC member had about 17 papers as primary and a further 17 as secondary mem-
ber. The primary PC member assigned at least three external reviewers to each
paper, according to their expertise and the subject matter of the paper. The ex-
ternal reviewers provided double-blind reviews of the papers, and authors were
given the opportunity to rebut the anonymous reviews. In cases where reviewer
opinions differed significantly and/or the rebuttal made it necessary, the pri-
mary member initiated a discussion among the reviewers. The primary member
summarized the outcome of the discussion in a short report for the secondary.
Finally, the secondary member considered all input (the reviews, rebuttal, dis-
cussion, primary’s report, and, almost importantly, the paper itself) and made
a recommendation for acceptance or rejection. The secondary PC member did
not know the identity of the authors.

A two-day PC meeting was held with 33 of the PC members present. Each
paper received fair consideration in a three-phase decision process.

– First stage: Initial acceptance of papers ranked very high by both the re-
viewers and the secondary PC member. Initial rejection of papers ranked
very low by both the reviewers and the secondary PC member.

– Second stage: groups of five to seven PC members ranked the remaining
papers and again selected the best papers and rejected the lowest ranking
papers.

– Third stage: a different set of groups selected the best papers from the re-
maining undecided papers and rejected the rest.

The PC finally accepted 251 papers, giving a 30% acceptance rate.
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We are greatly indebted to the reviewers and to the members of the PC for
their extraordinary efforts assessing and evaluating the submissions within a very
short time frame.

In 2011, attendees saw two changes in the way the program was organized.
All accepted papers were presented as posters, and a subset of these were also
invited for oral presentation, which were organized in clinical themes rather
than by methodology as in earlier years. Poster sessions were organized in their
traditional technical themes as in the past.

In addition to the main 3-day conference, the annual MICCAI event hosted
an increased number of satellite tutorials and workshops, organized on the day
before and the day after the main conference. This year’s call for submission for
tutorials and workshops led to a record 21 workshops and 8 tutorials accepted by
a committee headed by Randy Ellis (Queen’s University) and Purang Abolmae-
sumi (University of British Columbia). The tutorials provided a comprehensive
overview of many areas in both the MIC and CAI domains, offering a unique ed-
ucational forum for graduate students and postdoctoral fellows. The workshops
presented an opportunity to present research, often in an early stage, to peer
groups in a relaxed environment that allowed valuable discussion and feedback.
The workshop subjects highlighted topics that were not all fully covered in the
main conference, and thus added to the diversity of the MICCAI program.

In reviewing the proposals for these events, emphasis was given to workshop
submissions that provided a comprehensive and interactive forum to address an
open problem in MICCAI. We also promoted tutorials that related to an existing
sub-discipline of MICCAI with known materials, approaches and open problems
to help train new professionals in the field. Among the accepted workshops, sev-
eral focused on emerging trends in the field of multi-modal statistical atlases,
advanced computational and biomechanical models, and high-performance com-
puting. MICCAI 2011 also hosted eight tutorials that spanned a wide spectrum
of topics in basic and advanced software development for medical image analy-
sis, algorithms for image segmentation, registration and visualization, as well as
those highlighting new techniques in image-guided interventions. We would like
to thank the Workshop and Tutorial Committee for their hard work in putting
together such a comprehensive and unique program.

Two of the highlights of the conference were the keynote lectures by two Cana-
dian scientists. Dafydd (Dave) Williams, physician, astronaut, medical robotics
researcher, and recently, Hospital CEO, opened the conference with a presenta-
tion that looked at lessons that the health care system and medical researchers
could learn from the challenges of space travel. The second keynote was given
by Mark Henkleman, Director of the Mouse Imaging Centre, Toronto Centre for
Phenogenomics, who spoke about high-throughput small-animal imaging tech-
niques and quantitative statistical analysis methods for mapping phenotypic
changes associated with genetic disease models in mice.

MICCAI 2011 would not have been feasible without the efforts of many people
behind the scenes. We are particularly indebted to the local Organizing Commit-
tee in London and Toronto consisting of Janette Wallace, Johanne Guillemette,
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Jackie Williams, Jade Orkin-Fenster, Debbie Lilley, Shuo Li, Perry Radau, and
Raphael Ronen. In addition, we are deeply grateful to the Robarts Research In-
stitute, the University of Western Ontario, Sunnybrook Research Institute, and
Queen’s University for their support in ensuring the success of this meeting, and
to the staff at Springer for their continued high standards aimed at maintaining
the MICCAI proceedings as the flagship of the LNCS series.

We thank the MICCAI Society Board for trusting us with the mandate to
organize this conference, and to the Board and staff members for valuable and
continuous advice and support through all phases of the project.

A special word of thanks goes to our sponsors, who generously provided
financial support for the conference as a whole as well as for specific activities.
This greatly assisted with the overall organization of the meeting, enabled us to
continue offering best paper awards in various categories, and provided travel
stipends to a significant number of student participants.

It was our great pleasure to welcome the attendees to Toronto for this year’s
MICCAI conference along with its satellite tutorials and workshops. Next year,
the 15th International Conference on Medical Image Computing and Computer-
Assisted Intervention will be held in Nice, France, October 1–5, 2012. We look
forward to seeing you all there.

September 2011 Gabor Fichtinger
Anne Martel
Terry Peters
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Awards Presented at MICCAI 2010, Beijing

MICCAI Society “Enduring Impact Award” Sponsored by Philips.
The Enduring Impact Award is the highest award of the MICCAI Society. It
is a career award for continued excellence in the MICCAI research field. The
2010 Enduring Impact Award was presented to Russ Taylor, Johns Hopkins
University, USA.

MICCAI Society Fellowships
MICCAI Fellowships are bestowed annually on a small number of senior members
of the Society in recognition of substantial scientific contributions to the MICCAI
research field and service to the MICCAI community. In 2010, fellowships were
awarded to:

James S. Duncan (Yale University, USA)
Stephen M Pizer (University of North Carolina, USA)
Jocelyne Troccaz (CNRS, France)

MedIA-MICCAI Prizes (Split decision)
Jihun Hamm, for the article entitled: “GRAM: A Framework for Geodesic Regis-
tration on Anatomical Manifolds,” co-authored by: Jihun Hamm, Dong Hye Ye,
Ragini Verma, Christos Davatzikos

Samuel Gerber, for the article entitled: “Manifold Modeling for Brain Population
Analysis,” co-authored by: Tolga Tasdizen, P. Thomas Fletcher, Sarang Joshi,
Ross Whitaker

Best Paper in Computer-Assisted Intervention Systems and Medical Robotics,
Sponsored by Intuitive Surgical Inc.
Rogerio Richa, for the article entitled: “Robust 3D Visual Tracking for Robotic-
Assisted Cardiac Interventions,” co-authored by: Rogerio Richa, Antonio P. L.
Bo, and Philippe Poignet

MICCAI Young Scientist Awards
The Young Scientist Awards are stimulation prizes awarded for the best first
authors of MICCAI contributions in distinct subject areas. The nominees had
to be full-time students at a recognized university at, or within, two years prior
to submission. The 2010 MICCAI Young Scientist Awards were presented in the
following categories to:

Instrument and Patient Ehsan Dehghan
Localization and Tracking “Prostate Brachytherapy Seed Reconstruction

Using C-Arm Rotation Measurement and Mo-
tion Compensation”



XX Organization

Image Reconstruction and Junzhou Huang
Restoration “Efficient MR Image Reconstruction for Com-

pressed MR Imaging”

Modelling and Simulation Saša Grbić
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Véronique Brion, Cyril Poupon, Olivier Riff,
Santiago Aja-Fernández, Antonio Tristán-Vega,
Jean-François Mangin, Denis Le Bihan, and Fabrice Poupon

HARDI Based Pattern Classifiers for the Identification of White Matter
Pathologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234

Luke Bloy, Madhura Ingalhalikar, Harini Eavani,
Timothy P.L. Roberts, Robert T. Schultz, and
Ragini Verma

fMRI

Detrend-Free Hemodynamic Data Assimilation of Two-Stage Kalman
Estimator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242

Hu Zhenghui and Shi Pengcheng

Fiber-Centered Granger Causality Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 251
Xiang Li, Kaiming Li, Lei Guo, Chulwoo Lim, and Tianming Liu



XXVI Table of Contents – Part II

Variational Solution to the Joint Detection Estimation of Brain Activity
in fMRI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260

Lofti Chaari, Florence Forbes, Thomas Vincent, Michel Dojat, and
Philippe Ciuciu

Adaptively and Spatially Estimating the Hemodynamic Response
Functions in fMRI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269

Jiaping Wang, Hongtu Zhu, Jianqing Fan, Kelly Giovanello, and
Weili Lin

Identification of Individuals with MCI via Multimodality Connectivity
Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277

Chong-Yaw Wee, Pew-Thian Yap, Daoqiang Zhang, Kevin Denny,
Lihong Wang, and Dinggang Shen

Connectivity-Informed fMRI Activation Detection . . . . . . . . . . . . . . . . . . . . 285
Bernard Ng, Rafeef Abugharbieh, Gael Varoquaux,
Jean Baptiste Poline, and Bertrand Thirion

A Stochastic Linear Model for fMRI Activation Analyses . . . . . . . . . . . . . . 293
Leigh A. Johnston, Maria Gavrilescu, and Gary F. Egan

Statistical Analysis and Shape Modelling I

Computing the Shape of Brain Networks Using Graph Filtration and
Gromov-Hausdorff Metric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302

Hyekyoung Lee, Moo K. Chung, Hyejin Kang,
Boong-Nyun Kim, and Dong Soo Lee

Model-Driven Harmonic Parameterization of the Cortical Surface . . . . . . 310
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Longitudinal Change Detection: Inference on the

Diffusion Tensor Along White-Matter Pathways

Antoine Grigis1,2,�, Vincent Noblet1, Fréderic Blanc2, Fabrice Heitz1,
Jérome de Seze2, and Jean-Paul Armspach2
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Abstract. Diffusion tensor magnetic resonance imaging (DT-MRI) trac-
tography allows to probe brain connections in vivo. This paper presents
a change detection framework that relies on white-matter pathways with
application to neuromyelitis optica (NMO). The objective is to detect
global or local fiber diffusion property modifications between two longi-
tudinal DT-MRI acquisitions of a patient. To this end, estimation and
testing tools on tensors along the white-matter pathways are considered.
Two tests are implemented: a pointwise test that compares at each sam-
pling point of the fiber bundle the tensor populations of the two exams in
the cross section of the bundle and a fiberwise test that compares paired
tensors along all the fiber bundle. Experiments on both synthetic and
real data highlight the benefit of considering fiber based statistical tests
compared to the standard voxelwise strategy.

1 Introduction

Diffusion weighted magnetic resonance imaging (DW-MRI) is a non-invasive
method for characterizing the diffusion of water molecules in tissues. The au-
tomated detection of relevant changes in longitudinal DW-MRI sequences may
open promising perspectives for medical diagnosis, follow-up and prognosis. Dif-
fusivity profiles obtained from DW-MRI acquisitions are usually modeled by
diffusion tensors of rank 2 (DTs). Some previous work has addressed change de-
tection between DT-derived scalar images, [2], [4], or between DT fields, [3], [6],
[5]. In [6], statistical tests have been developed to compare two sets of tensors
with application to the comparison of two groups of subjects. Applying these
tests in the context of the longitudinal analysis of a given subject requires to
extract at each voxel two populations of tensors to be compared. This step is not
straightforward since we need to ensure that all the tensors are drawn from the
same distribution. A natural idea is to learn tensor distribution at each voxel by
considering all the tensors in a surrounding user-defined spatial neighbourhood.
This is based on the commonly made assumption of a constant piecewise model,
with known limitations, in particular, at the interface between tissues. To cir-
cumvent this limitation, a local bootstrap strategy can be used to generate a set
� grigis@unistra.fr
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of tensors characterizing the variability of each voxel, based on the variability
existing in the DW-MRI images [5].
In this paper we suggest a longitudinal DT change detection framework based
on tractography features (Fig. 1). The construction of a neighbourhood based
on the fiber structures, and the application of statistical tests along the fiber, en-
able the detection of subtle changes along white-matter pathways. The proposed
processing pipeline is as follows. First, eddy current distortions are corrected us-
ing FSL1. DTs are then estimated from the DW images using a least square
algorithm. Then, a fiber tract extraction is performed with Slicer2 (Label Seed-
ing module) exploiting the first exam information. Fibers of the first exam are
clustered to generate homogeneous fiber bundles (section 2.1). The most repre-
sentative tract of each bundle is extracted and used as a reference tract for the
bundle (section 2.2). The DTs of the second exam are warped using a linear in-
terpolation in the Log-eulidean space and the preservation of principal direction
(PPD) reorientation strategy to be aligned with the first exam [5]. To this end,
an affine and a Bspline based transformation are estimed from the FA images of
the two acquisitions [5]. Tensor sets reflecting the local variability are extracted
at each sampling point of the reference tract considering the DTs of the two
registered exams that belong to the cross section of the bundle (section 3.1). Fi-
nally local and global multivariate statistical tests along white-matter principal
pathways are applied (section 3.2). Experiments on synthetic data highlight the
benefit of considering fiber based statistical tests compared to a standard voxel-
wise strategy. Application to neuromyelitis optica (NMO) also demonstrates the
clinical relevance of the fiber-based strategy.

2 Identifying White-Matter Fiber Bundles in DT Data

2.1 Fiber Clustering

Tractography methods produce a dense set of curves that bear a close resem-
blance to known white-matter pathways [7]. Considering a method that auto-
matically clusters and labels these curves into anatomically plausible pathways
1 http://www.fmrib.ox.ac.uk/fsl/
2 http://www.slicer.org/
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is of great interest for a relevant analysis of white matter properties. To this end,
we have implemented a fiber bundle clustering algorithm based on the method
described in [7]. Neighboring fiber tracts are grouped using the mean of thresh-
olded closest distance. With this metric the distance between curves Q and R is
expressed as follows:

dt(Q,R, t) = meana∈Q,||a−b||>t minb∈R ||a− b|| (1)

where t is the threshold below which the distances are discarded. This threshold
enables the separation of two fibers that might run very closely together for
a long course and then diverge abruptly for a relatively short course into two
different clusters [7]. Since this metric is not symmetric, we consider the longer
mean of thresholded closest distances in the clustering algorithm (see [7] for a
discussion on the influence of the chosen symmetrized form):

dLt(Q,R, t) = max(dt(Q,R, t), dt(R,Q, t)) (2)

With this metric it is possible to identify corresponding tracts with high con-
sistency even when the global shapes of the tracts differ markedly in length or
curvature [7]. A single-linkage agglomerative clustering is then performed [7].
The number of clusters is inversely related to a user-defined fusion proximity
threshold df . The main problem of the tract-clustering algorithm is the com-
putational burden related to the calculation of the pairwise distances between
the current fiber and all the previously clustered fibers. To circumvent this is-
sue, pairwise distances are only computed for fibers belonging to clusters whose
center of mass are close enough to the center of mass of the current fiber (i.e.,
specification of a user-defined distance threshold dcm). After the clustering step,
bundles with less than Nc fibers are rejected in order to have a minimum number
of samples in the statistical population when a pointwise test is performed.

2.2 Bundle Most Representative Tract

We denote each tract belonging to the ith bundle Ti,j , where ni is the number
of tracts in the bundle i and j ∈ {1, ..., ni}. Then the most representative tract
Tref,i of the ith bundle is obtained by selecting the fiber tract that minimizes
the sum of distances with other tracts. The metric used here is the average mean
of closest distances:

dMC(Q,R) =
dt(Q,R, 0) + dt(R,Q, 0)

2
(3)

Note that we set t = 0 in the thresholded distance dt since we are dealing with
a coherent bundle. Finally, the criterion used to select the most representative
tract of a bundle i can be summarized as follows:

Tref,i = arg min
Ti,k,k∈1,...,ni

⎡⎣ ∑
l∈1,..,ni

dMC(Ti,k, Ti,l)

⎤⎦ (4)

Each most representative tract Tref,i is then resampled with N points (N being
user-defined) using a cardinal basis spline interpolation.



4 A. Grigis et al.

a. b.

Fig. 2. a. Schematic representation of the extraction of the tensor sets reflecting the
local variability: see text, and b. the result of the clustering step on a tractography
obtained with Slicer from a ROI in the corpus callosum (parameters: see text).

3 Inference on Fiber Bundles

3.1 Extraction of Tensor Populations Reflecting the Local
Variability

Inference on DT is composed of an estimation and a testing step. The estimation
of model parameters requires to consider a population of tensors that are all
assumed to be drawn from the same distribution. In many situations, considering
all the tensors in a given spatial neighbourhood may not satisfy this assumption,
especially at the interface between different anatomical structures. To overcome
this problem we propose to select a tensor population by taking advantage of
the local geometry of the bundles (see Fig. 2-a). For each sampling point lk of
the reference tract Tref,i, a population of tensors is extracted by considering
the tensors located at the intersections pj,k between the plane perpendicular to
Tref,i and each fiber Ti,j of the bundle. Since points pj,k may not lie on the
grid, corresponding tensors are obtained using linear interpolation in the Log-
euclidean space. In some cases, the plane might intersect the bundle in several
points (e.g. for U-shaped bundles). Consequently, only the closest intersection
is considered. Besides to remove outliers, intersections pj,k whose distance to lk
is larger than 3σi are discarded, σi being the median absolute distance of the
pj,k’s to their corresponding sampling point lk over the ith bundle.

3.2 Multivariate Statistical Estimation and Testing on Tensors

Many statistical tests rely on the normal distribution. Considering the multi-
variate normal distribution for the symmetric positive definite (SPD) matrices
has the drawback to associate matrices with negative or null eigenvalues with
a non null probability. To circumvent this limitation, Schwartzman suggests to
model the matrix logarithms with the multivariate normal distribution, which
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comes to model the SPD matrices with a Log-normal distribution [6]. To this
end the Log-euclidean metric is used. Note that the logarithm of an SPD matrix
D is obtained as L = Log(D) = ULog(Λ)UT , where Λ and U are the matrices
derived from the standard spectral decomposition, containing respectively the
eigenvalues and the eigenvectors of D. Then, the Log-euclidean distance between
two SPD matrices D1 and D2 can be defined as the Euclidean distance between
their logarithms d2(D1, D2) = ‖Log(D1) − Log(D2)‖2. According to this metric,
an estimator of the mean D̄ of a set of n tensors Di is given by the exponential
of the arithmetic Log-tensors mean, i.e. D̄ = exp(L̄), with:

L̄ = argminΣ

n∑
i=1

‖Log(Di) − Σ‖2 =
1

n

n∑
i=1

Log(Di) (5)

An estimator of the variance is then:

s2 =
1

6(n − 1)

[
n∑

i=1

tr
(
Log(Di) − L̄

)2]
(6)

Pointwise testing. Based on this model, it is possible to derive a statistical
test on tensor’s eigenvalues. We consider two populations of n1 and n2 tensors
respectively (n = n1 + n2). Under the assumption that the tensor logarithms
of the two populations follow the normal distributions L1 ∼ N (M1, σ

2Id) and
L2 ∼ N (M2, σ

2Id), the maximum likelihood estimates of M1, M2, and σ2 are
respectively L̄1, L̄2 (Eq.5), and σ̂2 = [(n1 − 1)s1 + (n2 − 1)s2]/(n − 2) (Eq.6).
We consider a test [6] that evaluates whether the two populations of diffusion
tensors have similar eigenvalues, but possibly different eigenvectors. Let Λ1, U1

and Λ2, U2 be the matrices derived from standard spectral decomposition, and
containing respectively the eigenvalues and eigenvectors of M1 and M2. The test,
based on the log-likelihood ratio under hypotheses H0 : Λ1 = Λ2 vs H1 : Λ1 �= Λ2

with U1 �= U2 unknown is:

Tpointwise,σ =
n1n2

3n2σ̂2
tr
[
(Λ̄1 − Λ̄2)2

]
(7)

where Λ̄1 and Λ̄2 are the eigenvalue matrices of L̄1 and L̄2, respectively. We
investigate in the sequel the influence of estimating the variance σ2 locally for
each sampling point lk or of considering a constant variance σ2

bi
estimated over

the whole bundle bi. We denote by Tpointwise,σbi
the corresponding test.

Fiberwise testing. It may be of great interest for physicians or neuroscientists
to identify global modifications along fiber bundles. To this end, we propose to
build a list of putative evolving fibers ordered by decreasing evolution probabil-
ity. At each of the N sampling points of the most representative tracts Tref,i, the
difference between the fiber cross section mean Log-tensors are computed. A pop-
ulation of N Log-tensors is thus obtained for each bundle. Under the assumption
that the Log-tensor population follows the normal distribution L ∼ N (M,σ2Id),
the maximum likelihood estimates of M , and σ2 are respectively L̄ (Eq.5), and
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σ̂2 = s2 (Eq.6). We consider a test that evaluates whether the population of
Log-tensors has eigenvalues equal to Λ0 = [0, 0, 0] [6]. Let Λ, U be the matrices
derived from standard spectral decomposition, and containing respectively the
eigenvalues and eigenvectors of M . The test, based on the log-likelihood ratio
under hypotheses H0 : Λ = Λ0 vs H1 : Λ �= Λ0 is:

Tfiberwise =
N

σ̂2
tr
[
(Λ̄− Λ0)2

]
(8)

where Λ̄ is the eigenvalue matrice of L̄.

4 Results

Experiments on simulated changes. We consider two repeated DW-MRI ac-
quisitions of the same healthy subject acquired on a 3T SIEMENS MRI scanner
with 30 encoding gradients (b-value of 1000 s/mm2). In this way, the differences
between the two scans are only due to the acquisition noise and distortion. The
image dimensions are 96 × 96 × 55 and the spatial resolution is 2 × 2 × 2mm3.
The tractography was computed for the first image using the Label Seeding
module in Slicer (integration step length of 0.5mm, minimum tract length of
50mm, and stopping values on the fractional anisotropy and curvature of 0.1
and 0.8 respectively). For the clustering step, a fusion threshold df of 3.5mm,
a cut-off threshold t in the metric of 0.5mm, and a selection threshold dmc of
4df were used. Results are presented in Fig. 2-b where each bundle contains at
least Nc = 9 fibers. A synthetic fiber alteration is simulated in one of the two
scans as follows. After the fiber clustering step, a bundle is selected to generate
a modification mask. Inside the modification mask, the diffusivity in the princi-
pal direction, i.e. the principal eigenvalue, is uniformly modified by applying a
multiplicative factor k ∈]1, 1.5]. The results of the pointwise test are compared
with the 3×3×3 spatial neighbourhood approach (SN) described in [5]. To this
end, we use a projection P1 from the ijk coordinate system to the fiber coor-
dinate system using the nearest neighbour interpolation. The criterion used to
compare the different methods is the area under Receiver Operating Character-
istic (ROC) curves. A test that allows a perfect discrimination is characterized
by ROC plot with an area of one. A resampling of the most representative fiber
in N = 200 points is done before the bundle cross section point extraction.
The Table 1 summarizes the results. The pointwise methods outperform the SN
method, thus pointing out the importance of satisfying the constant piecewise
assumption. Estimating a constant variance for each bundle slightly increases the
performance of the statistical test. The sensitivity of the fiberwise test Tfiberwise

is also explored (Table 1). Notice that in this particular case the fiberwise test
is more appropriate and gives better results since a global modification has been
simulated.

Experiments on NMO patients. Neuromyelitis Optica (NMO) is an inflam-
matory disease of the central nervous system that predominantly affects optic
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Table 1. Areas under the ROC curves (diffusion modification: see text)

k 1.01 1.02 1.03 1.04 1.05 1.06 1.07 1.08 1.09 1.1 1.2 1.3 1.4

SN 0.581 0.587 0.622 0.663 0.701 0.736 0.767 0.795 0.822 0.843 0.937 0.957 0.965
Tpointwise,σ 0.698 0.707 0.724 0.746 0.705 0.793 0.815 0.834 0.852 0.868 0.953 0.979 0.989

Tpointwise,σbi
0.721 0.727 0.745 0.771 0.801 0.832 0.859 0.884 0.905 0.921 0.986 0.996 0.998

Tfiberwise 0.605 0.837 0.977 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

a. b.

Fig. 3. a. fiberwise test (first patient) and b. projection of the pointwise test from the
fiber coordinate system to the ijk coordinate (second patient).

nerves and spinal cord. The frequency of brain lesions is small using standard
sequences of MRI (T1, T2 and T2-FLAIR). However, a recent work has demon-
strated that the majority of NMO patients have cognitive impairment, which is
a subcortical impairment [1]. In the first part of this preliminary study, we com-
pared the cognitive functions outcome of patient 1 (using the French translation
of the Brief Repeatable Battery (BRB-N), a cognitive battery with 14 subtests)
and brain diffusion MRI outcome (using the fiberwise test) done at the same
time at M0 and M18. In the second part, we compared the neurological physical
status outcome of patient 2 (using the expanded disability status scale (EDSS))
to brain diffusion MRI outcome (using the pointwise test) done at the same time
at M0 and M18. In this latter in order to simplify the interpretation of the re-
sult, the fiber detections were transformed back to the voxel space. Images were
acquired on a 1.5T SIEMENS MRI scanner with 30 encoding gradients (b-value
of 1000s/mm2) at 18 months apart. The images dimensions are 128 × 128 × 41
and the spatial resolution is 1.8×1.8×3.5mm3. For the first patient the fiberwise
test was applied (Fig. 3-a). Two regions stand out: the anterior and posterior
parts of the corpus callosum. These modifications are in accordance with cog-
nitive and behavioral status that worsened. Patient 1 had 6 subtests out of 14
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inferior to the 5th percentile at M0, and 7 subtests at M18. The second patient
had a huge decrease of capacity to walk between M0 and M18. Thus, the EDSS
increased from 6.5 (capable to walk with a constant bilateral assistance, such as
canes) to 8.5 (essentially restricted to bed much of day, not capable to walk).
This aggravation was in accordance with the results of the pointwise test showing
modifications in the corticospinal tracts (Fig. 3-b).

5 Conclusions

The proposed multivariate statistical tests along white-matter principal path-
ways provide complementary information. The global test enables the identifi-
cation of the fibers involved in the longitudinal evolution of the pathology, while
the local strategy enables the detection of more subtle changes. Moreover, we
have demonstrated the superiority of such methods compared to the standard
voxelwise strategy. Finally, the proposed approach might open promissing per-
spectives for the follow-up of the NMO pathology, and will give way to further
explorations. In the future we want to investigate whether a joint fiber clustering
of the two exams would lead to a better mapping of the whitte matter tracts.
We also want to study how registration accuracy could affect the statistical tests
and investigate the impact of using a symmetric registration.
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Abstract. In this paper, we propose to use the full diffusion tensor to
perform brain-wide score prediction on diffusion tensor imaging (DTI)
using the log-Euclidean framework., rather than the commonly used frac-
tional anisotropy (FA). Indeed, scalar values such as the FA do not cap-
ture all the information contained in the diffusion tensor. Additionally,
full tensor information is included in every step of the pre-processing
pipeline: registration, smoothing and feature selection using voxelwise
multivariate regression analysis. This approach was tested on data ob-
tained from 30 children and adolescents with autism spectrum disorder
and showed some improvement over the FA-only analysis.

1 Introduction

Our aim is to generalize to tensors some of the most commonly used diffusion-
MRI processing tools in order to exploit the full information of the tensor in
every step of the processing pipeline and ultimately perform brain-wide machine
learning on the full tensor. We achieve this goal by making use of Log-Euclidean
(LE) metrics [4], a simple and fast way to perform computations in the tensor
space. Classical tensor-based analysis consists first in computing scalar images
from the dataset, then in working only on the resulting scalar maps. Commonly
used scalar features include the fractional anisotropy (FA) and the apparent
diffusion coefficient (ADC) for diffusion tensor imaging (DTI) studies, and the
Jacobian determinant in tensor-based morphometry (TBM) studies. However,
these scalar values are computed only from the eigenvalues of the tensors, and
therefore do not capture all the information available. Some information (e.g.
tensor orientation) is thus lost in the process. Recently, several groups performed
full-tensor voxelwise analysis of tensor fields with LE metrics, both in the DTI
context [6,17] and in the TBM context [10,5]. However, to the best of our knowl-
edge the LE framework has not yet been applied to voxelwise regression nor to
brain-wide machine learning. The present paper aims at filling this gap.

G. Fichtinger, A. Martel, and T. Peters (Eds.): MICCAI 2011, Part II, LNCS 6892, pp. 9–16, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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The remainder of this paper is organized as follows. We first present the Log-
Euclidean framework and how to use it to perform all the steps necessary to
brain-wide machine learning (pre-processings, feature selection using voxelwise
regression analysis and finally brain-wide score prediction). We then describe the
dataset involved in our experiments and compare the results of the full-tensor
approach with those of the classical FA-only approach.

2 Methods

In this section, we present the methods used in this study. Section 2 describes
the Log-Euclidean framework. Next sections expose the different steps in the
pipeline: registration, feature selection using voxelwise regression analysis and
brain-wide score prediction. The whole pipeline is summarized in Fig. 1.

Log-Euclidean Metrics. The tensor space is the space of 3 × 3 symmetric
positive-definite matrices Sym+

3 . The usual Euclidean operations on the space
of 3× 3 matrices suffer from many defects when applied to tensors [4]: positive-
definiteness is not always preserved, and there is tensor swelling effect. To address
these problems, affine-invariant metrics have been proposed [13], but they induce
a huge numerical complexity. The Log-Euclidean framework [4] is a much sim-
pler and faster way to make computations on tensors, while in practice yielding
similar results as the affine-invariant framework. The LE approach relies on a
vector space structure defined on tensor space Sym+

3 with a logarithmic multi-

plication S1�S2
def
= exp (log S1 + logS2) and a logarithmic scalar multiplication

Fig. 1. Flowchart of the whole pipeline – in white classical steps, in green new steps
to account for the full-tensor information – thick green border marks the most efficient
methods for voxelwise and brain-wide analysis respectively – some pre-processings have
been omitted
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λ�S
def
= exp (λ · logS). Computations on the tensors can thus be converted into

Euclidean computations on the tensor logarithms. Moreover, this yields a one-to-
one mapping between tensor space and IR6 with the operator V (S) = (log(S)1,1,√

2·log(S)2,1, log(S)2,2,
√

2·log(S)3,1,
√

2·log(S)3,2, log(S)3,3)T ([4], [13]). Com-
putations are therefore further simplified by working on the resulting vectors.

Registration and Smoothing. The classical pipeline involves: (1) extracting
scalar values (FA), (2) constructing a study-specific scalar template, (3) nonlin-
ear registering the individual scalar maps to the scalar template, (4) smoothing
the resulting scalar maps to improve the power of any further statistical analysis.

To retain the full tensor information in our pipeline, we chose to use the
deformations computed from FA registration in step 3, and apply them to the
tensor fields (cf Fig. 1). During this warping, each tensor must be reoriented to
remain consistent with the anatomy [2]. Moreover, the interpolation is performed
in the Log-Euclidean domain. Smoothing is performed in the LE domain by
applying an isotropic Gaussian convolution kernel to the vector representation
of the tensor logarithms.

Feature Selection using Voxelwise Statistical Analysis. Brain-wide meth-
ods suffer from the curse of dimensionality: as neuroimaging data provides a very
large number of features and a low number of subjects, there is a very high risk
of overfitting the training data resulting in poor generalization. It is therefore
necessary to select a smaller set of relevant features to train the machine learn-
ing system. To perform this feature selection step, we use voxel-based regression
analysis which allows us to rank voxels according to their statistical significance.
A regression is carried out in each voxel yielding an F -value. In the full-tensor
case, the regression is multivariate and the F -value is computed via the Pillai-
Bartlett’s trace [8]. To visualize the results, the p-values maps are thresholded to
show only the most statistically significant regions. To use as feature selection,
we retain the best m voxels for the rest of the analysis.

Brain-Wide Machine Learning. Some complex brain patterns where sev-
eral regions interact cannot be detected by voxel-based analysis. Multivariate
methods that analyze voxels jointly are thus required to detect these patterns.
In this paper, we call these multivariate methods brain-wide methods to avoid
confusion with multivariate voxel-based methods that work with multivariate
objects on only one voxel. The regression method used in this paper is kernel
ridge regression (see e.g. [9]).

Based on a dataset made of N subjects, we denote by y the N × 1 vector of
responses. (x1, . . . ,xN ) are the N subject images (typically xi is of size m×1 for
FA-only, m×6 for tensors, where m is the number of selected voxels). k(xi,xj) is
the kernel function that transforms the data from the data space to the feature
space and K is the N × N kernel matrix where Kij = k(xi,xj). The most
simple kernel function is the linear kernel, which corresponds to the inner product
of the data space. The goal of the kernel ridge regression is to minimize the
penalized residual sum of squares: f̂ = arg minf∈Hk

∑N
i=1(yi−f(xi))2+λ||f ||2Hk

.
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As f̂ can be expanded into f̂(x) =
∑N

i=1 αiK(xi,x), this is equivalent to α̂ =
argminα∈IRN (Kα−y)T (Kα−y)+λαT Kα. The ridge regression solution reads:
α̂ = (K +λNI)−1y. To validate the method, we perform a leave-one-out (LOO)
cross-validation. Prediction accuracy is assessed by the explained variance R2 =
1 −

∑N
i=1(yi−ŷi)

2∑N
i=1(yi−y)2

where y = 1
N

∑N
i=1 yi is the mean of the true values and ŷi =

f̂(xi). R2 = 1 corresponds to a perfect prediction, while we might get R2 < 0 if
the prediction error is high.

Fig. 1 presents the two pipelines. In the FA-only pipeline, the data space is
simply IRm where m is the number of voxels selected to predict the score. We use
the linear kernel and the regression is thus equivalent to a classical linear ridge
regression. In the full-tensor pipeline, the data space is the space of vectors
of tensors (Sym+

3 )m where m is the number of voxels selected to predict the
score: each subject is represented by a vector of m tensors. We construct an
inner product on this space using the vector representation V of the tensors :
with xi = (xi,1, . . . ,xi,m)T and xj = (xj,1, . . . ,xj,m)T members of (Sym+

3 )m,
〈xi,xj〉 =

∑m
l=1 V (xi,l)TV (xj,l) is an inner product on (Sym+

3 )m. We can thus
compute a linear kernel for the kernel ridge regression.

3 Application to Autism Spectrum Disorders (ASD)

In this section we present the dataset used and compare the results obtained
by both approaches for pre-processings, voxelwise regression analysis and brain-
wide machine learning.

Data Acquisition. The dataset consisted of diffusion MRI scans and autism
severity evaluation for thirty children and adolescents with ASD, and lacks con-
trol subjects. The autistic syndrome diagnosis was based on DSM IV-TR criteria
(Diagnostic and Statistical Manual of Mental Disorders [3]) and its severity was
evaluated with the Autism Diagnostic Interview-Revised (ADI-R) algorithm [11]
(a high global ADI-R score means severe autism). For all regression analyses, we
used a modified version of the global ADI-R score (mADI-R) previously used by
Gendry Meresse et al. in [7].

All diffusion MRI scans were acquired on a GE Signa 1.5 MRI system (General
Electric) using a birdcage head coil. The sequence was a dual spin echo echo-
planar imaging sequence (echo times TE = 70 ms; repetition times TR = 8800
ms; 60 axial slices, 2 mm slice thickness, in plane resolution 1.875 × 1.875 mm,
matrix 128×128). For each slice, five images without diffusion weighting (b = 0),
and 41 images with diffusion gradients (b = 1500 s/mm2) applied along 41
non-collinear directions were acquired. We used the diffusion model pipeline of
BrainVISA 3.11 to perform a correction of the diffusion images for echo-planar
distortions and the evaluation of the diffusion tensor from these corrected images.

Registration. We extracted FA values from the tensor images with the diffusion
model pipeline of BrainVISA 3.11. All FA images were nonlinearly registered to
1 BrainVISA, http://www.brainvisa.info

http://www.brainvisa.info
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FA only FA + full tensor

Fig. 2. Left: mean of the 30 FA images after FA-only registration – Right: FA of the
Log-Euclidean mean of the 30 tensor images after FA + full tensor registration

a study-specific FA template with SPM52 running on Matlab 7.6. Before further
analysis, all FA maps were smoothed with an 8-mm isotropic Gaussian filter.
To obtain registered full-tensor images, we used TTK3 to apply the deforma-
tions computed during the FA registration to the tensor fields (cf Fig. 1). This
warping was done with a log-Euclidean interpolation scheme and a finite-strain
reorientation strategy [2]. All maps were smoothed in the log-Euclidean domain
with an 8-mm isotropic Gaussian filter. Using the same level of smoothing in the
two approaches enables comparison of the results.

To assess the accuracy of the two methods, we computed the FA mean of
the registered images before smoothing that we compared to the FA extracted
from the full-tensor mean image (Fig. 2). The FA map obtained from the full-
tensor registration is more contrasted than the one obtained from the FA-only
registration. This means that the individual images are better aligned to one
another, even though the same deformation field is used. This result confirms
the importance of the interpolation scheme and the reorientation of tensors.

Voxelwise Regression Analysis. Analyses were performed on the whole
brain, with an uncorrected voxelwise threshold of p < 0.005. The full-tensor
approach finds all of the regions found by the classical FA-only approach and
known to be involved in ASD such as superior temporal regions and inferior
frontal regions (Fig. 3, top). Moreover, some significant regions highlighted by
the full-tensor approach were not found by the FA-only method (Fig. 3, bot-
tom). In particular, the corpus callosum and the anterior commissure have been
mentioned in other studies of autism: [1,12,14,15]. The fact that these regions
were detected with the full-tensor approach but not with the FA-only approach
confirms that the relevant information lies in the orientation of the tensor as we
hypothesized, and not only in its eigenvalues.

Brain-Wide Score Prediction. We tested the prediction accuracy with a
LOO cross validation. The accuracy was computed for several values of m

2 Statistical Parametric Mapping, http://www.fil.ion.ucl.ac.uk/spm/
3 The Tensor Toolkit, https://gforge.inria.fr/projects/ttk/

http://www.fil.ion.ucl.ac.uk/spm/
https://gforge.inria.fr/projects/ttk/
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Right superior temporal region Right inferior frontal region
(48,-47,-11) (46,-49,13) (36,23,18) (30,27,14)

FA only full tensor FA only full tensor

Corpus callosum Anterior commissure
(48,-47,-11) (46,-49,13) (36,23,18) (30,27,14)

FA only full tensor FA only full tensor

Fig. 3. Thresholded p-values maps for some regions of the brain (p < 0.005) – coordi-
nates of the most significant voxel are in Talairach space – Top row: consistent findings
of the two approaches in the right superior temporal and inferior frontal regions – Bot-
tom row: the full-DTI approach identified differences in the corpus callosum and the
anterior commissure, that were missed by the FA-only analysis.

(number of selected voxels) and the p-values of the resulting explained variances
were corrected across the multiple experiments with a maxT procedure [16].

Fig. 4 (left) shows that the FA-only approach does not yield a satisfying result:
the cross-validated R2 is always negative. Taking the full tensor into account
does reach an explained variance of 0.50 with p < 0.05. However, Fig. 4 (right)
shows that the full-tensor approach is more prone to overfitting than the FA-only
one. When using the full tensors the dimension of the data space is 6 times the
number of voxels selected, so the method overfits as soon as 6m > 29 (number of
training subjects). Therefore we tried an intermediary alternative between the
two approaches: we applied deformations to the tensors but extracted the FA for
further analysis. This approach achieves a fair trade-off: the brain-wide kernel
regression yields a cross-validated R2 of 0.64 (with a significance of p < 0.005).
Extracting a scalar value seems to counteract the overfitting problem. Moreover,
extracting the FA to perform the brain-wide prediction can be seen as a way to
construct a kernel from the tensor values.
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* ***
*

Fig. 4. Test R2 (left) and train R2 (right) for different numbers of voxels selected –
Significance codes: 0 *** 0.005 ** 0.01 * 0.05 1 – Full-tensor approach overfits rapidly
(100% of train explained variance is reached with only 23 = 8 voxels). This contrasts
with FA-only that needed 32 voxels to obtain a perfect fit. Finally, the FA after applying
deformations to DTI showed an intermediate behavior.

4 Conclusion

The main contribution of this paper was to adapt the DTI analysis pipeline
to use the full tensor information in a log-Euclidean framework, with a view
to performing brain-wide machine learning on tensor images. We confirmed al-
ready observed results: the information contained in the full tensor enhances
the correspondence between images and full-tensor voxelwise analysis is more
sensitive than the FA-only analysis. We showed that the full-tensor brain-wide
score prediction was more prone to overfitting than scalar-based prediction, but
that computing the FA after applying deformations to the full tensors yielded
better results than the traditional FA-only pipeline.
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Abstract. DTI tractography allows unprecedented understanding of brain neural 
connectivity in-vivo by capturing water diffusion patterns in brain white-matter 
microstructures. However, tractography algorithms often output hundreds of 
thousands of fibers, rendering the computation needed for subsequent data 
analysis intractable. A remedy is to group the fibers into bundles using fiber 
clustering techniques. Most existing fiber clustering methods, however, rely on 
fiber geometrical information only by viewing fibers as curves in the 3D 
Euclidean space. The important neuroanatomical aspect of the fibers is mostly 
ignored. In this paper, neuroanatomical information is encapsulated in a feature 
vector called the associativity vector, which functions as the “fingerprint” for 
each fiber and depicts the connectivity of the fiber with respect to individual 
anatomies. Using the associativity vectors of fibers, we model the fibers as 
observations sampled from multivariate Gaussian mixtures in the feature space. 
An expectation-maximization clustering approach is then employed to group the 
fibers into 16 major bundles. Experimental results indicate that the proposed 
method groups the fibers into anatomically meaningful bundles, which are highly 
consistent across subjects. 

1  Introduction 

Diffusion Tensor Imaging (DTI) has become a popular imaging modality in exploring 
brain circuitry in-vivo by capturing water diffusion patterns in brain tissues. Water 
molecules are more likely to diffuse parallel along neural pathways, since myelin 
sheaths of axons act as barriers and restrict the mobility of water molecules along 
directions perpendicular to the neural pathways. In a DT image, each voxel records 
the anisotropic water diffusion pattern at a specific location of the brain using a 
second-order tensor. The principal eigenvector of the tensor, corresponding to the 
maximal eigenvalue, indicates the major direction along which water molecules are 
diffusing. By tracing along these directions, neural tracts can thus be delineated via a 
process called tractography [1].  

Several fiber tractography algorithms have been proposed in the literature. An 
intuitive and straightforward streamline-based tractography approach begins fiber 
tracing from a given seed point and grows smoothly along the principal eigenvectors 
of the underlying tensor field. This tracking procedure continues until either the fiber 
enters regions with low fractional anisotropy (FA), where directional information is 
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no longer reliable, or when the curvature of the fiber pathway is too large. With whole 
brain seeding, a typical fiber tractography algorithm can yield fibers numbering in the 
order of 103-106. 

Fiber tractography provides an effective approach in visualizing and analyzing 
brain connectivity, and thus is important in clinical applications. However, the task of 
analyzing fibers yielded by tractography is non-trivial. The massive amount of fibers 
often renders subsequent analyses difficult, and makes information provided by the 
fibers not immediately decipherable. One possible solution is to automatically 
partition fibers into dozens of bundles, each of which contains fibers that are 
characterized by similar structural and functional behaviors. Analyses can then be 
performed on the bundles, instead of the individual fibers.  

Existing fiber clustering methods are mostly geometry based approaches. Fibers 
are typically viewed as a set of curves in the 3D space. In [2], for example, point-to-
point correspondences are first established between fibers. The similarity between a 
pair of fibers is then defined as the ratio of the length of the corresponding segment 
over the entire fiber length. The correspondence ratio between fibers is maximized 
when the two fibers are identical, and vanishes if pairwise correspondence is minimal. 
Similar ideas based on point-to-point correspondences between fibers are applied in 
[3, 4]. Fiber similarity can also be calculated by counting the number of voxels that 
the two fibers share [5]. Other approaches involve extracting features from the spatial 
distributions or parametric representations of fibers [6-9]. The Hausdorff distance, as 
well as its variants, has also been widely applied to fiber clustering [10-14]. 

Geometry based methods, however, ignores the neuroanatomical characteristics of 
fibers and results in bundles which are not clear for interpretations from an anatomical 
and connectivity point of view. It is therefore important to incorporate anatomical 
information when performing fiber clustering. For this purpose, Maddah et. al. [7] 
report an atlas where individual bundles have already been delineated and labeled by 
experts. Based on this atlas, fibers are clustered and labeled with the known bundles 
according to geometric similarities. Alternative approaches can also be found in [15, 
16], where bundles are tagged according to the regions they connect. 

In this paper, we propose a novel fiber clustering scheme that is solely based on the 
neuroanatomical features of fibers. After performing whole brain tractography, we 
parcellate the brain with a number of ROIs and diffuse the ROIs according to the 
underlying fibers. ROI diffusion helps more robustly determine the relationship 
between the anatomical regions (as delineated by the ROIs) and the fibers by using 
this fuzzy formulation. We are then able to acquire the associativity vector for each 
fiber to describe its connectivity pattern with respect to all ROIs of different 
anatomies. Each entry of the associativity vector represents the likelihood of the fiber 
being connected to a particular ROI. We further model each bundle as a multivariate 
Gaussian mixture based on the associativity vectors of the fibers belonging to the 
bundle. An expectation-maximization (EM) approach is thus employed to group the 
fibers as belonging to one of the bundles or as outliers. Experimental results show that 
the proposed method can achieve consistent clustering results across individual 
subjects, implying its potential usage in analyzing a population of DTI data. 
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2  Method 

We will first define the associativity vector (Section 2.1) and then introduce the 
multivariate-Gaussian-mixture-based EM clustering approach (Section 2.2). 

2.1  Neuroanatomical Features of Fibers 

Fibers connect different anatomical regions of the brain, forming a connectivity 
pattern that describes brain circuitry. For annotating different regions of the brain, we 
warp the “Eve” atlas [17] (called atlas for brevity in the rest of the paper) to the native 
space of each individual subject via non-rigid registration. The atlas contains T1 
image, tensor field, and a set of manually delineated ROIs for important anatomical 
structures of the brain. 

Suppose that there are M  ROIs, we then define the associativity vector ܮ ൌሺℓଵ, ℓଶ, ڮ , ℓሻ for fiber ݅, where the entry ℓ measures the relationship between 
fiber ݅ and the j-th ROI. Entry ℓ  can be set to 1 if any segment of fiber ݅  lies 
within ROI ݆, and left unset otherwise. However, this binary formulation, though 
simple, would result in sparse associativity vectors, pose challenges in estimating 
fiber distances, and increase the tendency of the clustering algorithms to be trapped in 
local minima. Moreover, fibers that are prematurely terminated a little short of 
reaching the ROI due to imaging noise might also be penalized.  

In view of this, we propose a fuzzy ROI spatial confidence map by allowing the 
ROI to grow, or to diffuse, along directions indicated by the fibers. For this purpose, 
we adopt the fast marching (FM) approach [18]. As illustrated in Fig. 1(a), the initial 
ROI (dark red area) starts diffusing since time ݐ௦ and terminates at ݐ . The initial 
ROI surface (dashed green curve) moves outward following the underlying fibers 
from upper-left to lower-right. At location x on the surface, diffusion proceeds along 
the surface normal direction. The contribution of a fiber to the ROI diffusion at x is 
defined as the inner product of the tangential direction of the fiber and the surface 
normal. Summing up contributions from all fibers traversing x, we obtain the overall 
diffusion velocity ݒሺxሻ . By iteratively solving the Eikonal equation ݒԡ୶߬ԡ=1 in 
FM, we then acquire the time value when a certain location is traversed by the ROI 
surface. The location geodesically closer to the initial ROI will be traversed by the 
surface at an earlier time. We thus invert all recorded time values and rescale them to 
the range of [0, 1], giving a spatial confidence map of the ROI. In Fig. 1(a), for 
example, dark red indicates locations near the initial ROI and dark blue indicates 
locations far away. 

We have also provided a real example in Fig. 1(b)-(d). In Fig. 1(b), the bundle 
connecting the left superior-frontal gyrus (SPG-L) to the right superior-frontal gyrus 
(SPG-R) is overlaid in red on the FA map. The ROI of SPG-L diffuses accordingly, 
and results in the spatial confidence map in panel (c) where the dark red area is the 
initial ROI. The diffusion pattern of SPG-R is similar and displayed in Fig. 1(d). 

All ROIs are diffused according to the fibers given by whole-brain tractography, 
and resulting in their own spatial confidence maps. We allow the same amount of 
time for diffusion of all ROIs, in order to assure that the re-scaled spatial confidence 
maps are comparable. For the associativity vector ܮ  of fiber ݅ , the entry ℓ  is 
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defined as the maximal spatial confidence value that fiber ݅ comes upon the spatial 
confidence map of ROI ݆. The atlas consists of 130 ROIs (usually at the scale of 
gyrus/sulcus), but we only need to detect 16 major fiber bundles as in the following. 
To reduce the redundancy between entries of the associativity vector, we integrate 
smaller ROIs into larger ones. In particular, the ROIs we have used in this work 
include the left/right frontal lobes, the left/right central areas, the left/right parietal 
lobes, the left/right occipital lobes, the left/right temporal lobes, the left/right sub-
cortical areas, the brainstem, and the cerebellum. 

 

Fig. 1. In (a), the ROI is diffused along the underlying bundle. The diffusion starts from the 
green dashed curve (at ݐ௦ ) and terminates at the red dashed curve (at ݐ ). The spatial 
confidence map of the ROI can thus be calculated using the traversing time of the diffusion 
surface. In (b), the bundle connecting SPG-L and SPG-R is overlaid in red on the FA map. The 
spatial confidence maps of SPG-L and SPG-R after diffusion according to the bundle in (b), are 
shown in (c) and (d), respectively. 

2.2  Bundle Modeling and Clustering 

Fibers in the same bundle typically share similar neural pathways and generate highly 
correlated associativity vectors. As the result, we can model the distribution of fibers 
in a bundle using their associativity vectors with a multivariate Gaussian mixture. An 
expectation-maximization (EM) approach based on parametric bundle models can 
then be used for fiber clustering. For initialization of the EM based clustering, we 
have manually reproduced 16 major bundles (listed in Table 1) in the atlas space 
following [19]. Parameters estimated from these bundles will work as constraints to 
guide fiber clustering in each subject. The fibers of the subject will be either grouped 
into one of the 16 bundles or tagged as outliers. The parameters for the multivariate 
Gaussian mixture representing each bundle ݇  ሺ1  ݇  ሻܭ  include the mean 
associativity vector ߤ and the covariance matrix ܵ . For fiber ݅ ሺ1  ݅  ܰሻ, we 
denote its associativity vector as ܮ and its membership to bundle ݇ as ߱. 

E-step: 
According to Bayes rule, the membership of fiber ݅ to bundle ݇ can be estimated as: ߱ ՚ ߙ ڄ ܰሺܮ|ߤ, ܵሻ∑ ߙ ڄ ܰሺܮ|ߤ, ܵሻୀଵ  (1)
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where ܰሺܮ|ߤ, ܵሻ is the multivariate Gaussian distribution centered at ߤ  with 
covariance ܵ . For the first E-step, the parameters ሺߤ, ܵሻ are directly introduced 
from the manually delineated bundles in the atlas, while ߙ denotes the number of 
fibers in bundle ݇. 

Table 1. The list of the 16 target bundles 

Abbr. Description Abbr. Description 
Fminor Forceps minor SLF-R Superior longitudinal fasciculus (right) 
Fmajor Forceps major SLF-L Superior longitudinal fasciculus (left) 
CST-R Corticospinal tract (right) ILF-R Inferior longitudinal fasciculus (right) 
CST-L Corticospinal tract (left) ILF-L Inferior longitudinal fasciculus (left) 
ATR-R Anterior thalamic radiation (right) UNC-R Uncinate fasciculus (right) 
ATR-L Anterior thalamic radiation (left) UNC-L Uncinate fasciculus (left) 
IFO-R Inferior fronto-occipital fasciculus (right) CB-R Cingulum (right) 
IFO-L Inferior fronto-occipital fasciculus (left) CB-L Cingulum (left) 

M-step: 
The parameters ሺߤ, ܵሻ are updated in the M-step. Based on the membership values 
estimated in the E-step, we first compute the mixture weighting factor for each bundle ߙ ՚ ∑ ߱ேୀଵ ܰ⁄  and then the bundle parameters: ߤ ՚ ߤߣ  ൬ ଵିఒ∑ ఠೖಿసభ ൰ ∑ ߱ܮேୀଵ   (2)

ܵ ՚ ቆ 1∑ ߱ேୀଵ ቇ  ߱ሺܮ െ ܮሻሺߤ െ ሻ௧ேୀଵߤ (3)

We set ߣ of (2) to 0.95 to prevent drastic shifts of ߤ, which might occur due to large 
fiber variation. Subsequent E-steps and M-steps will be iteratively executed until 
convergence. Fibers whose highest memberships are lower than a predefined 
threshold are regarded as outliers. 

3  Experimental Results 

A total of 15 healthy subjects were used to evaluate the proposed fiber clustering 
method. The diffusion weighted data were acquired using a Siemens Allegra scanner 
(b=1000s/mm2, flip angle 90◦, TR/TE=13,640/82ms, matrix 128×128, FoV 
256×256mm2, slice thickness 2mm, 80 contiguous slices). In Fig. 2(a), the manually 
delineated bundles in the atlas space, following protocols in [19], are annotated in 
different colors. It is worth noting that all right hemisphere bundles are excluded from 
Fig. 2(a) and only 9 target bundles are shown for visualization. In panels (b)-(e), we 
show the clustering results of 4 randomly selected subjects. In each panel, callosal 
fibers (Fminor and Fmajor) are only shown in the top image and excluded in the 
bottom image for better visualization of other bundles (i.e., CB). In (b)-(e), bundles in 
the right hemispheres are also removed for visualization clarity, as we have done in 
(a). Overall, for all 4 subjects shown in Fig. 2, the clustering results are consistent 
with the atlas and across subjects. 
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In Fig. 3, we plot associativity vectors of fibers in three bundles (CST-R, CST-L, 
ATR-R) from two different subjects, respectively. Since the entries of the associativity 
vectors corresponding to the opposite hemisphere are mostly zeros, we remove them 
from the associativity vector before plotting. The red curves are the mean associativity 
vectors. For both subjects, patterns between corresponding bundles are similar to each 
other, indicating that clustering results are consistent across subjects. We can also 
observe reflectional symmetry between CST-R and CST-L. Moreover, the associativity 
vectors for ATR-R, which is neighboring to CST-R, show a clearly different pattern with 
that of CST-R, suggesting that they can be sufficiently differentiated by the bundle 
models during fiber clustering.  

For corresponding bundles of two individual subjects, we measured their similarity 
using the mean of the Pearson correlation coefficients of associativity vectors between all 
fiber pairs. The average correlations of 16 bundles across 15 subjects, as well as standard 
deviations, are listed in Table 2. In most bundles, the very high correlation scores 
underline that clustering results are consistent across subjects, which is important to fiber 
clustering.  

Table 2. The mean correlation of associativity vectors, as well as the standard deviation, across 
all 15 subjects 

Bundle Correlation Bundle Correlation Bundle Correlation 
Fminor 0.891±0.016 IFO-R 0.924±0.008 UNC-R 0.969±0.009 
Fmajor 0.663±0.048 IFO-L 0.935±0.032 UNC-L 0.975±0.013 
CST-R 0.867±0.021 SLF-R 0.976±0.009 CB-R 0.946±0.020 
CST-L 0.906±0.020 SLF-L 0.953±0.010 CB-L 0.924±0.034 
ATR-R 0.898±0.022 IFL-R 0.943±0.015 
ATR-L 0.926±0.019 IFL-L 0.939±0.030 

4  Discussion 

In this paper, we have applied a fuzzy formulation of the associativity vector for fiber 
representation and modeling. Based on the associativity vectors, we model fiber 
bundles using multivariate Gaussian mixtures. An EM clustering scheme is employed 
to group the fibers into 16 major bundles. Compared with geometric methods, the 
proposed method relies on fiber connectivity patterns only but not geometric 
similarity, as complex fiber structures (fanning, branching, etc.) are challenging for 
modeling using geometric information. Moreover, the 16 target bundles are selected 
due to their easy reproducibility, though no limitation of bundles is assumed. 
Experimental results show that clustering results are consistent with the atlas and 
across subjects, which is an important property in applying this method to analysis of 
population data. More extensive assessment of the algorithm, however, will need to 
be performed. For this purpose, we will use histological data obtained from  
excised brains of canine subjects, which will soon be available to us from one of our 
projects. 
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Abstract. We present a novel approach for probabilistic clustering of
white matter fibre pathways using curve-based regression mixture mod-
elling techniques in 3D curve space. The clustering algorithm is based on
a principled method for probabilistic modelling of a set of fibre trajec-
tories as individual sequences of points generated from a finite mixture
model consisting of multivariate polynomial regression model compo-
nents. Unsupervised learning is carried out using maximum likelihood
principles. Specifically, conditional mixture is used together with an EM
algorithm to estimate cluster membership. The result of clustering is
a probabilistic assignment of fibre trajectories to each cluster and an
estimate of cluster parameters. A statistical shape model is calculated
for each clustered fibre bundle using fitted parameters of the probabilis-
tic clustering. We illustrate the potential of our clustering approach on
synthetic and real data.

Keywords: Probabilistic Clustering, Regression Mixture, Fibre Trac-
tography, Shape Model.

1 Introduction

White matter (WM) fibre clustering is becoming an important field of clinical
neuroscience research since it facilitates insights about anatomical structures in
health and disease, allows clear visualizations of fibre tracts and enables the cal-
culation of relevant statistics across subjects. A number of algorithms have been
developed for clustering and labelling WM fibre bundles in DTI. Deterministic
clustering algorithms [1-3] assign each trajectory to only one cluster, which may
lead to biased estimators of cluster parameters if the clusters overlap. Probabilis-
tic clustering algorithms [4], on the contrary, deal with the inherent uncertainty
in assigning the trajectories to clusters. Quantitative parameters can be esti-
mated by a weighted average over cluster members and thus more robust results
may be obtained, which are less sensitive to the presence of outliers. Maddah et
al. [4] proposed a probabilistic approach using a gamma mixture model and a
distance map. This method assumes that the number of clusters is known and
the approach requires manual user initialisation of the cluster centres. A problem
for this approach was establishing correspondence between points.
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In this paper, we propose a new geometrical framework to automatically clus-
ter WM fibres into biologically meaningful neuro-tracts probabilistically. We are
interested in starting with given fibre trajectories and determining whether these
trajectories can be naturally clustered into groups. We investigate the model-
based clustering of fibre trajectories, where each cluster is modelled as a pro-
totype function with some variability around that prototype. A distinct feature
of this model-based approach to clustering is that it produces a distinct model
for each cluster. Since we are estimating smooth functions from noisy data it
will be natural to use a probabilistic framework. Specifically we use mixtures of
polynomial regression models as the basis of clustering. Multivariate clustering
technique is used to describe the three dimensional propagations of the fibre
trajectories which vary in length. We use a conditional mixture approach as it
naturally allows for curves of variable length with unique measurement intervals
and missing observations. Polynomial fits also take advantage of smoothness
information present in the data. A regression model for each fibre bundle is con-
structed after performing probabilistic clustering. The probabilistic clustering
algorithm is also capable of handling outliers in a principled way.

2 Probabilistic Model for White Matter Trajectories

2.1 Basic Definitions

Let V be a set of M 3-D fibre trajectories, where each trajectory vi is an ni × 3
matrix containing a sequence of ni 3-D points (x, y, z) in 
. The associated ni×1
vector ui of ordered points from 0 to ni − 1 correspond to points of vi and set
U = {u1, u2, . . . , uM}. In the standard mixture model framework, probability
density function (PDF) for a d-dimensional vector v, is modelled as a function
of model parameters ϕ, by the mixture density

p(v|ϕ) =
K∑
k

αkpk(v|θk), (1)

in which ϕ = {αk; θk, k = 1 . . .K}, αk(
∑K

k αk = 1) is the k-th component weight
and pk is the k-th component density with parameter vector θk.

In this manner a finite mixture model is a PDF composed of a weighted av-
erage of component density functions. Each trajectory vi is generated by one of
the components, but the identity of the generating component is not observed.
The parameters of each density component pk(v|θk), as well as the correspond-
ing weights αk, can be estimated from the data using the EM algorithm. The
estimated component models, pk(v|θk) are interpreted as K clusters, where each
cluster is defined by a PDF. The set of trajectories is clustered to a number of
subsets by assigning a membership probability, wik, to each trajectory, vi, to de-
note its membership of the kth cluster. The number of clusters, K, is defined by
the user. Finally, each trajectory vi is assigned to the cluster k with the highest
membership probability.
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2.2 Model Definition

We model the X directional position (similarly Y and Z) with a p-th order mul-
tivariate polynomial regression model in which the order ui is the independent
variable, which is assumed with an additive Gaussian error term. The three re-
gression equations can be defined succinctly in terms of the matrix vi. The form
of the regression equation for vi is

vi = Uiβ + εi, εi ∼ N(0, Σ) (2)

where Ui is the standard ni × (p+1) Vandermonde regression matrix associated
with vector ui, β is a (p + 1) × 3 matrix of regression coefficients for X , Y , and
Z direction and εi is an ni × 3 zero-mean matrix multivariate normal error term
with a covariance matrix Σ. For simplicity, we assume that Σ = diag(σ2

x, σ
2
y , σ

2
z),

so that the X , Y , and Z measurement noise terms are treated as conditionally
independent given the model.

The conditional density for the ith trajectory f is a multivariate Gaussian
with mean Uiβ and covariance Σ. The parameter set θ = {β,Σ}.

p(vi|ui, θ) = f(vi|Uiβ,Σ) (3)

We can derive regression mixtures for the trajectories by a substitution of Eq.
(1) with the conditional density components pk(v|u, θk), as defined in Eq. (3).

p(vi|ui, ϕ) =
K∑
k

αkfk(vi|Uiβk, Σk) (4)

Note that in this model each fibre trajectory is assumed to be generated by
one of K different regression models. Each model has its own shape parameters
θk = {βk, Σk}.

The full probability density V given U , p(V |U,ϕ), is also known as the con-
ditional likelihood of the parameter ϕ given the data set both V and U to be
written as

L(ϕ|V, U) = p(V |U,ϕ) =
M∏
i

K∑
k

αkfk(vi|Uiβk, Σk) (5)

The model can handle trajectories of variable length in a natural fashion, since
the likelihood equation (Eq. (5)) does not require the number of data points.
The product form in Eq. (5) follows from assuming conditional independence of
vi’s, given both ui’s and the mixture model, since the fibre trajectories do not
influence each other.

2.3 EM Algorithm for Mixture of Regression:

E-Step: In the E-step, we estimate the hidden cluster memberships by forming
the ratio of the likelihood of trajectory vi under cluster k, to the sum-total
likelihood of trajectory vi under all clusters:

wik =
αkfk(vi|Uiβk, Σk)∑K
j=1 αjfj(vi|Uiβj, Σj)

(6)
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These wik give the probabilities that the ith trajectory was generated from
cluster k.

M-Step: In the M-step, the expected cluster memberships from the E-step are
used to form the weighted log-likelihood function:

L(ϕ|V, U) =
∑

i

∑
k

wik logαkfk(vi|Uiβk, Σk) (7)

The membership probabilities weight the contribution that the kth density
component adds to the overall likelihood. The weighted log-likelihood is then
maximized with respect to the parameter set ϕ.

Let wik = wikIni and let Wk = diag(w
′
1k, w

′
2k, . . . , w

′
nk) be an N×N diagonal

matrix, where N = ΣM
i ni. Then, we use Wk to calculate the mixture parameters

β̂k = (U
′
WkU)−1U

′
WkV, Σ̂k = (V −Uβ̂k)

′
Wk(V −Uβ̂k)∑N

i wik
, and α̂k = 1

N

∑
i wik (8)

for k = 1, . . . ,K where V is an N×3 matrix containing all the vi measurements,
one trajectory after another, and U is an N × (p + 1) Vandermonde regression
matrix corresponding to Y values.

3 Methods

3.1 Implementation of Clustering Algorithm

Algorithm: Consider a set V of M 3-dimensional fibre trajectories (vi) in the
X, Y and Z directions and the associated set U of ui, which contains ordered
values corresponding points of vi. The number of clusters K and the order of
regression p are input parameters.

Step 1. Randomly initialize the membership probabilities wik

Step 2. Calculate new estimates for parameters β̂k, Σ̂k of the cluster model and
mixing weights α̂k from Eq. (8) using the current wik.

Step 3. Compute the membership probabilities wik using Eq. (6).
Step 4. Loop to step 2 until convergence.
Step 5. Return the final parameter estimates (including mixing proportions)

and cluster probabilities. Outliers are deleted from the set of trajectories
using a threshold t.

Handling Outliers: It is assumed that each trajectory is assigned a membership
probability wik for each cluster k. There may be trajectories resulting from
the tractography which do not resemble any of the regression equations or are
not valid due to inaccuracies at the tractography stage. An outlier is identified
by imposing a threshold on the membership probabilities. If the membership
probability of a given trajectory in all clusters is less than the specified threshold
t, that trajectory will be removed as for Maddah et al. [4].
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Fig. 1. A schematic of Witelson corpus callosum subdivisions [6] based on the midsag-
gital slice. ACC and PCC indicate the anteriormost and posteriormost points of the
callosum.

3.2 Synthetic Data

We have used PISTE [http://cubric.psych.cf.ac.uk/commondti] synthetic data
set (diffusion encoding directions = 30, b-value = 1000 s/mm2 and voxel resolu-
tion: 1× 1× 1 mm3) to demonstrate some of the basic features of our clustering
algorithm, specifically, its ability to cluster a 3D data set into multiple bundles
accurately.

Here we consider three example noise free and noisy (SNR=15) data sets:
a branching fibre with individual FA in each branch, two orthogonally crossing
fibres with individual FA on each fibre and two straight crossing fibres. The
noisy synthetic example is intended to demonstrate the robustness of our clus-
tering algorithm in a more hostile environment-one corrupted by additive noise,
with complicated fibre structures, and having varying fibre tract lengths. For
the three dimensional tract reconstruction, the single-tensor and two-tensor 4th
order Runge-Kutta method deterministic tractography were used for branching
data and two crossing data respectively. The generated tracts were then clustered
into the subdivisions using appropriate K value.

3.3 In Vivo Data

Data: 1.5 T DW data were acquired from four healthy adults with an image
matrix of 128x128, 60 slice locations covering the whole brain, 1.875×1.875×2.0
mm3 spatial resolution, b = 700 s/mm2 and 41 diffusion directions. To correct
for eddy currents and motion, each DW volume was registered to the non-DW
volume of the first subject.

Corpus Callosum Clustering: Subdividing the corpus callosum (CC) into
anatomically distinct regions is not well defined but is of much importance, es-
pecially in studying normal development and in understanding psychiatric and
neurodegenerative disorders. Witelson [5] proposed a schematic for seven sub-
divisions of the CC as shown in Fig. 1. We further divide the splenium into its
upper and lower parts to give a finer model.

The ROIs for the CC were outlined by an expert based on information from
FA maps for all four subjects. Fibre trajectories were reconstructed using the
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4th order Runge-Kutta method for the four subjects and were normalized to a
common template (128×128×60 matrix size and voxel size 1×1×1 unit). The
CC tracts were then clustered into K=8 subdivisions.

Model Selection: It is important to make decisions about the optimal order of
the fibre regression models, the most suitable type of trajectory pre-processing,
and the number of clusters that best describes each fibre tract dataset for our
method. We fitted regression mixture models with different orders of polynomial
to randomly selected training sets of CC fibre trajectories. The experimental
results were reported. The choice to use third-order polynomials for the regres-
sion models as opposed to other order polynomials was made for two reasons:
(a) visual inspection supports this as a sufficient choice and (b) cross-validation
also confirms third-order as the optimal choice in this case. We modelled the X
position with a cubic polynomial regression model in which u is the independent
variable, x = β3u

3 + β2u
2 + β1u + β0, and likewise for the Y and Z directions.

4 Results and Discussion

Synthetic Data: The Synthetic data results (Fig. 2) demonstrate the clustering
algorithm’s ability to accurately separate fibre tracts into meaningful bundles. In
our component regression models for the synthetic data a cubic polynomial was
used (K=2). This choice is based on the visual inspection of fitted-versus-actual
trajectory data. The noise-free synthetic data results in complicated fibre tract
structures demonstrating that our clustering algorithm is able to cluster a 3D
data set into multiple bundles accurately. The noisy synthetic example results
demonstrate the robustness of our clustering algorithm in a noisier environment.

In Vivo Data: Fig. 3 shows the results of clustering approximately 700 trajecto-
ries from the corpus callosum into 8 bundles for three subjects. The membership
probability of the trajectories for each cluster is obtained and the trajectories in
Fig. 3 are coloured based on their maximum membership probabilities. Results
showed that our clustering method automatically differentiates CC subdivision
fibre bundles consistently across subjects. As a product of the proposed cluster-
ing method, regression models of each fibre bundles are obtained in the X, Y,

Fig. 2. (a) Synthetic data, (b) clustered trajectories, (c) noisy data and (d) noisy data
clustered trajectories of three selected fibre geometries
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Fig. 3. Clustering of the CC from the first three subjects viewed from a sagittal
orientation. Top row: the original fibre tracts and Bottom row: clustered into bundles.

Table 1. Cluster-wise average parameter measures for the sub-divided CC

Rostrum Genu Rostral Anterior Posterior Isthmus Upper Lower
body mid body mid body splenium splenium

X β3 3.09e-4 4.43e-4 3.46e-4 3.74e-4 4.08e-4 3.81e-4 4.08e-4 4.31e-4
β2 -0.0348 -0.0422 -0.0367 -0.0393 -0.0363 -0.0368 -0.0350 -0.3908
β1 0.7618 0.8090 0.8246 0.9103 0.6254 0.7645 0.4964 0.6804
β0 68.034 66.389 65.139 63.545 65.336 63.948 66.064 64.994

Y β3 -8.8e-5 9.3e-5 4.99e-5 -8.6e-6 3.26e-5 -1.7e-6 1.00e-4 -2.2e-4
β2 -0.0025 -0.0176 -0.0098 -0.0021 -0.0036 0.00053 0.0171 0.0338
β1 0.6171 0.8134 0.4960 0.1942 0.1275 -0.0585 -0.6694 -1.335
β0 38.215 45.839 53.604 61.118 67.807 74.985 87.812 100.66

Z β3 -3.2e-5 8.41e-5 1.35e-4 1.59e-4 -2.6e-4 4.84e-6 8.61e-5 -3.8e-5
β2 0.0093 0.00330 3.38e-4 5.17e-5 0.0392 0.0141 0.0138 0.00234
β1 -0.5317 -0.4854 -0.6009 -0.6694 -1.4661 -0.9183 -0.5589 -0.0372
β0 38.970 44.231 51.163 54.037 54.161 51.672 40.328 28.931

and Z directions. Averages of these quantities are then computed over each clus-
ter for the four subjects. The characteristics (parameters of the cubic regression
equation) of each cluster are illustrated in Table 1.

Fig. 4 top row show the X, Y and Z versus order U profiles for all of the
tracks with mean curves for subject 1. The cluster groups are colour-coded (the
same colour is used as the corresponding cluster in Fig. 3), and the mean curves
for each group are highlighted in bold. Mean curves were calculated up to U=70.
The mean curve results in each direction show the fibre trajectory points, and
how they each differ strongly with direction, especially the Y direction in this
case. The mean curve results differ not only in shape but also in location. Fig. 4
bottom row show the cubic polynomial regression models (dotted) fitted to the
eight CC subdivision cluster trajectories. The results illustrate that the cubic
polynomials provide the best fits among the regression models we considered.
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Fig. 4. Top row: all the tracts, and Bottom row: the mean curves and fitted curves for
the X, Y and Z directions respectively for subject 1

We presented new techniques for clustering 3D curves into bundles, to re-
move outlier curves and to develop a technique for shape description of these
bundles. Curve-based regression mixture models were used to perform proba-
bilistic clustering of fibre trajectories in 3D space. The number of data points
is not required for clustering as the modelling can handle curves with variable
lengths. The preliminary results for the synthetic data and in vivo data demon-
strate that the new clustering process is quite efficient for bundling sets of curves
into anatomically meaningful fibre tracts. Cubic polynomials were found to pro-
vide the best fits for CC clustering and modelling among the regression models
considered. We have estimated cubic regression equations for each cluster fibre
bundle and the equations depending on the coordinate system and image ma-
trix, which we used. Some of the WM trajectories are relatively small, and a
successful clustering of them is heavily influenced by such factors as image qual-
ity, tractography method, and fibre tracking parameter. In the future, we will
investigate how different tractography algorithms such as probabilistic tracking
methods and HARDI methods affect the WM fibre clustering procedures.
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Abstract. Existing methods for fiber tracking, interactive bundling and
editing from Diffusion Magnetic Resonance Images (DMRI) reconstruct
white matter fascicles using groups of virtual pathways. Classical nu-
merical fibers suffer from image noise and cumulative tracking errors.
3D visualization of bundles of fibers reveals structural connectivity of
the brain; however, extensive human intervention, tracking variations
and errors in fiber sampling make quantitative fascicle comparison diffi-
cult. To simplify the process and offer standardized white matter sam-
ples for analysis, we propose a new integrated fascicle parcellation and
normalization method that combines a generic parametrized volumetric
tract model with orientation information from diffusion images. The new
technique offers a tract-derived spatial parameter for each voxel within
the model. Cross-subject statistics of tract data can be compared easily
based on these parameters. Our implementation demonstrated interac-
tive speed and is available to the public in a packaged application.

1 Introduction

Local white matter fiber orientation can be estimated from a set of diffusion
weighted images (DWI) [1] by fitting to a diffusion distribution model. The clas-
sical second order diffusion model is represented using an ellipsoid, which is
mathematically denoted as a symmetric positive definite tensor. The 3D field
of ellipsoids becomes the Diffusion Tensor Image (DTI) [2]. Since neuronal fiber
diameter is much smaller than a voxel, the measurements represent averaged
orientations over a small region [3]. With an end goal of understanding and char-
acterizing brain tracts in vivo, existing white matter parcellation methods from
diffusion images can be summarized by two main steps: tracking and bundling.

Existing Fiber Tracking and Bundling Paradigm

Streamline tracking is the process of recovering line structures in a vector field
[4,5,6]. The vector field F(x) is provided by orientations from DTI or either
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Fig. 1. Fasciculography of major white matter tracts from a human brain DTI. Fas-
ciculography offers both the fibers view (left) and the tract view (middle) without
additional processing. All tracts are intrinsically normalized, parametrized (right) and
ready for cross-subject analysis.

orientation distribution models. The tracking problem can be written as an initial
value problem of the partial differential equation [7]:

dL(s)
ds

= F (L(s)) , L(s0) = x0 (1)

where s ∈ R is the arc-length parameter of the streamline L(s) : R → R
3 in the

3D vector field F(x) : R
3 → R

3, where x ∈ R
3 is a 3D point in the DTI. The

best choice of seed points varies across tract types and subjects, and is critical
for accurate tract segmentation.

A specific brain tract can be extracted and visualized by properly seeding,
tracking and processing those virtual fiber pathways. The selection process has
been performed manually or automatically using pattern recognition algorithms
(classification/clustering). Interactive parcellation [8,9] usually involves manual
post-editing of tracking results, either using whole brain seeding or individual
region of interest (ROI) seeding. Automatic bundling [10,11,12] can be done with
the help of proper prior models. However, the availability and appropriateness
of a training set poses limitations to methods using prior models. Most recently,
a generalized cylinder approach has been proposed [13], but their tract solu-
tions are limited to circular cross-sectional areas which is typically not a valid
assumption for neural tracts. Moreover, their approach is a tubular-constrained
level set surface evolution where the parameterization within the tract is not
carefully considered and therefore tract normalization is still an issue.

Cross-subject analysis of fiber tracts is also hampered by the definition of point
correspondence among bundles with varying fiber lengths and number of fibers.
Various Tract-based Morphometry (TBM) methods [14,15,12] tackle the point
correspondence issue mainly by generating a common parametrization through
post-processing and registering fibers. However, tract parcellation based on fiber
bundling relies on good fiber tracking results, while local orientation error from
diffusion signals will significantly alter their trajectories.
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Motivation of the New Volumetric Approach: Our idea is a fast method
that performs streamline tracking and anatomical segmentation simultaneously
using a parametric volumetric representation, with less dependence on seed point
locations and local orientation errors. Once a tract volume is delineated, we
label each image voxel according to the axial parameters α ∈ [0, π] (similar to
the arc-length parameter of a curve) of the tubular model. Then, the statistics
of the tract image data can be computed based on those labels. For example,
we can compare data of the anterior portion (first 20%) of multiple fascicles
using α ∈ [0 − 0.2π]. In [16], we proposed a fast volumetric tract extraction
method using a pair of seed points. We here significantly reduce the dependancy
of the seed pairs to one seed and tackle more complex tract geometry by a tract
optimization algorithm.

2 Methodology

Our goal is to find a parametric volume V (α, β, γ) : R
3 → R

3 where α, β, γ ∈
[0, 2π] and α, γ are symmetric, which best represents an oriented structure in a
vector field. We intend to maximize the length of the tract axis through iterative
filtering (Step 3) and streamline extension (Step 5) of a tract volume. Fibers
for visualization can be generated by sampling the final V (α, β, γ) along the axial
direction. Throughout this section, α, β and γ refer to the axial, circumferential
and radial parameters of a tract volume, respectively.

2.1 Cross-Sectional Tractness Measure

We would like to quantify how relevant a nearby voxel x ∈ R
3 is to a streamline

L(s) based on its orientation. The coherence of an oriented voxel given a stream-
line is defined as the inner product of the tensor orientation and the normalized
tangent of the given streamline [16]:

C(x;L(s)) =
(
F (x) · dL(s)

ds

)∥∥∥∥dL(s)
ds

∥∥∥∥−1

(2)

Note that this coherence measurement is dependent on the streamline tangent
at s. We cannot simply apply a threshold or perform region growing on this
measurement without knowing the streamline orientation at s for each x.

Let PY (α)(p) ∈ R
2 → R

3 be the orthogonal plane of streamline Y (α), where
p is the plane parameter. We find the cross-sectional tractness Aα(β, γ) by the
intersection of the thresholded 2D coherence map and FA map computed based
on PY (α)(p) and Equation (2):

Aα(β, γ) = {C(PY (α)(p);Y (α)) ≥ τdp} ∩ {Ffa(PY (α)(p)) ≥ τfa} (3)

Specifically, the tract axis is Aα(β, 0) = Y (α) ∀ β. The tract surface Aα(β, π)
can be found by marching along the thresholded 2D coherence and FA map.
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Step 1 Step 2-3 Step 4-5
Seeding L(0)(s) V

(0)
filtered(α, β, γ) Extended axis L(1)(s)

Fig. 2. The first iteration of the fasciculography algorithm in Section 2.2 for the re-
construction of the Tapetum portion of the corpus callosum from real DTI

2.2 Tract Optimization

Since all geometric entities are unknown at the beginning, the search is imple-
mented in an iterative fashion. To find a maximum length tract-axis stream-
line Y (α) under the influence of the tract surface S(α, β) and a generic model
V (α, β, γ) and vice versa, we first begin with a manually seeded streamline
L(0)(s) anywhere within the tract. The superscript (t) indicates the iteration
number. There is a re-parametrization from s to α since streamline tracking can
move in both directions from the seed while we define α to be [0, π]. Since s and
α are a one-to-one mapping, we assume s = s(α) for simplicity. The steps of the
algorithm are graphically illustrated in Figure 2.

Fasciculography (FASC) Algorithm

Step 1: Given a seed point x0 on a vector field F, we compute a streamline
L(0)(s) using any numerical method solving Equation (1). Take this line to be
the initial tract axis:

V (0)(α, β, 0) = L(0)(s) ∀β (4)

Step 2: Compute the surface using Equation (3) and form the volume:

V (0)(α, β, π) = S(α, β) = Aα(β, π) (5)

Step 3: Filter the volume with PK in the Fourier domain [17] removing frequen-
cies higher than a tract length-dependent value K:

V
(0)
filtered(α, β, γ) = F−1

{
PKF

{
V (0)(α, β, γ

}}
(6)

Step 4: Estimate the new tract axis :

Y (0)(α) =

∫
β
V

(0)
filtered(α, βi, π)dβi∫

β
dβi

(7)
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Note that typically Y (0) �= L(0). The result of each iteration will be an im-
proved axis that has taken tract smoothness and tensor coherence into account.
However, it may be shorter than the optimum.

Step 5: Extend Y (0)(α) to form L(1)(α) by re-seeding and streamline tracking
from the two end points of Y (0)(α). Let [s−ext, s

+
ext] be the range of parameters

indicating the portions of the new L(1) which is copied from Step 4. We solve
for L(1)(s) according to:

L(1)(s) = Y (0)(α1) if s ∈ [s−ext, s
+
ext] (8)

dL(1)(s)
ds

= F(L(1)(s)) otherwise (9)

where re-parametrization of the new tract axis is α1(s) = π
(

s−s−
ext

s+
ext−s−

ext

)
.

Repeat Step 1 to 5 until no further extensions can be found, i.e. for some
t > 0, we stop iterating when

∣∣L(t+1)
∣∣ = ∣∣Y (t)

∣∣. This algorithm always converges
as it only allows increasing tract length and {x ∈ R

3|Ffa(x) ≥ τfa} is finite.

3 Comparison Using Synthetic DTI Data

We verify our method using a set of DTI synthetic phantom images with ground
truth, PISTE [18]. Each tract in PISTE has a different geometry posing its own
tracking challenge. We compare our method against FACT [4] in DtiStudio [8],
TEND [5] in TrackVis [9] and Front Propagation [19,20]. The last spiral-cross
tract is designed to reflect a more realistic situation where simple thresholding
and shortest-path approaches in general would not trivially succeed. To sum-
marize, we ran four methods on 12 synthetic DTIs (4 tract types, 3 noisy DTIs
each) to get 48 tracking results. All methods use the mean FA value from the
ground truth as the FA threshold and software default 0.5mm for the step size.
FACT/TEND use default 30◦ as the maximum permissible turning angles.

Qualitative Comparison (Phantoms)

Figure 3 shows the 3D appearance of the tracking results using the tested meth-
ods in low Signal-to-Noise Ratio (SNR) environments. For the helix and spiral-
cross tracts, low or missing fiber coverage is observed between or distant from
ROIs. Fibers are diverted outside the expected tract. This result shows the im-
pact of premature termination of fibers due to accumulation of orientation errors.
We demonstrated the intrinsic weakness of shortest-path approaches in 3(d).
Tracks initiated far away from the source seed often diverted to adjacent tracts.

Quantitative Comparison (Phantoms)

Dice coefficients are computed for the different tract types in different SNR
environments. A perfect segmentation will score 100. Figure 4 shows our method
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(a) Our method (FASC) (b) FACT

(c) Tensorline deflection (TEND) (d) Front-Propagation

Fig. 3. Comparing tracking methods in synthetic DTI with increasing tract difficulty
(left to right) with SNR 5:1. ROIs for FACT/TEND are derived from ground truth. In
a noisy environment, only FASC succeeds in all cases.

Fig. 4. Quantitative comparison of the tracking performance among Fasciculography
(FASC), FACT and tensorline deflection (TEND) using synthetic DTI images. Each
plot shows the tracking performance under the same Signal-to-Noise Ratio with in-
creasing tract difficulty (data points from left to right).

has the highest score in 11 out of 12 cases. All FASC lines are relatively flat, as
a function of tract difficulty, indicating the robustness of the method regarding
difficult tract types, while the others exhibit steeper downward slopes. FASC
lines are all above 75% showing our method is robust in noisy environments,
while the other lines are much lower (below 70%) at low SNR cases.

4 Experiments Using Real DTI

We acheive similar levels of accuracy (compared with Figure 4) using our FASC
method on DTI of 18 cingulum tracts (in terms of averaged Dice coefficient) :
68.6 (FASC), 41.8 (FACT) and 57.1 (TEND). Figure 1(lower-left) shows fibers
for more than 30 tracts from a human DTI. In Figure 5, we show that our
method is robust against a range of FASC parameters. Reasonable variation of
the thresholds or seeding locations within a tract do not significantly reduce
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Fig. 5. Sensitivity to major FASC parameters. The Dice cofficients are computed based
on 18 manual cingulum segmentations over FA slices.

Fig. 6. Normalized cingulum (first row), inferior fronto-occipital and uncinate fasci-
culus voxels (second row) of 4 subjects from FASC. Voxels are colored by α parameter.

the accuracy of parcellation. Figure 6 shows the normalized tract voxels of the
cingulum, inferior fronto-occipital (IFO) and uncinate (UNC) fasciculus. We
choose the cingulum and IFO because they run approximately parallel to the
sagittal and axial slices respectively which facilitates evaluation of the tracking
results. On the other hand, cingulum and IFO bundles are challenging because
they are long and thin. The UNC is relatively shorter but has higher curvature
and appears to have lower FA (0.2 to 0.3 instead of > 0.4 for cingulum and IFO)
which makes it difficult to locate based on FA slices.

5 Conclusion

We have verified our method using third-party synthetic data [18] and real DTI.
We have packaged and extensively tested our interactive implementation in a
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standalone, open to the public application with a convenient user-interface1. The
application can run on multiple OS platforms.
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Abstract. Study of structural and functional connectivities of the human brain 
has received significant interest and effort recently. A fundamental question 
arises when attempting to measure the structural and/or functional connectivities 
of specific brain networks: how to best identify possible Regions of Interests 
(ROIs)? In this paper, we present a novel ROI prediction framework that 
localizes ROIs in individual brains based on learned fiber shape models from 
multimodal task-based fMRI and diffusion tensor imaging (DTI) data. In the 
training stage, ROIs are identified as activation peaks in task-based fMRI data. 
Then, shape models of white matter fibers emanating from these functional ROIs 
are learned. In addition, ROIs’ location distribution model is learned to be used 
as an anatomical constraint. In the prediction stage, functional ROIs are 
predicted in individual brains based on DTI data. The ROI prediction is 
formulated and solved as an energy minimization problem, in which the two 
learned models are used as energy terms. Our experiment results show that the 
average ROI prediction error is 3.45 mm, in comparison with the benchmark 
data provided by working memory task-based fMRI. Promising results were also 
obtained on the ADNI-2 longitudinal DTI dataset.    

Keywords: diffusion tensor imaging, fMRI, working memory, fiber shape 
model.      

1   Introduction 

Mapping of structural and functional connectivities of the human brain via 
neuroimaging offers an exciting and unique opportunity to understand the brain 
architecture, and thus has received significant interest [1-5]. However, a fundamental 
question arises when attempting to map structural and functional connectivities: how to 
define the best possible Regions of Interests (ROIs) for the connectivity mapping? 
Essentially, ROIs provide the structural substrates for measuring connectivities within 
individual brains and for pooling data across population groups. Thus, identification of 
reliable, reproducible and accurate ROIs is critically important for the success of 
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2.2   Model Training 

The main idea of model training is to extract descriptive structural and anatomic 
features from the activated ROIs, and then learn predictive models based on these 
features. The structural features are the fiber connection profiles of the activated 
ROIs, and we propose a fiber shape pattern histogram PCA (principal component 
analysis) model to represent the fiber connection information for each ROI. The 
descriptive anatomical features are the spatial location distribution of the activated 
ROIs, and we propose an ROI location distribution PCA model.   

Fiber Shape Pattern Histogram PCA Model. The fiber shape pattern histogram 
PCA model is constructed for each ROI separately across the training subjects to 
embed group-wise fiber shape information. Taking ROI i for example, we define ܴ 
as the local region centered at location of ROI i on subject j’s surface, and fiber 
bundle penetrating ܴ was extracted and denoted as ܨ. We defined ܶ ൌ ሼܨ|݆ ൌ1, ڮ , ݉ሽ  as the fiber bundle set of ROI ݅, where ݉ is the number of the training 
subjects. As an example, Fig. 2a shows fiber bundles of ଼ܶ , from which consistence of 
connection pattern of fiber bundles can be observed. As fiber shape is considered as 
an effective descriptive feature of structural connectivity [10], we constructed a fiber 
shape pattern histogram PCA model ܪ for ROI i on ܶ  as follows. First, we 
conducted a fiber shape clustering via the method in [10] on fiber tracts of the entire 
training dataset and clustered all fiber tracts into five shape patterns. Then for fiber 
bundle ܨ, we define the normalized shape pattern histogram h, in which each bin 
denotes the ratio of fiber tract number of each shape pattern to total fiber tract number 
in ܨ. In Fig. 2c, we illustrate the clustered fiber bundles of Fig. 2a, and their 
corresponding normalized shape pattern histograms are shown in Fig. 2d, from which 
the consistency of  ሼh |݆ ൌ 1, ڮ , ݉ሽ can be visually observed. Afterwards, by taking  h  as the descriptive feature of  ܨ, we embed the shape information across the 
training datasets by applying PCA on the feature matrix ሾ݄ଵ , ݄ଶ , ڮ , ݄ ሿ. The 
obtained mean feature ݄  and eigen vectors, PCA transformation matrix, ܧ  
compose the fiber shape pattern model for ROI i, denoted as ܪ ൌ ሼ݄ , ܧ ሽ. It is 
noteworthy that, for each ROI, we computed the ratio between the first eigen value 
and the sum of all eigen values. The ratio is as high as 0.88±0.13, suggesting the 
consistency in  ܶ  across subjects and the effectiveness of feature  h and model ܪ . 
ROI Location Distribution PCA Model. Despite its variation, the spatial distribution 
patterns of the ROIs in the template space have certain degree of consistency, reflecting 
the existence of common human brain anatomical architecture (Fig. 2b), and therefore 
they were captured and modeled across training subjects. For subject j, we define ROI 
coordinates vector ݀ ൌ ሾxଵ, yଵ, ,ଵݖ ڮ , x, y,  ሿ் to be the feature describing the ROIݖ
location distribution, where n denotes the number of ROIs. Similarly, a PCA model ܦ ൌ ሼ݀, ,ௗሽ was computed on feature matrix ሾ݀ଵܧ ڮ , ݀ሿ் and the first eigenvalue 
ratio is 0.72, suggesting the consistency of ݀  and the effectiveness of PCA model. It is 
noted that fiber shape pattern histogram PCA model ܪ  represent structural connectivity 
feature for each ROI individually, while ROI location PCA model ܦ represent the ROI 
spatial distribution in the entire training dataset.  
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2.3   ROI Prediction Framework 

ROI prediction was conducted only based on DTI data of an individual subject and 
the trained models. The prediction was formulated as an energy function 
minimization problem by maximally mapping the trained models onto the DTI data of 
the subject being predicted. The energy function is defined as: 

                                                   (1) 

where  ܧ௫௧ denotes the mapping of fiber shape pattern histogram PCA model, while ܧ௧  is the ROI location PCA model constraint, and ë trades off between them. 
Similar to section 2.2, let ሚ݀ ൌ ሾxଵ, yଵ, ,ଵݖ ڮ , x, y,  ሿ் be the location of ROIsݖ

being predicted on the cortical surface. For each ROI, fiber bundles ܨ෨were extracted 
from local region ܴ, and the corresponding shape histogram ෨݄ were obtained. 

To derive ܧ௫௧, we mapped ෨݄   into PCA modelܪ ൌ ሼ݄ , ܧ ሽ and reconstructed 
a new histogram as follows: 

          ෨݄ ൌ ݄  ܧ ܧ் ሺ ෨݄ െ ݄ ሻ                                   (2) 

If ෨݄ is consistent with those ሼh |݆ ൌ 1, ڮ , ݉ሽ in the training dataset, then the error 

between it and ෨݄  is expected to be small. Therefore, we define ܧ௫௧ to be the sum 
of the errors of all ROIs: 

                                                        (3) 

where ൊଶ denotes ൊଶ-test measuring the similarity between two histograms if we 
let ݈ be its bin number: 

௧ܧ (4)                       can be defined as the Euclidean distance between location ሚ݀ and the its 
reconstructed version ሚ݀ from model ܦ: 

௧ܧ                  ൌ ൫ݐݏ݅݀ ሚ݀, ሚ݀൯                                                   (5) 

Global search was conducted to minimize the energy function. The search starts 
from the mean ROIs location of in training dataset and ends when the location 
becomes stable. It is noted that the two energy terms are normalized into [0, 1] prior 
to global search. 

3   Experimental Results 

At current stage, we did not take ROI size into consideration, therefore R୧ defined as 
uniform 3-ring vertices neighborhood on the cortical surface was used for all ROIs to 
extract fiber bundles. λ was empirically assigned 0.3.  
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3.1   Evaluation and Validation via Task-Based fMRI Data 

The activated ROI locations detected from task-based fMRI data of the five subjects 
in prediction dataset were used as benchmark to evaluate the prediction results. We 
randomly selected a subject from the prediction dataset to illustrate the prediction 
result.  

First of all, we illustrate the effectiveness of the prediction framework in Fig. 2e 
where the 8 benchmark ROI locations are highlighted by white bubbles, and we 
computed the energy ܧ defined in section 2.3 between the benchmark ROI location 
and the neighbor vertices on surface around them. Energy values mapped onto the 
surface intuitively illustrate the convergence basins around the benchmark ROIs (see 
three zoomed-in basins in Fig. 2e), suggesting the convergence of our prediction 
framework.  

Then, the prediction results of the 8 ROIs were shown in Fig. 3. It is evident that 
the fiber bundles emanating from the predicted ROIs are quite similar to those from 
the benchmark ROIs, indicating the effectiveness and accuracy of our ROI prediction 
framework. In addition, fiber bundles emanating from the predicted ROIs and 
benchmark ROIs are quite similar to those from the corresponding ROIs in the 
training dataset. Quantitatively, Table 1 shows the mean prediction errors, the 
Euclidian distances between the predicted ROIs and the benchmark ones, of the five 
subjects in the prediction dataset. On average, the prediction error for 8 eight ROIs 
over 5 subjects is 3.45 mm. For most ROIs, the prediction errors are approximately 
2~4 mm. Notably, the less accurate result on ROI #1 reveals that the energy function 
may be trapped in a local minimum.  

For the purpose of comparison, we used linear (via FSL FLIRT) and nonlinear 
registration (via the HAMMER software package [11]) methods to warp the training 
subjects onto the subjects to be predicted, and their functional ROIs were 
correspondingly warped and used as prediction results. The mean prediction errors 
between warped ROIs and benchmark ones in the prediction dataset are also shown in 
Table 1. On average, the prediction errors by FSL FLIRT and HAMMER are 5.72 
mm and 5.53 mm, respectively. As can be seen, our method (3.45 mm) significantly 
outperforms both of them.  

3.2   Application on ADNI-2 longitudinal DTI Data 

We applied our method on the ADNI-2 longitudinal DTI dataset under the premise 
that the white matter of working memory system in ADNI-2 mild cognitive 
impairment (MCI) patient is not distinctively different from the normal controls. Two 
scans of 10 MCI patients’ data were obtained from the ADNI-2 project 
(http://adni.loni.ucla.edu/). The time interval between the two scans was around 3 
months. As an example, the prediction results of one patient are shown in Fig. 4. The 
average distance between the predicted ROI locations of two scans is (2.54±1.53mm). 
This relatively small distance and the high similarity of the fiber bundles (Fig. 4b) is a 
strong evidence of the reproducibility of our ROI prediction method. This result also 
suggests that there is no distinctive change in the white matter of MCI subject, at least 
in the working memory system.  
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of functional ROIs have remarkable prediction capability, providing direct support to 
the connectional fingerprint concept [8]. Our future work will include application and 
evaluation of this framework in other brain networks, and further application of this 
ROI prediction framework to clinical datasets such as the DTI data of ADNI-2 
subjects.     
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Abstract. The construction of realistic subject-specific models of the myocardial 
fiber architecture is relevant to the understanding and simulation of the electro-
mechanical behavior of the heart. This paper presents a statistical approach for 
the prediction of fiber orientation from myocardial morphology based on the 
Knutsson mapping. In this space, the orientation of each fiber is represented in a 
continuous and distance preserving manner, thus allowing for consistent 
statistical analysis of the data. Furthermore, the directions in the shape space 
which correlate most with the myocardial fiber orientations are extracted and 
used for subsequent prediction. With this approach and unlike existing models, 
all shape information is taken into account in the analysis and the obtained latent 
variables are statistically optimal to predict fiber orientation in new datasets. The 
proposed technique is validated based on a sample of canine Diffusion Tensor 
Imaging (DTI) datasets and the results demonstrate marked improvement in 
cardiac fiber orientation modeling and prediction. 

1   Introduction 

The study of fiber structure in the myocardium is of considerable importance for the 
understanding of its electro-mechanical behavior and associated cardiac pathologies. 
Over the years, there has been an increasing interest in the use of Diffusion Tensor 
Imaging (DTI) for the measurement of cardiac fiber orientation [1]. However, the 
modality is currently infeasible in vivo due to its great sensitivity to cardiac motion. 
On the other hand, myocardial fibers tend to be arranged according to consistent 
patterns across individuals yet they are crucial in determining electrical propagation 
and contraction patterns. As a result, computational techniques are required to 
construct accurate subject-specific models of myocardial fiber orientation from ex 
vivo datasets so as to enable realistic simulation of the electro-mechanical function of 
the heart. Existing research emphasizes the need for modeling techniques that can 
encode the relationship between myocardial shape and fiber orientation, as well as 
that can take into account the inter-subject variability in fiber structure [1]. Amongst 
existing methods, a synthetic fiber model has been used in [2], which provides only 
the overall trend of the structure and thus lacks accuracy in subject-specific modeling. 
The work in [3] estimates fiber structure by warping the data to a predefined single 
template but the method is not based on a sample population and thus does not take 
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into account the variability found in fiber orientation and shape. The Streeter model 
[4], on the other hand, is built from a database of histological datasets and thus far 
remains the most established model in cardiac simulation. The technique fits to the 
training data parametric equations relating the position in the myocardium with a 
selected set of global and local shape information, such as the left ventricular axis and 
position relative to the myocardial walls. It can be argued, however, that a significant 
amount of shape information is ignored, thus producing a model that might not 
approximate well enough the complex distribution of the fibers.  

This paper presents an alternative approach through which the relationship between 
myocardial morphology and fiber orientation is statistically encoded based on a 
training sample population. To this end, the proposed technique firstly introduces a 
representation of the fibers in a 5D space that is continuous and distance preserving, 
thus allowing consistent manipulation of the orientation data. Additionally, the 
technique makes use of all the available shape information and extracts the latent 
directions in the shape space that correlate most with the fiber orientation. A non-
linear regression technique is then used to accurately estimate fiber orientation in new 
datasets based on the myocardial morphology. The proposed predictive model is 
validated based on a sample of normal canine cardiac DTI datasets. 

2   Methods 

2.1   Dataset Description and Preprocessing 

To construct a predictive model of the myocardial fiber orientations with the proposed 
approach, we use a database of seven normal ex vivo DTI datasets of canine hearts 
(Center of Cardiovascular Bioinformatics and Modeling, at John Hopkins University). 
The images were produced using a 1.5T GE CV/I MRI scanner with an enhanced 
gradient system, 40 mT/m maximum gradient amplitude and a 150 T/m/s slew rate. 
The first eigenvector of the obtained DTI tensors was calculated to estimate the 3D 
vector describing the fiber orientation at each voxel. Furthermore, the predictive 
model proposed in this paper is aimed at encoding the statistical relationship between 
myocardial shape and fiber orientation. As a result, it is required to build surface 
meshes of the myocardial shapes and volumetric meshes of the myocardial fibers that 
correspond between the training datasets. To this end, the left ventricular walls are 
firstly segmented in each of the DTI volumes over the maps of Fractional Anisotropy 
(FA) using a semi-automatic tool [5]. The point correspondence between the obtained 
surface meshes is established based on the position of key anatomical features (i.e., 
mitral valve, apex, and aorta). The mean shape is subsequently computed and used to 
derive a volumetric mesh that contains the fiber orientation at uniformly distributed 
nodes within the myocardium. Finally, to obtain the fiber information at 
corresponding locations of the myocardium, the mean volumetric mesh is then 
mapped onto all image volumes by using the Thin Plate Spline (TPS) technique [6].  

2.2   Knutsson Mapping of Fiber Orientation 

To enable a consistent manipulation of the data within the proposed predictive model, 
it is important to use a suitable representation of the fiber orientations. The 3D vectors 
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obtained from the diffusion tensors are non-directional and thus opposite vectors can 
represent the same fiber orientation. This introduces a fundamental ambiguity that 
must be specifically handled to avoid potential errors in the statistical analysis.  
In 2D, this is resolved easily by using the double angle trick, i.e., the new orientation 
coordinates are the cosine and sinus of twice the angle between the line and a fixed 
coordinate axis. In 3D, however, the situation is more complicated and the  
solution presented in [7] involves a mapping to a 5D space with interesting 
mathematical properties. Given a unit vector characterized by the angles ,θ φ  of its 

spherical representation, the obtained Knutsson function 3 5:
K
M R R→
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The Knutsson coordinates , , , ,s t u v w  essentially map half of a sphere onto a 5D space 
such that the surface is uniformly stretched in all directions and all pairs of opposite 
vectors are mapped onto the same location in the 5D space. The mapping described in 
Eq. (1) is therefore unique and removes the ambiguity found in directional vectors. 
More importantly, it can be shown that the Knutsson mapping induces a continuous 
representation that preserves distance [8] (thus the importance of the normalizing 
constants in the definition of the coordinate w  in Eq. (1)). Applications of the 
Knutsson mapping in the literature include curvature estimation in 3D images [8] and 
the analysis of high angular diffusion tensors of the brain [9].  

With this representation, operations on the cardiac fiber orientations can be carried 
out consistently and the results need to be mapped back to the original 3D space, for 
example for visualization and simulation purposes. This can be carried out by first 
approximating the product Txx  from the mapping 
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M  as follows: 
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Subsequently, it can be then demonstrated that the 3D orientation can be derived from 
the principal eigenvector of Txx  [10].  
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2.3   Nonlinear Predictive Modeling 

Existing research on cardiac fiber architecture suggests that a strong relationship 
exists between myocardial morphology and fiber structure. It is not trivial, however, 
to define for each region of the myocardium the shape information that is most 
suitable to estimate the corresponding fiber orientations. In the Streeter model [4], for 
example, it is assumed that the fibers are better described with respect to a number of 
preselected variables, such as the left ventricular axis and relative position to the 
myocardial walls. As a result, a substantial amount of available shape information is 
simply ignored with such approach, which can potentially limit the accuracy of the 
model. In this paper, the aim is to use all available shape information and 
automatically extract the variables in the shape space that are most relevant to the 
estimation of fiber orientation based on statistical criteria. In other words, the axes of 
shape variation that correlate the most with the fiber orientation maps need to be 
extracted and used to optimize the prediction capability of the obtained model.  

Partial Least Squares (PLS) regression [11] is a dimensionality reduction technique 
with several advantages that make it ideal for the predictive modeling task of this 
paper. It can produce efficient regression models in situations where the number of 
predictors is very large and at the same time the training sample is small (thus 
introducing singular data matrices). This is beneficial for predictive modeling of fiber 
orientation due to the generally limited availability of ex vivo DTI datasets. In the 
following, let X  be the data matrix representing the aligned myocardial shapes in the 
training set and Y  the matrix of the 5D Knutsson data representing the fiber 
structures inside the myocardium. The aim of partial least squares regression is to 
perform a simultaneous decomposition of X  and Y  such that the score vectors 
obtained along the new representation axes of both the input and output matrices 
correlate most. One solution to the problem can be obtained through the NIPALS 
algorithm [11], which iteratively estimates new vectors a  and b  as: 

2 2

1
[cov( , )] max [cov( , )]

= =
=

c d
Xa Yb Xc Yd   (3)

At each iteration, the data matrices X  and Y  are deflated by subtracting the 
contribution along the latent axes found at previous step. At convergence, the 

predictors and outputs are decomposed as T= +X TP E  and T= +Y UQ F , 
respectively, where P  and Q  are the extracted latent vectors. The final step is to 
estimate the regression coefficient matrix D  and the predictive model is obtained as: 

ˆ T=Y TDQ   (4)

It is important to note that only a subset of the latent vectors are used in the prediction 
and these are selected using cross validation such that they minimize the 
reconstruction of the output data in the training.  

The mapping introduced in this paper for the representation of fiber orientation, as 
well as the nature of the data, can introduce a nonlinear interdependency between the 
matrices X  and Y . As a result, it is more appropriate to use a nonlinear 
implementation of the partial least square algorithm. Using the kernel version 
developed in [12], this can be achieved with a kernel transformation of the input data 
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followed by the application of the linear PLS technique described above. The kernel 
function Φ  used for this purpose is typically defined as Gaussian or polynomial. The 
kernel gram matrix T= ΦΦK  of the cross product between all input data points is 
computed and used to obtain the final nonlinear predictive model as follows: 

1ˆ ( )T T
t

−=Y K U T KU T Y   (5)

where 
t

K  is the kernel Gram test matrix estimated from the new input data. More 

details regarding the kernel PLS implementation can be found in [11]. 

3   Results 

The proposed predictive model is validated using the seven DTI datasets of normal 
canine hearts described in Section 2.1 on a leave-one-out basis. The absolute value of 
the dot product between the predicted fiber orientations and the original data is 
calculated to measure the extent of agreement and the accuracy of the proposed 
technique. A value close to 0 indicates strong disagreement, while a dot product close 
to 1 indicates high prediction accuracy. Firstly, we applied a template warping 
approach between all pairs of datasets similarly to the work in [3] and using TPS 
warping. We found the results to be inconsistent depending on the choice of the 
subject to serve as a template, with a similarity measure equal to 0.47 for subject 5 
versus subject 1 and equal to 0.85 for subject 4 versus subject 1. This justifies well the 
use of a statistical approach as presented in this paper, where the variability in fiber 
orientation between the datasets is specifically modeled.  

 

Fig. 1. Dot product accuracy results for the seven canine DTI images using the Streeter model 
and the proposed technique, showing significant improvement throughout all datasets 
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Fig. 2. Average accuracy maps for the proposed technique and the existing Streeter model 

Furthermore, the Streeter model [4] was implemented and tested against the accuracy 
obtained with the approach presented in this paper. The results for both techniques are 
plotted in Fig. 1, where it can be seen that the proposed method improves the prediction 
of fiber orientation for all datasets. These results are significant particularly given the fact 
that the predictive models were built from a small training set, which shows the 
performance capability of the non-linear PLS method in this work. Table I summarizes 
the average, standard deviation and minimal accuracy results, where it can be observed 
that the proposed predictive model is not only accurate but also consistent throughout all 
datasets, with an average accuracy equal to 0.81 and a minimal accuracy of 0.75. It is 
also worth noting from Table I how the introduction of the Knutsson mapping for the 
representation of fiber orientation (third column) and the use of the nonlinear kernel 
technique for prediction (fourth column of the table) increase the accuracy of the model.  

Table 1. Prediction accuracy using the proposed technique 

Accuracy 
Streeter  
model 

L-PLSR in  
3D space 

L-PLSR in 
Knutsson space 

NL-PLSR in 
Knutsson space 

Average 0.55 0.71 0.75 0.81 

Std 0.06 0.08 0.06 0.04 

Minimum 0.47 0.65 0.68 0.75 
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For detailed visualization of the performance of the proposed technique, the 
average prediction accuracy for each fiber location in the myocardium is displayed in 
Fig. 2 for different long- and short-axis views. It can be seen that the fiber orientation 
prediction is accurate consistently for all regions of the myocardium, unlike the 
Streeter model which displays less accurate results. This is also due to the fact that the 
Streeter technique uses the same parametric model for all regions of the myocardium. 
On the contrary, the proposed technique extracts the latent structures most relevant for 
the prediction of each individual fiber orientation, which is a natural approach since 
the relationship between shape and fiber is expected to vary for different regions of 
the myocardium. Finally, an illustration of the predicted fiber orientations using the 
proposed technique is given in Fig. 3, where significant agreement with the original 
DTI data can be observed in all views and regions.  

 

Fig. 3. Illustration of the fiber structure obtained by the proposed technique (b) as compared to 
the ground truth (a) derived from the original DTI data 

4   Conclusions 

Our conclusions following the work presented in this paper are twofold: firstly, the 
relationship between myocardial shape and fiber orientation is significant yet it is not 
trivial. Therefore it must be defined automatically and statistically by extracting the 
optimal latent structures from a training sample population. Secondly, the 
representation of orientation data in general, and particularly for the study of fiber 
structure, requires continuous and distance preserving mappings in order to allow for 
consistent statistical analysis, such as by using the Knutsson mapping described in 
this work. The initial results reported in this paper show the potential of the technique 
for fiber structure modeling and prediction. 
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Abstract. Diffusion magnetic resonance imaging (dMRI) is an impor-
tant tool that allows non-invasive investigation of neural architecture of
the brain. The data obtained from these in-vivo scans provides important
information about the integrity and connectivity of neural fiber bundles
in the brain. A multi-shell imaging (MSI) scan can be of great value in
the study of several psychiatric and neurological disorders, yet its usabil-
ity has been limited due to the long acquisition times required. A typical
MSI scan involves acquiring a large number of gradient directions for the
2 (or more) spherical shells (several b-values), making the acquisition
time significantly long for clinical application. In this work, we propose
to use results from the theory of compressive sampling and determine
the minimum number of gradient directions required to attain signal re-
construction similar to a traditional MSI scan. In particular, we propose
a generalization of the single shell spherical ridgelets basis for sparse rep-
resentation of multi shell signals. We demonstrate its efficacy on several
synthetic and in-vivo data sets and perform quantitative comparisons
with solid spherical harmonics based representation. Our preliminary re-
sults show that around 20-24 directions per shell are enough for robustly
recovering the diffusion propagator.

1 Introduction

A popular dMRI acquisition technique is High Angular Resolution Diffusion
Imaging (HARDI), which involves acquiring diffusion information for a single
b-value (single shell) in several gradient directions uniformly spread on a sphere
[1]. While this protocol allows for resolving the angular structure of the neural
fibers, it does not provide information about the radial signal decay, which is
sensitive to white matter anomalies.

To obtain accurate information about the neural architecture, diffusion spec-
trum imaging (DSI) was proposed by [2]. This high resolution technique requires
upwards of 512 gradient directions and more than an hour to scan each subject
(spatial resolution of 2mm3), which makes it impractical to use in clinical set-
tings. A few works have attempted to reduce the scan time using compressed
sensing for DSI [3,4], however, the acquisition time is still too long for clinical
applications. Consequently, other imaging schemes have been proposed, namely,
Hybrid Diffusion Imaging (HYDI) [5], Diffusion Propagator Imaging (DPI) [6],
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Diffusion Kurtosis Imaging (DKI) [7], spherical polar Fourier basis [8] and high-
order tensor models [9,10], all of which fall under the category of multi-shell
imaging (MSI). Each of these techniques captures different aspect of the un-
derlying tissue geometry. They acquire important information about the neural
tissues, which are missed by HARDI methods, yet, they are seldom used in clini-
cal studies due to their long scan times. In general, it takes around 30-50 minutes
to scan each subject with: 2mm3 spatial resolution, 60 gradient directions per
shell, 2-4 shells with b-values of 1000 to 6000. The acquisition time is directly
proportional to the number of gradient direction acquisitions. Thus, if we can
reduce the number of gradient acquisitions by half (without sacrificing the qual-
ity), the scan time reduces by 50%. This fact is the main motivation behind the
proposed work.

In order to recover the MSI signal from very few measurements N , we propose
to use the theory of compressive sampling (CS). Formalizing such a reconstruc-
tion approach in the context of MSI constitutes the main contribution of this
work. In particular, we propose to generalize the spherical ridgelets (SR) basis of
[11] for the case of multi-shell signals. We demonstrate that the MSI signal rep-
resentation in the proposed basis is indeed sparse and compute error statistics on
synthetic data sets. Further, the representation allows for a direct quantification
of the signal decay as a function of b-values, which can be a useful measure in
neuroimaging studies.

2 Compressive Sampling

The diffusion signal S(q) is a real-valued function, which determines the value
of S at location q in q-space. The scalar q is given by q = ‖q‖, with q = qu,
where u ∈ S

2. In the context of MSI, the signal S(q) is measured along N
discrete orientations {uk}N

k=1 for several different q values (Q shells). Thus, for
each q value, measurements are made along N directions uniformly spread on
a sphere, giving the measurements a multi-shell (also referred to as multi-b
or multi-q) structure. In such a case, all experimental information on S(q) is
represented by its NQ values {Sk}NQ

k=1 corresponding to each of the q values.
The most fundamental question in this regard is: what is the minimum number
of diffusion directions N (on each shell) required to unambiguously represent the
signal S(q) in terms of its discrete values Sk?

A particularly important answer to the above question is offered by the theory
of CS [12,13]. In particular, the theory specifies conditions under which the
original signal S(q) can be perfectly recovered from a much smaller number of
its samples than what would be required by the classical sampling theory. Since
diffusion measurements are linear, the discrete values Sk can be expressed in
the form of inner products Sk = 〈S(q), ϕjk

(q)〉, with {ϕjk
}N

k=1 being a subset
of a Dirac sampling basis {ϕi}i∈I . Moreover, let {ψj}j∈J be another basis in
the signal space, which we will use for representation of S(q). In particular, we
are interested in representing the diffusion (MSI) signal S(q) in the form of a
linear combination S(q) =

∑
j∈J cj ψj(q), where J denotes the set of indices
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over which the basis functions ψj are counted. Note that, in a more general
setup, the set {ψj}j∈J may be overcomplete, but finite, with its total number
of elements being equal to M . Then, the theory of CS proves that an accurate
approximation of S is possible from only O (μ2 log(M)L

)
of its measurements,

if the following conditions are satisfied:

(a) S is assumed to be sparsely representable by {ψj}j∈J , which implies that
the number L of non-zero coefficients cj is significantly less than M .

(b) The bases {ϕi}i∈I and {ψj}j∈J are incoherent, implying that the value of
μ = supi,j |〈ϕi(q), ψj(q)〉| is relatively small.

The above considerations suggest that the applicability of CS to MSI depends on
the availability of a basis {ψj}j∈J for which the assumptions (a) and (b) above
would be valid. Such a basis was introduced for HARDI data in [11], where it is
called a basis of spherical ridgelets. In the next section, we demonstrate how to
generalize this basis for sparse representation of MSI signals. Just as in the case
of HARDI, the energy of the proposed basis of spherical ridgelets is distributed
alongside the great circles of S2 (for every shell), which is very incoherent with
respect to the Dirac sampling basis {ϕi}i∈I . Thus, the amount of incoherence μ
for this basis is 0.56. Note that, this value is computed by normalizing each of
the basis elements {ψj}j∈J to unit norm.

3 Methods

Spherical ridgelets (SR) were proposed in [14,11] following the theory of mul-
tiresolution analysis on the sphere. For the case of HARDI data, the SR basis is
given by: IF :=

{
Ψj,v | v ∈ S2, j ∈ IN ∪ {−1}} , where

Ψj,v =
1
2π

{
K0,v, if j = −1,
Kj+1,v −Kj,v, if j ∈ IN, with,

Kj,v(u) =
∞∑

n=0

2n + 1
4π

λn κj(n)Pn(u · v), where, κj(n) = κ(ρ, 2−jn)

(1)

κ(ρ, x) = exp{−ρ x (x + 1)}, λn =

{
2π(−1)n/2 1·3···(n−1)

2·4···n , if n is even
0, if n is odd.

where Pn is the legendre polynomial of order n, u ∈ S2 and ρ is a user-defined
parameter. Notice that, the basis functions Ψj,v can only represent signals defined
on a single spherical shell.

3.1 From Single to Multiple Shells

The structure and magnitude of the signal varies significantly as the b-value
(or q-value) increases. This is evident from Figure 1, where in the top row we

show the frequency spectrum (in spherical harmonic basis) required to represent
signals with increasing b-values. Notice that, a). higher frequencies are required
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Fig. 1. Top row (bar graph) shows
the spherical harmonic frequency
spectrum (upto order 8) required to
represent each of the signals at the
bottom. Also notice the decay in am-
plitude of the signal as the b-values
increase.

to represent sharper diffusion signals, and b). the signal decays in magnitude
with b-values. We propose to use these two important facts in designing the
MSI SR basis:

Kj,v(q) = exp(−αq2){1 −
h∑

m=0

amHm(q)}︸ ︷︷ ︸
I1

∞∑
n=0

2n + 1
4π

λn κj(q, n)Pn(u · v)︸ ︷︷ ︸
I2

, (2)

where Hm are hermite polynomials of order m, and κj(q, n) is now a function
of q given by: κ(q, n) = exp (−βW (q)n(n + 1)), with W (q) given by the Weibull
distribution function: W (q) = k

l

(
q
l

)k−1 exp(−(q/l)k) where we set k = 0.8, l = 2
in this work and β is a constant. We now describe the rationale behind choosing
such a function K by individually examining the terms I1 and I2.

The term I1 essentially models the decay rate of the signal magnitude.
Some studies have shown a biexponential decay of the signal [15], while oth-
ers have seen diffraction patterns with high q-values [16]. The expression I1 =
exp(−αq2){1 −∑h

m=0 amHm(q)} can model both these phenomena, with the
term 1 −∑h

m=0 amHm(q) modeling the departure from an exponential decay.
Note that, the Hermite polynomials are capable of modeling diffraction patterns
as shown in [16] and hence we use it in our model.

The term I2 models the frequency component (sharpness) of the signal. As
n increases in the summation in I2, the legendre polynomial Pn incorporates
higher frequencies. The desired behavior of the combined term κ(q, n)Pn is to
use only low frequencies for lower q-values and incrementally allow higher fre-
quencies with increasing q. Thus, the term κ(q, n) should act as a bandpass
filter by selectively adding high frequency components of Pn for the appropri-
ate q-values. This behavior can be modeled by choosing W (q) to be a Weibull
distribution function with parameters l = 2, k = 0.8. This function has a heavy
tail, preventing the value of W (q) from converging to zero too quickly as in an
exponential function.

Combining the effects of increasing frequency and decreasing signal magnitude
results in the desired behavior for sparse representation of multi-shell signals.
The free parameters of this model are α and {am}h

m=1 along with the sparse
set of weights c for the overcomplete basis. Note that, if we set α = 0 and
{am}h

m=1 = {0}, then the expression for Kj,v(q) in (2) reduces to that for a
single shell HARDI (1), with the parameter ρ in (1) determined by evaluating
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W (q) for a specific q-value. Thus, the proposed basis is a generalization of the
spherical ridgelets of [14]. We should note that the basis is still given by IF :={
Ψj,v | v ∈ S2, j ∈ IN ∪ {−1}} , as defined before, albeit with the modified form

of the function Kj,v(q).

3.2 Sparse Estimation

Given the measurements {S(qi)}NQ
i=1 , one can use (2) to compute the values of

the spherical ridgelet basis for all qi (Q is the total number of shells and N is the
number of gradient directions per shell). The resulting values can be then stored
into an NQ×M matrix A, where M is the number of elements in the overcom-
plete basis A as defined in [11]. We use 3 discrete resolution levels {−1, 0, 1} for
each shell and set h = 3 in equation (2). Subsequently, if c ∈ IRM is defined to be
a (column) vector of ridgelet coefficients and y := [S(q1), S(q2), . . . , S(qNQ)]T ,
then the measurement model can be formally expressed as A c = y + e, where e
is an error vector that accounts for both measurement and model noises. From
the theory of CS, a sparse estimate of coefficients c can be found by solving

c = arg min
c

‖c‖1 subject to ‖A c− y‖2 ≤ η., (3)

where η depends on the level of noise expected in the signal. Note that (3)
is a convex optimization problem, and can be solved using the L1 homotopy
algorithm of [17]1.

In the present scenario, we not only have to estimate the sparse vector c, but
also the parameters for the radial decay. We do this by the method of coordinate
descent, wherein the coefficients c and {α, am} are estimated alternately. The
estimation framework is as follows:

Algorithm 1. Algorithm for sparse estimation of MSI data
1: Initialize α = α0 and am = {0}.
2: while ‖c‖1 is decreasing do
3: Estimate c using equation (3).
4: Update α and {am}h

m=1 using gradient descent of ‖A c − y‖2.
5: end while

The gradient with respect to am is given by < [..�am Ψj,v..]c,A c−y >, where
< ., . > is the euclidean inner product. The gradient only affects the radial part
of Ψj,v, resulting in �amΨj,v = −2e−αq2

Hm(q)I2, where I2 is as defined in (2).
A similar expression for gradient of α can be easily deduced from (2).

4 Experiments

Synthetic Data: We tested the proposed algorithm on synthetic data and quan-
titatively compared it with the solid spherical harmonics (SH) based method of
1 http://users.ece.gatech.edu/~sasif/homotopy/

http://users.ece.gatech.edu/~sasif/homotopy/


Sparse Multi-Shell Diffusion Imaging 63

(a) NMSE

(b) AAE

Fig. 2. The left two figures (a) show the NMSE for different values of K = [16, 32]
(x-axis) and for b={1000, 2000, 4000, 6000}. First figure is with SR basis and second
with SH basis. (b) shows AAE in degrees (x-axis is K) for different number of crossing
fibers (1,2,3). 3rd figure is with the proposed SR basis and 4th with the SH basis of [6].

[6]. Synthetic data sets were generated using a mixture of biexponential models:
S(q) =

∑
i fiGi(q), where fi are weight fractions set to 1/F , where F is the

number of fibers and Gi(q) = 0.7 exp(−q2uDuT ) + 0.3 exp(−θq2uDuT ), where
D = diag{0.0017, 0.0003, 0.0003} and θ = 1/3. Four different b-values were used
b = {1000, 2000, 4000, 6000} to obtain 4 shells. Rician noise was added to each
shell so that the SNR for each of the shells was: {5, 4, 3, 2} respectively, where
SNR is defined by σs/σn, with σs being the standard deviation of signal and σn

the standard deviation of noise. 1000 random samples were generated by randomly
choosing the number of fiber crossings (maximum of 3) and random orientation
between the fibers. Two different error metrics were used to determine the quality
of fit using the proposed SR basis and the SH basis of [6]: (i) Normalized Mean
Squared Error (NMSE) given by ‖S(q)−Ŝ(q)‖2

‖S(q)‖2 , where Ŝ(q) is the estimated sig-
nal. (ii) Average Angular Error (AAE) was computed between principal diffusion
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(a) K=60 (all samples) (b) K=16 (c) K=28

Fig. 3. Top left (a) shows the propagator for radius R0 = 20μm with K = 60. The
remaining figures show a zoomed-in version (the black box) of the propagator as com-
puted by estimating the signal with K = 16, 28 per shell. Note that the values of the
propagator were scaled to uniform size for better visualization.

directions of the known ground truth and the ones estimated from the diffusion
propagator. For the SR basis, the propagator was computed numerically as in [5].
Error statistics were computed by estimating the signal using different number
of measurements K = [16, 32] per shell. Thus, with K = 16, only a total of 64
measurements (for 4 shells) were used in estimating the signal.

Figure 3(a) shows NMSE as computed for each of the 4 shells for various K.
Also shown is the AAE for various K and different number of crossing fibers.

As seen in the figures, the proposed SR basis better fits the signal with lower
errors for higher b-values. K = [20, 24] per shell seems to be sufficient to model
the MSI signal without significant errors. The SH basis on the other hand tends to
oversmooth the signal (as seen by higher NMSE and AAE). We should note that,
having 4 shells is not a necessity for our method, but we used it to demonstrate
the accuracy with which the proposed SR basis fits the signal for all b-values.

In-vivo Data: Our in-vivo data consisted of a human brain scanned on a 3T
Siemens scanner with the following parameters: 2.5mm3 spatial resolution, b =
{900, 2000, 5600} and 60 gradient directions per shell. For each shell, the signal
was subsampled to obtain the desired measurements for different K = [16, 32]
and the proposed SR basis was used to fit the data. Figure 4 shows the diffusion
propagator for various K and radius R0 = 20μm.

5 Conclusion

In this paper, we introduced a generalization of the spherical ridgelet basis for
modeling multi-shell diffusion signal. The representation in this basis is sparse
and as such allows one to faithfully recover the signal with few gradient direc-
tions (around 20-24 per shell). The proposed representation models the radial de-
cay and the frequency components separately.Thus, one can compute a measure
of the “overall” signal decay at each voxel. Future work involves examining its
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correlation with the underlying tissue properties. This work also showed results
on in-vivo data with 3 shells and the same number of directions for each shell.
Figuring out the optimum number of shells, the corresponding b-value and the
distribution of gradient directions is still a topic of active research. We hope that
by recovering the signal from sparse measurements on each shell and with a few
(2-3) shells, we will be able to reduce the scan time of MSI significantly and thus
make it clinically feasible.
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Abstract. This paper presents a novel tractography algorithm for more
accurate reconstruction of fiber trajectories in low SNR diffusion-weighted
images, such as neonatal scans. We leverage information from a later-
time-point longitudinal scan to obtain more reliable estimates of local
fiber orientations. Specifically, we determine the orientation posterior
probability at each voxel location by utilizing prior information given
by the longitudinal scan, and with the likelihood function formulated
based on the Watson distribution. We incorporate this Bayesian model
of local orientations into a state-space model for particle-filtering-based
probabilistic tracking, catering for the possibility of crossing fibers by
modeling multiple orientations per voxel. Regularity of fibers is enforced
by encouraging smooth transitions of orientations in subsequent loca-
tions traversed by the fiber. Experimental results performed on neonatal
scans indicate that fiber reconstruction is significantly improved with less
stray fibers and is closer to what one would expect anatomically.

1 Introduction

The human brain is a complex system that is capable of integrating massive
amount of information with startling efficiency. A comprehensive description of
the architecture of the anatomical connectivity patterns is therefore fundamen-
tally important in cognitive neuroscience and neuropsychology, as it reveals how
functional brain states emerge from their underlying structural substrates and
provides new mechanistic insights into the association of brain functional deficits
with the underlying structural disruption [1].

The neonatal brain provides a window for insights into perhaps the most
important phase of human brain development. To this end, diffusion-weighted
imaging (DWI) plays an indispensable role in the in vivo characterization of
brain structural circuity, which relates different functional regions. DWI-based
connectivity analysis of neonates, however, is often impeded by the unreliability
of neuronal fiber trajectory reconstruction due to the often lower quality of the
diffusion-weighted scans. Noisy estimates of local fiber orientations can propa-
gate and accummultate in the course of trajectory reconstruction, especially if
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the tractography algorithm is greedy in nature, rendering the validity of subse-
quent tract-based analysis questionable. We present in this paper a remedy to
this problem by leveraging prior information from longitudinal scans to improve
the accuracy of local fiber orientation estimates for more accurate trajectory
reconstruction of the neuronal fibers.

Cook et al. [2] proposed an atlas based approach for better tractography
outcome by modifying the stochastic white matter tractography algorithm de-
veloped by Friman et al. [3]. An atlas was first generated by computing for each
voxel the dyadic tensor of the principal directions from a set of diffusion tensor
images. The atlas encapsulates the mean local fiber orientations as well as their
degrees of orientation dispersion, serving as prior information to the Bayesian
stochastic tractography framework in [3]. This approach, while effective, has two
shortcomings: 1) Its formulation is limited to one orientation per voxel, seriously
limiting the ability of the algorithm in accounting for fiber crossing, branching
or kissing, and 2) The atlas is not subject-specific, causing loss of fiber tracts in
regions where the subject and the atlas disagree.

The contributions of this paper are: 1) The formulation and evaluation of a
fiber tractography algorithm that is guided by longitudinal prior information
for more robust fiber trajectory reconstruction, especially in images with lower
SNR, and 2) The evaluation of how modeling multiple local fiber orientations
improves tractography outcome in regions with complex diffusion architecture.

2 Approach

2.1 Modeling Local Fiber Orientations

A white matter fiber can be modeled as a finite-length path parameterized by
a train of unit length vectors. We use the following notation for such a path:
v(1:T ) = {v(1), . . . ,v(T )}. We further assume that a fiber path can be traced
by tracking the trajectory of a particle traveling in an orientation field. Each
particle is endowed with an initial speed in an appropriate direction. It then
moves with constant speed to position x(t) according to

x(t+1) = x(t) + sv(t) (1)

where t is the time index and s is the step length. To reconstruct the fiber
trajectories, we need to determine the probability density function (PDF) of
the local fiber orientation f(v(t)|v(t−1),θ(t),θ

′
(t), D(t)). Variable D(t) = 1, . . . , Ω

is the orientation index; each voxel may contain up to Ω orientations, as in
the case of high angular resolution diffusion imaging (HARDI). Sets θ(t) and
θ′

(t) are collections of orientations and their strengths in the neighborhood of
x(t) of the neonatal and longitudinal scans, respectively. Specifically, we define
a neighborhood N (x(t)) (e.g., a 3 × 3 × 3 neighborhood) in the vicinity of x(t)

and, for each voxel i in the neighborhood, collect all corresponding orientations
v

[D(t)]

(t),i and their strengths ρ[D(t)]

(t),i (e.g., magnitudes of the orientation distribution
functions at corresponding orientations), spatially weighted by a Gaussian kernel
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so that voxels further away from the neighborhood center are deemphasized. The
orientations are first sorted to avoid the bias discussed in [4]. Applying Bayes’
theorem, we have

f(v(t)|v(t−1), θ(t), θ
′
(t), D(t)) =

f(θ(t)|v(t), v(t−1), θ
′
(t), D(t))f(v(t)|v(t−1), θ

′
(t), D(t))

f(θ(t)|v(t−1), θ
′
(t), D(t))

.

(2)

Since the orientations in both images are estimated independently in a voxel-wise
fashion, f(θ(t)|v(t),v(t−1),θ

′
(t), D(t)) = f(θ(t)|v(t), D(t)) and

f(θ(t)|v(t−1),θ
′
(t), D(t))

= f(θ(t)|D(t)). The equation can then be written as

f(v(t)|v(t−1),θ(t),θ
′
(t), D(t)) =

f(θ(t)|v(t), D(t))f(v(t)|v(t−1),θ
′
(t), D(t))

f(θ(t)|D(t))
. (3)

The factor f(θ(t)|D(t)) normalizes the posterior probability function to have a
unit volume and can thus be written as the integral of the numerator

f(θ(t)|D(t)) =
∫
v(t),v(t−1),θ

′
(t)

f(θ(t)|v(t), D(t))f(v(t)|v(t−1),θ
′
(t), D(t))dv(t)dv(t−1)dθ

′
(t). (4)

In what follows, we will discuss how the likelihood f(θ(t)|v(t), D(t)) and prior
f(v(t)|v(t−1),θ

′
(t), D(t)) can be computed.

Likelihood: We assume that the orientations observed in the neighborhood of
x(t) can be regarded as noisy observations of v(t), characterized by the Watson
distribution with probability density function (PDF) [5]

f(w|μ, κ) = C(κ)eκ(wTμ)2 . (5)

The parameter μ is a unit vector called the mean orientation and κ is a positive
constant called the concentration parameter. The squared exponential in (5)
ensures that the distribution is antipodal symmetric. The density has maxima
at ±μ and becomes more concentrated around ±μ as κ increases. The density is
also rotationally invariant around ±μ. C(κ) is a normalizing constant to ensure
that the density function integrates to unity over the unit sphere. By letting
μ = v(t), the joint distribution, or the likelihood, of the observed orientations
θ(t) can be written as

f(θ(t)|v(t), D(t)) =
∏

(w,ρ)∈θ
[D(t)]

(t)

C(κ)eρκ(wTv(t))
2

(6)

where θ
[D(t)]

(t) is a subset of θ(t) consisting only of the group of orientations
specified by D(t). This equation is substituted into (3) to obtain the posterior
distribution.
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Priors: Via the probability function f(v(t)|v(t−1),θ
′
(t), D(t)), we encode our

prior knowledge about fiber regularity and about orientation information from
the longitudinal scan. We define the prior probability function as

f(v(t)|v(t−1),θ
′
(t), D(t)) ∝⎧⎨⎩

[
vT

(t)v(t−1)

]2 [
C
(
κ′[D(t)]

(t)

)
eκ′[D(t)]

(t) (vT
(t)μ

′[D(t)]

(t) )2
]
, vT

(t)v(t−1) > 0

0, otherwise.
(7)

The first term on the right enforces the regularity constraint during fiber re-
construction. The second term transfuses orientation information from the lon-
gitudinal scan. The Watson distribution is used to represent the distribution
of the orientations in θ′[D(t)]

(t) , with mean orientation μ′[D(t)]

(t) and concentration

parameter κ′[D(t)]

(t) . Maximum likelihood estimates of the these parameters can
be obtained using the method described in [5].

2.2 State-Space Model

Tractography is assumed to be a stochastic process that can be represented using
a state-space model with the local fiber orientation v(t) as the observation, and
the orientation index D(t) as the state. Given the previous oriention v(t−1) and
the current state D(t), the observation probability is defined according to (3).
Noting that the posterior probability for selection of a particular value of the
orientation index D(t) is

f(D(t)|v(t−1),θ(t),θ
′
(t)) =

f(θ(t)|v(t−1),θ
′
(t), D(t))f(D(t)|v(t−1),θ

′
(t))

f(θ(t)|v(t−1),θ
′
(t))

(8)

and by letting

f(θ(t)|v(t−1),θ
′
(t), D(t)) ∝ ρ̄

[D(t)]

(t) , f(D(t)|v(t−1),θ
′
(t)) ∝

(
vT

(t−1)μ
′[D(t)]

(t)

)2

,

(9)
the transition probability can be defined as

f(D(t)|v(t−1),θ(t),θ
′
(t)) ∝ ρ̄

[D(t)]

(t)

(
vT

(t−1)μ
′[D(t)]

(t)

)2

. (10)

where ρ̄
[D(t)]

(t) denotes the average strength of orientations in θ
[D(t)]

(t) . For sequential
sampling of fiber paths, we need to draw random samples of local fiber orien-
tations from the observation probability (3) and transition probability (10). For
drawing samples from complicated and high dimensional PDFs, one can always
resort to Markov Chain Monte Carlo (MCMC) techniques. The probability of a
path of a given length T is

f(v(1:T )|θ(1:T ),θ
′
(1:T )) = f(D(1))f(v(1)|v(1),θ(1),θ

′
(1), D(1))×

ΠT
t=2f(D(t)|v(t−1),θ(t),θ

′
(t))f(v(t)|v(t−1),θ(t),θ

′
(t), D(t)). (11)
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Tracking is stopped if the trajectory reaches a voxel with orientation coherence

β[D(t)] = 1 − 1
2

⎧⎨⎩
√√√√λ

[D(t)]
2 + λ

[D(t)]
3

2λ[D(t)]
1

+

√√√√λ′[D(t)]
2 + λ′[D(t)]

3

2λ′[D(t)]
1

⎫⎬⎭ , β[D(t)] ∈ [0, 1],

(12)
falling below a predefined threshold β0, or simply when the brain boundary
is encountered. The λ’s are the eigenvalues of the dyadic tensors computed
from θ

[D(t)]

(t) and θ′[D(t)]

(t) [2, 4]. Perfect alignment of the orientations indicated
by D(t) results in β[D(t)] = 1 and an uniform distribution of orientations results
in β[D(t)] = 0.

3 Results

3.1 Materials

Diffusion-weighted images of 10 infants were acquired at two time points: one
month and one year after birth. Diffusion gradients were applied in 42 non-
collinear directions with diffusion weighting b = 1000 s/mm2, repetition time
(TR) = 7,680 ms and echo time (TE) = 82 ms. The scans covered the whole
brain with a resolution of 2 × 2 × 2 mm3. Data post-processing includes brain
skull removal, motion correction and eddy current correction using algorithms
developed and distributed as part of the FMRIB Software Library (FSL) pack-
age. Each neonatal scan was co-registered with their respective longitudinal scan
so that they reside in a common space.

3.2 Tractography

To evaluate the effectiveness of the proposed method, we performed tractography
based on seeds placed at the points where the midline crosses the splenium of
the corpus callosum. 3000 trajectories were initiated from each seed point. The
step size was fixed at 1 mm. The maximum allowable orientation coherence was
set to 0.1. Various configurations were used:

(a) Tractography on the neonatal scan alone with no prior information from the
longitudinal scan.

(b) Tractography on the neonatal scan guided by prior information from the
longitudinal scan.

(c) Tractograph on the longitudinal scan.
(d) Tractography on the neonatal scan, using only the first principal orientation

with no prior information.
(e) Tractography on the neonatal scan guided by longitudinal prior information

from the longitudinal scan, using only the first principal orientations.
(f) Tractography on the longitudinal scan using only the first principal

orientations.
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(a) Neonatal Scan (b) Guided (c) Longitudinal Scan

(d) Neonatal Scan – Sin-
gle Orientation

(e) Guided – Single Ori-
entation

(f) Longitudinal Scan –
Single Orientation

Fig. 1. Comparison of different tractography schemes. (a) Neonatal scan alone, (b)
Neonatal scan + longitudinal scan, (c) Longitudinal scan alone, (d) Neonatal scan
alone (single orientation), (e) Neonatal scan + longitudinal scan (single orientation),
and (f) Longitudinal scan alone (single orientation).

The respective results, shown in Fig. 1, indicate that the proposed method
(Fig. 1(b)) gives reasonable results. Tractography, when performed based on
orientation information given by the neonatal scan alone, results in noisy fiber
tracts (Fig. 1(a) and Fig. 1(d)). This is not surprising since neonatal scans typi-
cally suffer from lower SNR. The results were improved remarkably by employing
prior information given by the longitudinal scan (Fig. 1(c) and Fig. 1(f)). The
reconstructed trajectories are generally cleaner with less stray fibers and are in
higher agreement with our anatomical understanding of the fibers. Note that by
allowing only one orientation per voxel, major fibers are lost. Fig. 1(e) shows
that, despite with longitudinal guidance, fibers connecting one of the occipital
lobes cannot be correctly preserved and reconstructed.

3.3 Single- and Multi-orientation Schemes

For quantification of the effect of single-orientation and multi-orientation schemes
on the reconstructed trajectories, various measures were employed. First, we
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(a) Fiber Length (b) Symmetry (c) Consistency

Fig. 2. Comparison between the multi- and single-orientation schemes using different
statistics. Each bar indicates the mean value, and the error bar indicates the corre-
sponding standard error.

compared the average length of the reconstructed trajectories. A longer length
average generally indicates that fiber reconstruction is less likely to be termi-
nated prematurely, possibly due to noisy local fiber orientations. Fig. 2(a) shows
that the proposed method results in on average longer trajectories, hinting that
by allowing more than one orientation per voxel results in less chances of pre-
mature termination at fiber crossings.

Anatomical scans (e.g., T1-weighted and T2-weighted images) of the brain in-
dicate that the brain is mostly symmetrical between the hemispheres. Therefore,
one would expect that, to be anatomically sound, the reconstructed trajectories
should exhibit some degree of symmetry. For our purpose, we evaluated the de-
gree of symmetry of the reconstructed trajectories by computing the degree of
correlation of the connectivity matrices derived from the fibers between the left
and right hemispheres. Specifically, this was done by parcellating the brain into
116 regions according to the Automated Anatomical Labelling (AAL) atlas [6],
computing the connectivity matrix for each hemisphere based only on the (116/2
= 58) ROIs in that particular hemisphere and then computing the normalized
scalar product of the connectivity matrices of both hemispheres. Each element of
the (58× 58) connectivity matrix records the number of fibers connecting a pair
of ROIs. The results, shown in Fig. 2(b), indicates the multi-orientation scheme
yields higher inter-hemispheric consistency compared with the single-orientation
scheme, again validating that modeling complex orientation information can be
conducive to more accurate reconstruction of fiber trajectories.

Major fiber bundles known to exist in all subjects can be used to test fiber
tracking consistency across subjects. Since the seeds used in our evaluation were
placed on a major white major structure, we expect the reconstructed trajecto-
ries to be relatively consistent across subjects. We tested this by using a similar
methodology described in the previous paragraph. But instead of generating
the connectivity matrix for each hemisphere separately, we generated a whole
brain connectivitiy matrix by considering both hemispheres at the same time.
We then computed the mean connectivity matrix over all the 10 subjects. The
connectivity matrix of each subject was then compared with this mean matrix
(via normalized scalar product) as an indicator of consistency. The higher the
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similarity of all individual connectivity matrices with the mean matrix, the
greater is the consistency. Fig. 2(c) indicates that greater consistency can be
achieved using the multi-orientation scheme, again validating the effectivenes of
the proposed method.

4 Conclusion

We have presented a tractography algorihtm that caters especially for low SNR
diffusion-weighted images by leveraging prior information from the respective
longitudinal scans. Experimental results performed using neonatal scans indicate
that the proposed method yields fiber trajectories that are more consistent with
our anatomical knowledge. The ability of taking into account multi-orientation
information gives further improvement over previous methods by allowing more
accurate modeling of complex white matter architecture involving crossing fibers.
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Abstract. We present a new method for the uncertainty estimation of
diffusion parameters for quantitative body DW-MRI assessment. Dif-
fusion parameters uncertainty estimation from DW-MRI is necessary
for clinical applications that use these parameters to assess pathology.
However, uncertainty estimation using traditional techniques requires re-
peated acquisitions, which is undesirable in routine clinical use. Model-
based bootstrap techniques, for example, assume an underlying linear
model for residuals rescaling and cannot be utilized directly for body
diffusion parameters uncertainty estimation due to the non-linearity of
the body diffusion model. To offset this limitation, our method uses
the Unscented transform to compute the residuals rescaling parameters
from the non-linear body diffusion model, and then applies the wild-
bootstrap method to infer the body diffusion parameters uncertainty.
Validation through phantom and human subject experiments shows that
our method identify the regions with higher uncertainty in body DWI-
MRI model parameters correctly with realtive error of ∼36% in the un-
certainty values.

1 Introduction

Diffusion Weighted MRI (DW-MRI) is a non-invasive imaging technique that is
rapidly evolving as a surrogate imaging biomarker for extra-cranial applications,
including organ functionality evaluation [8,17], oncological disease classification
[9], and early assessment of body tumor response to therapy [5,6].

DW-MRI is particularly appealing for pediatric patients undergoing multiple,
repeat imaging examinations because a) it does not involve ionizing radiation
associated with traditional imaging methods such as CT, MIBG, or FDG-PET;
and b) it is performed without administration of intravenous contrast agents,
which, in some patients, may be contraindicated [14].
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In-vivo measurement of the body tissue diffusivity involves acquisition of
a sequence of DW-MRI with multiple b-values, and estimation of the Appar-
ent Diffusion Coefficient (ADC) from the sequence. Traditionally, the ADC
value is computed for each voxel using the Stejskal-Tanner exponential model:
Sb = S0e

−b∗ADC [13]. However, in living tissue, physiological motions unrelated
to diffusion (e.g., the intra-voxel micro-capillary perfusion effect) can mimic dif-
fusion processes and confound in-vivo measurements.Hence, accurate estimation
of the ADC values requires fitting a multi-exponential model that describes both
diffusion and perfusion effects [12,1].

Clinical applications of DW-MRI typically involve the comparison of mean
or median ADC values in particular, Regions of Interest (ROI) [8]; or may use
voxel-wise analysis [10] to visualize the change in the ADC over time. Estimation
of ADC from multiple b-value images has an intrinsic uncertainty, however, due
in part, to noise in the image acquisition process; and in part, to artifacts such as
those caused by patient motion. The uncertainty that characterizes ADC value
estimation is therefore needed to achieve quantitative ADC assessment in clinical
applications.

Direct estimation of the ADC measurement uncertainty using traditional
asymptotic estimators or the bootstrap technique [7] requires repeated acqui-
sitions, however. These techniques are therefore impracticable in routine clinical
use due to lengthy scan times per patient, and to resulting increases in artifacts.
Moreover, model-based bootstrap techniques require homogeneous leverages of
the different sample points. Although it is possible to rescale the heterogeneous
leverages of different points using an underlying log-linear model derived from
the Stejskal-Tanner exponential diffusion model in intra-cranial Diffusion Tensor
MRI (DT-MRI) [3]; body DW-MRI exhibits a multi-exponential model [12,1]
that cannot be linearized through a log transform. As a result, model-based
bootstrap techniques cannot be utilized directly for the uncertainty estimation
of body DW-MRI ADC.

We present a new model-based bootstrap technique to infer the measurement
uncertainty in ADC estimation from body DW-MRI without acquiring addi-
tional images, thus eliminating the underlying linear model requirement. First,
a multi-exponential model is fitted to the acquired data. Next, the residuals be-
tween the observed data and the estimated model are computed. Heterogeneous
leverages scaling parameters are computed using the Unscented transform [11],
and the residuals are scaled accordingly. Last, the wild-bootstrap resampling
technique [4] is used to estimate the ADC distribution from which the model
uncertainty can be derived. The estimated uncertainty values can then be used
for further analysis of the change in the ADC values in response to the ther-
apy. Our Unscented wild-bootstrap technique does not assume any linearity in
the underlying model and thus can be utilized directly in other cases exhibiting
underlying non-linear models, such as crossing fibers in DT-MRI.

We compared the uncertainty estimation using our method to that which was
obtained through repeated acquisitions of both phantom and human subject
experiments. In all experiments, our method identified the regions with higher
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uncertainty in body DWI-MRI model parameters correctly with realtive error
of ∼36% in the uncertainty values. Thus, our method can provide the necessary
information for reliable quantitative DW-MRI biomarkers assessment, without
repeated acquisitions.

2 Method

The goal is to infer the uncertainty in ADC estimation from DW-MRI. Our
proposed approach utilizes a body DW-MRI dataset consisting of six or more
images acquired with different b-values in the range of 0-800 s/mm2. First, a
multi-exponential diffusion model is fitted to the data and the raw residuals
between the obtained fit and the observed images are computed. Next, the Un-
scented Transform (UT) [11] is used to compute the scaling parameters required
to account for heterogeneous leverages in the different sampling points, and the
residuals are scaled accordingly to satisfy the wild-bootstrap method [4] con-
ditions. Last, wild-bootstrap resampling is used to infer the uncertainty in the
diffusion model parameters estimation. In the next section, we describe each step
in detail.

2.1 Diffusion Model Fitting

The DW-MRI measurement of tissue diffusivity is affected by both thermal-
driven water molecules diffusion and intra-voxel, randomly oriented, micro-
capillary blood flow. Thus, the DW-MRI measurements should be modeled using
a multi-exponential diffusion model [12,1]:

S(b) = S0 (f · exp(−b · PER) + (1 − f) · exp(−b · (ADC + PER))) (1)

where b is the b-value used to acquire the images, ADC is the Apparent Diffusion
Coefficient (ADC) describing the signal attenuation due to the real diffusion
effect; PER is the perfusion coefficient describing the signal attenuation due to
the blood perfusion effect; and f is the fractional volume of the perfusion effect.

Assuming a Rician noise model with scaling parameter σR, the Probability
Distribution Function (PDF) of the DW-MRI signal is given by:

P (M |S, σR) =
M

σ2
R

exp

(
−M2 + S2

2σ2
R

)
I0

(
MS

σ2
R

)
(2)

where M is the observed value; S is the “true” underlying signal; and I0(·) is
the zero-ordered modified Bessel function of the first kind.

The likelihood of the diffusion model parameters Ω = {ADC,PER, f, S0}
given the observed data M and σR is:

L(Ω;M,σR) =
N∏

i=1

P (Mi|Ω, σR) (3)

where N is the number of the observations.
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The Maximum Likelihood (ML) estimation of the model parameters Ω is
computed by maximizing the following log-likelihood function:

Ω̂ = argmax
Ω

N∑
i=1

I0

(
S(bi;Ω)Mi

σ2
R

)
−

N∑
i=1

S(bi;Ω)2

2σ2
R

(4)

where S(bi;Ω) is the signal estimation at b-value bi given the model parameters
Ω computed using Eq. 1. The estimation of σR is computed by ML fitting of a
Rayleigh distribution to a pre-defined background region on each image.

Initial estimation of the model parameters is obtained as in [2], and the max-
imization is done using the BOBYQA non linear optimization algorithm [15].
The raw residuals between the obtained fit and the observed images are then
given by: εi = Mi − S(bi)

2.2 Heterogeneous Leverages Scaling

The wild-bootstrap resampling technique assumes homogeneous leverage of the
different sampling points. However, the estimation of model fitting uncertainty
usually involves heterogeneous leverage. Appropriate rescaling of the raw resid-
uals εi is required to satisfy this condition. In linear models, these rescaling
parameters can be obtained directly from the model equation as in [3,4]. How-
ever, there is no direct way to compute the heterogeneous leverage of different
points in the non-linear model underlying body DW-MRI.

To offset this limitation, we use the Unscented Transform (UT) [11] to esti-
mate the heterogeneous leverage of different points by propagating a set normally
distributed test points with μ = Ω̂ and σ = 1 throughout the non-linear model,
and computing the variance of the propagated points.

Given the multi-exponential diffusion model (Eq. 1) and the estimated pa-
rameters Ω with n as the model parameters number; we define a set of 2n test
points p as in [3]. A new set of model parameters with μ = Ω̂ and σ = 1 is then
generated by adding each test point pj to the estimated model parameters:

Ω̃j = Ω̂ + pj (5)

Next, the DW-MRI signal values S(bi; Ω̃j) are computed for each bi with the
new model parameters Ω̃j using Eq. 1, and the variance of the propagated errors
is given for each sampling point i by:

hi =
1
2n

2n∑
j=1

(
S(bi; Ω̃j) − S(bi; Ω̃j)

)2

(6)

Finally the scaled residuals ε̂i are computed from the raw residuals εi by:

ε̂i =
εi√

1 − h2
i

(7)
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2.3 Wild-Bootstrap Estimation of the Model Uncertainty

Following the method described in [4], the wild-bootstrap resampling is defined
as:

S∗(bi; Ω̂)k = S(bi; Ω̂) + tk ε̂i (8)

where S∗(bi; Ω̂)k is the resampled measure at the b-value bi and tk is a two-point
Rademacher distributed random variable with P (t = 1) = 0.5 and P (t = −1) =
0.5 defined for each b-value separately.

The wild-bootstrap resamples are generated for the entire set of bi values and
a multi-exponential diffusion model is fitted using Eq. 4. Resampling and model
fitting are repeated for a large number of fixed repetitions to obtain a large set
of diffusion models. The estimation of the model uncertainty is then obtained
by computing the standard deviation of the estimated model parameters from
the set of bootstrap diffusion models.

3 Experimental Results

We evaluated the performance of our Unscented wild-bootstrap uncertainty es-
timation method through DW-MRI scans of an American College of Radiology
(ACR) MRI phantom and a human subject. In the following section, we describe
each experiment in detail.

3.1 ACR Phantom Experiment

Ten DW-MRI datasets of an ACR MRI phantom were acquired using the gradi-
ent encoding scheme [16] on a 1.5T MRI machine (Magnetom Avanto, Siemens
Medical Solutions, Erlangen, Germany). Each dataset consisted of diffusion im-
ages with values = [5, 50, 100, 200, 270, 400, 600, 800]s/mm2. One out of the ten
datasets was acquired during slight vibrations of the phantom to introduce mo-
tion artifacts and enlarge the model fit uncertainty. The additional 9 datasets
were acquired with the stabilized phantom. A multi-exponential diffusion model
was fitted to each dataset using Eq. 4. The performance of our method was eval-
uated using the Leave-One-Out (LOO) methodology, where the “ground-truth”
uncertainty in model estimation was defined as the standard deviation of the
ADC measure at each voxel over 8 out of the 9 stabilized acquisitions, and the
ADC uncertainty was estimated from the additional dataset solely using our
technique with a varying number of bootstrap resampling iterations between
50 and 1000. Finally, the Relative error between the estimated uncertainty and
the “ground-truth” uncertainty was computed for each dataset. In addition, we
compared the ADC uncertainty estimated from the vibrated phantom dataset to
a “ground-truth” uncertainty obtained from the 9 stabilized phantom datasets.

Fig. 1 presents the DW-MRI image used in the experiment, the “ground-
truth” uncertainty map, the estimated uncertainty map computed from one
of the stabilized phantom datasets and the estimated uncertainty computed
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Fig. 1. ACR phantom experiment: (a) DW-MRI image of the ACR phantom with
b-value=50s/mm2; pixels used for evaluation are marked in red. (b) The “ground-
truth” ADC uncertainty. (c-d) Estimated ADC uncertainty using our method from
a (c) stabilized phantom dataset and (d) vibrated phantom dataset. (e) RMS error
between our estimation and the “ground-truth” using a varying number of bootstrap
resampling iterations.

from the vibrated phantom dataset. As expected, our method estimated higher
uncertainty in the vibrated phantom dataset (41%) compared to the stabilized
phantom datasets (∼21%).

Fig. 1e presents the relative error between the estimated and the ground-truth
uncertainty maps. Our method estimated the uncertainty with an average (std)
error of 21% (6.5%) of the “ground-truth” value. Increasing the number of boot-
strap resampling iterations, however, did not yield any significant improvement
in the uncertainty estimation accuracy.

3.2 Human Subject Experiment

Five (5) body DW-MRI datasets of a healthy human subject were acquired as
in the ACR phantom experiment (Sec. 3.1) during free-breathing of the subject.
A multi-exponential diffusion model was fitted to each dataset using Eq. 4. The
performance of our method was evaluated using same methodology as in the
ACR phantom experiment (Sec. 3.1).

Fig. 2 presents the DW-MRI image acquired with b-value=200s/mm2, the
ADC map computed using one of the datasets, the “ground-truth” uncertainty
map, and the estimated uncertainty map. Our method identify the organ bound-
aries as the regions with the highest uncertainty, due to the respiratory motion
effect on these regions. The uncertainty in the liver is higher than that in the
kidneys and the spleen due to the larger effect of respiratory motion on the liver.
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Fig. 2. Human subject experiment: (a) Body DW-MRI image with b-value=200s/mm2;
pixels used for evaluation are marked in red. (b) ADC map obtained by fitting the
multi-exponential model to one of the datasets. (c) The “ground-truth” ADC uncer-
tainty. (d) Estimated ADC uncertainty using our method from one of the datasets. (e)
Relative error between our estimation and the “ground-truth” using a varying number
of bootstrap resampling iterations.

Fig. 2e presents the relative error between the estimated uncertainty and the
ground-truth uncertainty. Our method estimated the uncertainty accurately with
an average (std) error of 36.8% (6.2%) of the ground-truth value. Increasing the
number of bootstrap resampling iterations did not, however, yield significant
improvement in the uncertainty estimation accuracy. Similar relative error was
obtained for the estimation of the uncertainty in the perfusion comparatment
(PER). Higher uncertainty values and larger estimation errors were observed in
the human imaging study; these numbers are primarily driven by motion artifact
(i.e., breathing) that typically takes place during any acquisition with DW-MRI.

4 Conclusions

We have presented a new Unscented wild-bootstrap method for the estimation
of diffusion model parameters uncertainty in body MR-DWI imaging. The esti-
mation of the model parameters uncertainty is necessary to achieve quantitative
clinical assessment of body DW-MRI biomarkers. The main advantage of our
method is two-fold: First, it does not require repeated acquisitions, which is
undesirable in routine clinical applications; and second, it is not limited to un-
derlying linear models that are less suitable in body DW-MRI. Evaluation of
our method against uncertainty estimations obtained by repeated acquisitions
of both phantom and human subject DW-MRI data shows that our method
can estimate the uncertainty associated with a multi-exponential body diffusion
model fit accurately without repeated acquisitions.
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Abstract. This paper proposes a technique for a previously unaddressed
problem, namely, mapping axon diameter in crossing fiber regions, us-
ing diffusion MRI. Direct measurement of tissue microstructure of this
kind using diffusion MRI offers a new class of biomarkers that give more
specific information about tissue than measures derived from diffusion
tensor imaging. Most existing techniques for axon diameter mapping as-
sume a single axon orientation in the tissue model, which limits their
application to only the most coherently oriented brain white matter,
such as the corpus callosum, where the single orientation assumption is
a reasonable one. However, fiber crossings and other complex configura-
tions are widespread in the brain. In such areas, the existing techniques
will fail to provide useful axon diameter indices for any of the individ-
ual fiber populations. We propose a novel crossing fiber tissue model to
enable axon diameter mapping in voxels with crossing fibers. We show
in simulation that the technique can provide robust axon diameter es-
timates in a two-fiber crossing with the crossing angle as small as 45o.
Using ex vivo imaging data, we further demonstrate the feasibility of
the technique by establishing reasonable axon diameter indices in the
crossing region at the interface of the cingulum and the corpus callosum.

1 Introduction

Axon diameter mapping using diffusion MRI offers exciting new possibilities for
investigating white matter in health and disease beyond diffusion-tensor imaging.
Information about axon diameter and density informs the role and performance
of white matter pathways [1, 2]. Specific changes in axon diameter have also
been linked to diseases such as multiple sclerosis [3] and amyotrophic lateral
sclerosis [4]. Direct measurement of such features can therefore shed new light
into white matter development and disease mechanisms.

Most techniques for axon diameter mapping adopt the model-based strategy
in which a geometric model of the tissue predicts the MR signal from water
diffusing within. Earlier methods [5,6] assume a single and known orientation of
axons in the tissue model, which limits their application to nerve tissue samples
or small regions of brain with uniform orientation. More recently, estimating
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axon diameters of unknown orientation on clinical scanners has been shown to
be feasible, first in simulation [7], and later in live human brains [8]. However,
the models in [7, 8] still assume a single albeit unknown fiber orientation. Most
recently, Zhang et al [9] relax this assumption to some extent by modeling the
axonal-orientation distribution as a Watson distribution. The Watson model
accommodates the presence of axonal-orientation dispersion and extends axon
diameter mapping beyond the most coherent white matter regions like the corpus
callosum to a much wider subset of the white matter. Nevertheless, its model
of axonal-orientation distribution remains unimodal. Like the earlier models, it
is inappropriate in crossings or partial volume between tracts with significantly
different orientations.

Fiber crossings occur in many areas of the brain, resulting in the observation
of two or more distinct fiber populations in a significant number of voxels. In such
voxels, considerable success has been achieved in resolving the precise underlying
crossing fiber configurations. Since the earliest breakthroughs in crossing fiber
resolution [10,11], major progress has produced very effective modern techniques
(See [12] for a review). Despite that, there has been no attempt at direct mea-
surement of additional microstructure features in these locations. A solution to
this problem is prerequisite to realizing whole-brain axon diameter mapping.

This paper describes a technique that addresses the combined problem of
crossing fiber resolution and microstructure imaging. We propose a crossing fiber
tissue model that enables the simultaneous estimation of crossing configurations
and microstructure features. We demonstrate the technique both in simulation
and in brain data. The rest of the paper is organized as follows: Section 2 de-
scribes the proposed crossing-fiber tissue model and the data fitting procedure;
Section 3 details the design of the simulation and brain data experiments for val-
idating the proposed technique and reports the findings; Section 4 summarizes
the contribution and discusses future work.

2 Crossing-Fiber Tissue Model

The proposed model generalizes the minimal model of white matter diffusion
(MMWMD) in [7,8] to accommodate the presence of multiple fiber populations
in a single voxel. The MMWMD represents white matter as an ensemble of im-
permeable cylindrical axons, with both a single diameter and a single orientation,
embedded in a homogeneous medium. Water molecules diffuse with an identical
intrinsic diffusivity both inside and outside the axons but without exchanges
between the compartments. By assuming a single axon diameter rather than a
distribution as in [6,13], the MMWMD enables orientation-invariant estimation
of axon diameter for the first time, providing a single summary statistic of the
axon diameter distribution, called the axon diameter index [8]. The axon diam-
eter index is simpler to estimate than models of the full distribution in [6, 13],
but still discriminates naturally occurring axon diameter distributions [8].

To model crossing fibers, we instead represent white matter as a set of N ≥ 1
distinct fiber populations embedded in a common homogeneous medium. Each
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fiber population is individually modeled as prescribed by the MMWMD. Assum-
ing that no exchange occurs between the fiber populations and their common
surrounding medium, as well as between the fiber populations themselves, the
normalized (MR) signal from white matter, Awm, is thus νic

∑N
i=1 f

i
icA

i
ic + (1−

νic)Aec, where νic ∈ [0, 1] is the intra-cellular volume fraction within the white
matter, Ai

ic the normalized signal from the i-th fiber population with a vol-
ume fraction f i

ic ∈ [0, 1] relative to the whole population of fibers, and Aec the
normalized signal from the extra-cellular medium.

The MMWMD contains two additional compartments: one models isotropi-
cally free Gaussian diffusion to capture the partial volume with cerebrospinal
fluid (CSF); the other models isotropically restricted diffusion to capture ob-
served restrictions parallel to axons in fixed tissue, potentially due to water
trapped within glial cells [5]. Here we include only the latter, because the white
matter area considered in our brain data experiment is several voxels away from
the boundary with the ventricles and thus void of CSF contamination. The full
normalized signal model, A, is therefore (1− νir)Awm + νirAir, where Air is the
normalized signal from the isotropically restricted compartment with a volume
fraction νir. We set Air = 1, following the stationary water assumption in [8],
i.e., the compartment signal remains unattenuated by diffusion weighting. The
subsequent sections detail the modeling of Ai

ic and Aec and the fitting procedure.

Intra-Cellular Model. Water diffusion in this compartment is cylindrically
restricted. The intra-cellular signal from the i-th fiber population, Ai

ic, depends
on the axon diameter and orientation of the population, denoted by ai and ni

respectively, the intrinsic diffusivity of water, denoted by d, as well as the imaging
protocol. For the pulsed-gradient spin-echo (PGSE) sequence, as used in our
experimental evaluation, we compute Aic using the Gaussian phase distribution
approximation [14] as in [7, 8] to model the signal from restricted diffusion.

Extra-Cellular Model. Water diffusion in this compartment is hindered. The
extra-cellular signal, Aec, is modeled with simple (Gaussian) anisotropic diffusion
using an (apparent) diffusion tensor as in [15]. We model the diffusion tensor,
Dh, as

∑N
i=1 f

i
icDcyl(νic,ni, d), where Dcyl(νic,ni, d) is the diffusion tensor rep-

resenting the hindered diffusion in the i-th fiber population, defined according to
the MMWMD. This follows from the common medium assumption, i.e., water
exchanges freely within different regions of the extra-cellular space.

Model Fitting. We fit the proposed model to data with the three-stage routine
described in [8]. It provides robust estimates of the model parameters with the
Rician Markov Chain Monte Carlo (MCMC) procedure in [7], after an initial
grid search and then gradient descent to determine the maximum likelihood
(ML) estimates of the parameters.

The full set of model parameters are the N axon diameters (a1, a2,..., aN)
and orientations (n1,n2, ..., nN ), the N − 1 relative volume fractions (f1

ic, f
2
ic,

..., fN−1
ic ), the other two volume fractions νic and νir , and the intrinsic diffusivity
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d. Note that, because
∑N

i=1 f
i
ic = 1, only N − 1 of the relative volume fractions

are independent. Throughout, we fix d to 0.6 × 10−9 m2s−1, its expected value
in the ex vivo data, as in [8].

3 Experiments and Results

Ex Vivo Imaging of Monkey Data Set. Ex vivo diffusion weighted imaging
(DWI) of a 32-month perfusion-fixed Vervet monkey was acquired on a 4.7T
Varian system with maximum gradient strength |G| = 400 mT/m. (See [16] for
brain preparation.) A total of 360 images were collected using a PGSE DWI
sequence with single-line spin-echo readout (TE = 36ms, TR = 2500ms). Each
has isotropic 0.5x0.5x0.5 mm3 voxels and 30 sagittal slices centered on the mid-
sagittal plane of the corpus callosum with in-plane matrix size of 128x256. The
protocol, determined using the experimental design optimization [7] adapted for
fixed tissue, consists of three HARDI shells with the number of diffusion gradi-
ents [103, 106, 80], |G| = [300, 210, 300] mT/m, δ = [5.6, 7.0, 10.5] ms, and Δ =
[12, 20, 17] ms, corresponding to b-values = [2084, 3084, 9550] s/mm2. Ethical
rules concerning the handling and care of live animals were followed.

Synthetic Data Experiment. We synthesize diffusion MR signal from a broad
set of two-fiber crossing substrates using the publicly available Monte-Carlo dif-
fusion simulator in Camino [17] with the ex vivo imaging protocol described
above. Synthetic Rician noise with σ = 0.05 is added to match the SNR of the
ex vivo data (around 20). For each substrate, the proposed model with N = 2
is then fitted to its synthetic data and the parameter estimates are compared
against the known ground-truth settings of the substrate.

The synthetic substrates assume reasonable crossing configurations and mi-
crostructure features and are constructed as follows: We consider six representa-
tive axon diameter combinations: {a1, a2} ∈ {{2, 2}, {2, 4}, {2, 6}, {4, 4}, {4, 6},
{6, 6}} μm. For each combination, we test three relative volume fractions, f1

ic ∈
{0.3, 0.5, 0.7}, and a broad range of crossing angles, varying from 30o to 90o in
15o increment. Similar to [7], νic is set to 0.7, its typical value in brain white
matter. Since the diffusion simulator does not model isotropically restricted com-
partment, νir is 0. This results in a total of 90 different crossing fiber substrates.
Finally, to avoid possible orientation dependence, 20 different instances of each
substrate are created by applying random 3-D rotations to the initial configura-
tion. Independent Rician noise described above are added to each instance.

For each substrate, we compute the mean and the standard deviation of the
parameter estimates for its 20 random instances. This accounts for the effect
of noise and the dependence to orientation. We report our findings from the
assessment of all 90 substrates. Due to limit in space, the findings are illustrated
with only one axon diameter combination ({2, 6}μm) and f1

ic = 0.3 in Fig. 1.
The relative volume fraction f1

ic can be estimated accurately for all axon di-
ameter combinations and for the crossing angles larger than 45o; for the crossing
angle of 30o, it is consistently over-estimated. The intra-cellular volume fraction
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Fig. 1. The parameter estimates for the substrates: {2, 6}μm, f1
ic = 0.3, and all the

crossing angles (the horizontal axis)

CoronalSagittal Axial

Genu

Midbody

Fig. 2. The manually defined crossing fiber ROI (in red) overlaid on the FA map in
three orthogonal views

νic is consistently under-estimated for all substrates, by about 10%. The vol-
ume fraction of the isotropically restricted compartment νir can be consistently
estimated for all substrates, with a slight over-estimation.

For axon diameters, 2μm and 4μm are difficult to differentiate from one an-
other for all values of f1

ic and crossing angles. However, both can be differentiated
from 6μm for all values of f1

ic and crossing angles larger than 45o.
Orientations can be estimated accurately for all axon diameter combinations,

all values of f1
ic, and the crossing angles larger than 45o. The error in the ori-

entation estimates increases as the crossing angle decreases and as the axon
diameter increases. The error in the estimate of the fiber population with the
lower relative volume fraction is higher than that of the other population.

In summary, under practical imaging protocol, the proposed model is able to
both resolve the crossing fiber configuration and estimate microstructure features
for crossing angles larger than 45o.

Monkey Data Experiment. This experiment uses the ex vivo monkey data set
described earlier to demonstrate the efficacy of the proposed model for mapping
axon diameters in brain tissue with crossing fibers. We manually delineate a well-
defined two-fiber crossing region-of-interest (ROI) between the corpus callosum
and the cingulum bundle as shown in Fig. 2. Note the dark band in the center
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Fig. 3. The orientation and axon diameter estimates for both the two-fiber and
single-fiber models. The orientation estimates are represented using the standard RGB-
encoding (Red: medial-lateral, Blue: inferior-superior, Green: anterior-posterior) [18].

of the ROI. The appearance of such voxels flanked by the ones with higher FA
is characteristic of crossing fibers due to partial volume between two tracts with
substantially different orientations. We fit both the proposed two-fiber model
and the MMWMD (single-fiber) to each voxel in this region, and compare their
respective estimates.

Fig. 3 shows the orientation and axon diameter estimates for both the two-
fiber and single-fiber models. For the two-fiber model, the fiber population 1
corresponds to the population initialized, during model fitting, with the primary
eigenvector of the diffusion tensor estimate at each voxel. The well-defined tra-
jectory of the cingulum, which traverses from anterior to posterior, allows us
to identify the voxels colored in green in Fig. 3(1a) as the ones with the fiber
population 1 being the cingulum. The dashed line separates these voxels from
the ones below them, which are primarily the corpus callosum fibers.

The most striking observation is that, despite the orientation estimates of
the single-fiber model (Fig. 3(1c)) being largely consistent with those of the
fiber population 1 of the two-fiber model (Fig. 3(1a)), their respective axon
diameter estimates are distinctly different. In particular, among the voxels im-
mediately adjacent to the dashed line, the putative interface between the cin-
gulum and the corpus callosum, the axon diameter estimates of many, from
the single-fiber model (Fig. 3(2c)), are close to or higher than 10μm, much
higher than the values determined from histology (about 2μm) [2]. In con-
trast, their corresponding estimates for the fiber population 1 from the two-fiber
model (Fig. 3(2a)) are in the same range as the histologically estimated values,
highlighting a key benefit of using the two-fiber model in such crossing fiber
voxels.
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The orientation and axon diameter estimates for the fiber population 2 from
the two-fiber model require more care in their interpretation. The most apparent
feature of the axon diameter estimates (Fig. 3(2b)) is that a large majority of
them are higher than 10μm. Further inspection confirms that the values for
almost all these voxels are close or equal to 40 μm, the maximum value allowed
in our fitting routine to indicate the negligible presence of the corresponding
fiber population, in this case, the fiber population 2. On the other hand, a
number of voxels have axon diameter estimates with values comparable to those
from histology. They can be divided into two groups according to their spatial
locations and orientations. In the first group are the voxels that are immediately
adjacent to the putative cingulum and corpus callosum interface and have their
orientation estimates for the fiber population 2 consistent with being part of
the cingulum, i.e., colored in green in Fig. 3(1b). For these voxels, the two-fiber
model is able to both resolve the crossing configuration and estimate the axon
diameters of individual fiber populations. In the second group are the voxels that
are away from the interface and inside the cingulum region. The fiber population
2 of these voxels may correspond to the outward-projecting cingulum fibers.

4 Discussion

We have described a technique for joint estimation of crossing fiber configuration
and microstructure features using a new crossing-fiber white matter model that
includes individual axon diameter and volume fraction parameters for each fiber
population. The results from simulation and brain data demonstrate promising
possibilities for extending axon diameter mapping to the whole brain. In partic-
ular, the brain data findings suggest that the crossing-fiber model can resolve
crossing configurations and estimate axon diameters simultaneously under some
circumstances; when it fails to do so, it can still provide more sensible axon di-
ameter estimates for the dominant fiber population. Given that it is challenging
to estimate axon diameter in voxels with only a single orientation, it is remark-
able that we can make progress at crossing. Even improving the estimate of the
dominant popualtion is itself useful and a significant step forward.

Nevertheless, the proposed crossing fiber model can be extended in several
ways: First, the current model assumes that axons are strictly parallel within
each fiber population. This assumption can be relaxed to account for axon
spreading in each distinct population using the orientation dispersion model
in [9]. Second, the current model assumes that the extra-cellular space is a com-
mon homegeneous medium. A more general model may require the modeling of
the extra-cellular space of each fiber population individually. Lastly, we will ex-
amine other crossing regions, such as the pons and the crossing regions between
the corpus callosum and the corona radiata in centrum semiovale.
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16. Dyrby, T.B., Baaré, W.F.C., Alexander, D.C., Jelsing, J., Garde, E., Søgaard,
L.V.: An ex vivo imaging pipeline for producing high-quality and high-resolution
diffusion-weighted imaging datasets. Hum. Brain Mapp. 32, 544–563 (2010)

17. Hall, M.G., Alexander, D.C.: Convergence and parameter choice for Monte-Carlo
simulations of diffusion MRI. IEEE Trans. Med. Imaging 28, 1354–1364 (2009)

18. Pajevic, S., Pierpaoli, C.: Color schemes to represent the orientation of anisotropic
tissues from diffusion tensor data: application to white matter fiber tract mapping
in the human brain. Magn. Reson Med. 42, 526–540 (1999)



Detecting Structure in Diffusion Tensor MR Images

K. Krishna Nand1, Rafeef Abugharbieh1, Brian G. Booth2, and Ghassan Hamarneh2

1 Biomedical Signal and Image Computing Lab, University of British Columbia
2 Medical Image Analysis Lab, School of Computing Science, Simon Fraser University

{kkrishna,rafeef}@ece.ubc.ca, {bgb2,hamarneh}@sfu.ca

Abstract. We derive herein first and second-order differential operators for de-
tecting structure in diffusion tensor MRI (DTI). Unlike existing methods, we are
able to generate full first and second-order differentials without dimensionality
reduction and while respecting the underlying manifold of the data. Further, we
extend corner and curvature feature detectors to DTI using our differential opera-
tors. Results using the feature detectors on diffusion tensor MR images show the
ability to highlight structure within the image that existing methods cannot.

1 Introduction

Feature detection is a core component in most image processing and analysis tasks with
ubiquitous applications ranging from data registration to object segmentation, classi-
fication, and recognition. Of the multitude of feature detectors available today, those
that are widely used typically involve first and second order spatial differential oper-
ators [9,18]. We desire the ability to use such feature detectors to highlight anatomi-
cal structure in diffusion tensor images (DTI). To date, only a few attempts have been
made to develop differential operators for such manifold-valued image data. Table 1
summarizes the current state-of-the-art and highlights a conspicuous gap in the current
methodology: the ability of current differential operators to respect the manifold-valued
nature of diffusion tensor data.

Table 1. Summary of existing and proposed work in differential-based feature detection for scalar
and manifold-valued data. The manifold of symmetric second-order positive definite tensors is
represented as SPD(3). Methods listed for R

N also apply to R
3. Note our contributions in the

lower-right of the table. They are derived in Equations (1 - 3).

Data First-Order Differentials Second-Order Differentials
Dimensionality Magnitude Only Full Differential Magnitude Only Full Differential

R
Edge Detection [5] Frangi et al. Curvature [9]

Corner Detection [18] Curvature Magnitude [12]
R

3 MPT Projection [20] Quaternions [19]

R
N

Channel Normalization [8] Directional
Derivative of
Gradient [1]

Weighted
Channel Av-
eraging [13]

Third-Order Tensors [17]
Structure Tensor [6]

SPD(3)
Distance Metrics Our Contribution: Our Contribution:

[2] Equations (1 - 2) Equation (3)
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In this paper, we derive first and second order differential operators for diffusion
tensor fields that respect the manifold of second-order tensors. Using these differential
operators, we extend the Harris and Shi-Tomasi corner detectors to DTI. We further
construct curvature based features detectors to detect tube-like and sheet-like structures
in DTI. These features allow us to capture structural information within a DT image
that has previously not been explored. We note here that our approach to detecting
these structural features is different from other approaches [11,15,21] in that we work
with more fundamental operators of low-level computer vision as opposed to higher
level characterization of the data.

2 Methods

2.1 First Order Operators

We begin our exposition by deriving the first-order differential operator of a tensor
field. To ensure that we respect the manifold of second-order tensors, we employ the
Log-Euclidean (LE) mapping proposed in [2] to map the space of symmetric second
order positive definite tensors, SPD(3), into a vector space. Let D(x) be a 3D DT
image indexed by x = [x1 x2 x3]. Then the LE mapping gives L(x) = logm(D(x)),
where L(x) is the LE tensor and logm(·) is the matrix logarithm.

Let J(x) denote the Jacobian matrix, given by Jij = ∂Li

∂xj
. J(x) generalizes the

gradient of a scalar field to the derivatives of a vector field. We define the 3×3 sym-
metric positive semi-definite matrix S(x) = J(x)T J(x). The matrix S(x), referred
to as the structure tensor, measures the directional dependence of total change. Let
λS

1 ≥ λS
2 ≥ λS

3 denote the eigenvalues of S(x) and let êS
i be the eigenvector corre-

sponding to λS
i . The squared Euclidean norm of dL(x) can be written in terms of S(x)

as ||dL(x)||2 = (dx)T S(x)dx. This positive definite quadratic form is called the first
fundamental form. For a unit vector n, A(x) = nT S(x)n measures the rate of change
of the image in the direction n and is referred to as the squared local contrast [6]. It
is maximum when n is in the direction of the eigenvector corresponding to the largest
eigenvalue of S(x). As a result, this eigenvector is used as the gradient direction ĝ(x).
To resolve the sign ambiguity of the eigenvector, we use a voting approach across chan-
nels. The gradient magnitude |g(x)| is set to be the square root of the corresponding
eigenvalue of S(x). The resulting gradient vector is then given by:

g(x) =
√

λS
1 êS

1 . (1)

A closed-form solution for (1) in terms of S(x) can be derived but is not presented here
due to space limitations.

An averaged version of S around a local neighborhood, S̄, allows the integration of
first order information from the neighborhood and a more stable numerical derivation.
We call S̄, the log-Euclidean structure tensor and construct it as:

S̄ik(σI ,x) = ωσI (x) ∗
∑

j

∂Lj

∂xi

∂Lj

∂xk
, (2)

where ωσI is a Gaussian window with standard deviation σI and Lj is the jth compo-
nent of L(x).
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2.2 Second Order Operators

The Hessian matrix is a symmetric matrix consisting of second order partial derivatives.
It describes the local second order structure around each pixel in an image. We derive
two forms of the Hessian matrix. The first, H1, is based on simple weighted averaging
of the Hessian matrices of each component of L(x), as done for color images in [13].
Our second formulation is based on the gradient vector we derived earlier in (1). Given
g(x) = [gx1 gx2 gx3 ]

T has been computed at every location x of the DT image, the
gradient vector field g can be considered as a multivalued function with the mapping
Ωg : R

3 → R
3. Using this context, we compute the derivative of the gradient vector

field via the Jacobian matrix, G(x), as Gij = ∂gi

∂xj
. G(x) encodes second order infor-

mation of L(x) and, in scalar images, G(x) represents the Hessian matrix. However
in multivalued images, G(x) is generally non-symmetric. Our second formulation for
the Hessian matrix H2 in multivalued images is thus given by:

H2(x) =
G(x) + G(x)T

2
, (3)

which is the symmetric part of G(x) and is the best L2 approximation to G(x) from
the set of symmetric matrices [3]. Our first order (1,2) and second order (3) differential
operators can easily be extended to different scales.

2.3 Feature Detectors

Our proposed differential operators fit naturally into existing feature detectors and can
thus be effectively used to detect structure in DTI. Here we provide four examples from
a potentially long list of feature detectors that can incorporate our differential operators.
Using our first order differential in (2), we detect corners in DT images using the pop-
ular Harris (CH ) [16] and Shi-Tomasi (CST ) [18] corner detectors which we define as:

CH =
det(S̄)

tr(S̄) + ε
(4) CST = min(λS̄

1 , λ
S̄
2 , λ

S̄
3 ) (5)

where det(S̄) is the determinant of S̄, tr(S̄) the trace of S̄ and λS̄
1 ≥ λS̄

2 ≥ λS̄
3 are the

eigenvalues of S̄.
Curvature cues can also be obtained from our Hessian matrix derived in (3). As

examples, we extend the vesselness filter of [9] and the sheetness filter of [7] to detect
tube-like and sheet-like fiber tracts in DTI1. Our tubular-ness and sheet-ness measures
are thus defined as:

Ctube =
(

1 − exp
(
−R2

A

2α2

))(
exp
(
−R2

B

2β2

))(
1 − exp

(
− S2

2c2

))
, (6)

Csheet =
(

exp
(
−R2

A

2α2

))(
1 − exp

(
−R2

D

2η2

))(
1 − exp

(
− S2

2c2

))
, (7)

1 Here, it is important to note that tube-like and sheet-like refer to the structural characteristics
of the DT image and not to the diffusion tensors.
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where Ctube and Csheet measure how tubular and sheet-like the structure is, RA =
|λH

2 |/|λH
1 |, RB = |λH

3 |/
√
|λH

1 λH
2 |, RD = |(2|λH

1 | − |λH
2 | − |λH

3 |)|/|λH
1 | and

S =
√

(λH
1 )2 + (λH

2 )2 + (λH
3 )2. The measures RA, RB and S are used to penalize

sheet-like structures, blob-like structures and noise, respectively. RD is used to penal-
ize tube like and blob like structures. These terms are computed from the eigenvalues
λH

1 ≥ λH
2 ≥ λH

3 of the Hessian matrix in (3). The constants α, β, η and c control the
sensitivity of Ctube and Csheet to each term.

3 Results

We present results of the proposed differential operators and feature detectors on syn-
thetic and real DT data. The real DT data consisted of 24 images of normal adult brains,
of which, 12 were taken from the John Hopkins LBAM [14] database and 12 from the
MIDAS database [4]. In our experiments, the constants α, β and η were set to 0.5 (as
suggested in [7,9]) and c was set to 0.1.

(a)Corner Phan-
tom

(b) Crossing Phantom (c) Drop rate of Harris re-
sponse vs. distance

Fig. 1. Results of the proposed Harris and Shi-Tomasi corner detectors on synthetic data. (a) and
(b): two synthetic slices with the ground truth corner locations shown in yellow. (c): the drop rate
of the Harris feature response as a function of distance from the ground truth corners for different
levels of noise (standard deviation of noise ranging from 0.01 to 0.04). Results are shown for
both our method and the approach in [16] on the FA maps. Note the response of our method falls
rapidly for all levels of noise, demonstrating localization accuracy.

Figure 1 shows the proposed Harris and Shi-Tomasi corner detector results on syn-
thetic data. The conventional scalar Harris and Shi-Tomasi features obtained from the
fractional anisotropy (FA) maps are used for comparison. Figure 1(a) shows a noisy
image where the tensors are pointing horizontally in the foreground (colored in red)
while tensors point vertically in the background (colored in blue). Figure 1(b) shows an
example of two fibers crossing each other. The ground truth corner points are shown in
yellow. Varying levels of noise were added to these images using the method in [10].
We show in Figure 1(c) the drop rate in the feature response as a function of distance
to the nearest ground truth corner point in the examples in Figures 1(a) and 1(b). Our
results demonstrate how the response of the proposed Harris detector falls very quickly
for all levels of noise when compared to the response of the scalar Harris detector on FA
as we move away from the ground truth corners. We also observed consistent stronger
response to corners for our proposed Harris detector compared to the approach based on
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(a) Bent fiber tract (b) (c) Linear fibers (d)
(e) Drop rate of tube-ness re-
sponse vs. distance

Fig. 2. Tubular-ness results for synthetic 2D slices. Figures (a) and (c) show a bent fiber tract
and linear fiber tracts oriented in different angles, respectively. Figures (b) and (d) show the
corresponding tubular-ness responses obtained using Hessian from FA (top), H1 (middle) and
H2 (bottom). Note that tubular-ness obtained using H2 gives the strongest response in both
cases. Figure (e) shows the drop of the filter’s response as a function of distance to the ground
truth medial of the tube. Note that even when noise is high, tubular-ness using H2 decreases
more rapidly than tubular-ness using H1 or FA, indicating greater localization ability.

the FA maps. A similar behavior was also observed for the Shi-Tomasi detector (figure
not shown due to space constraints). This rapid decrease in response for our method
indicates its greater ability to localize the corner points in various noise conditions.

Figure 2 shows results of tubular-ness filter on synthetic data. The tubular-ness ob-
tained from the corresponding FA map using the scalar version of the filter in [9] is
included for comparison. Figure 2(a) shows a bent fiber tract and figure 2(c) shows
linear fiber tracts oriented along different angles. Figures 2(b) and 2(d) show the corre-
sponding tubular-ness results. We observe that tubular-ness using H2 gives the highest
response in both cases. In figure 2(e), we add noise to these images and, as before,
we measure the rate of decrease of the filter’s response as a function of distance to
the ground truth medial of the tube. We observe that tubular-ness using H2 falls more
rapidly when compared to the other filters, even when the noise is high. Again, this
result illustrates our method’s greater localization ability.

To quantify the information captured by the differential operators, we compute vari-
ous norms of our structure tensor, gradient vector and Hessian matrices for twelve adult
brain DTI from the LBAM database. Histograms of these norms are shown in Figure 3
for the proposed methods as well as those obtained from the FA map. Note that the
norms of our proposed differential operators are spread over larger values than the norms
of the differentials obtained from the FA maps. This result stems directly from avoiding
the dimensionality reduction of the tensor data to FA values. Also note that H2 captures
a greater amount of differential information than the other two Hessian approaches as
H2 works with the whole tensor and not its individual channels or FA.

We applied our corner and tube detectors to 24 real adult brain DTI. Figure 4 shows
a representative result for the corner detectors for both our method and the conventional
scalar Harris [16] and Shi-Tomasi [18] features obtained from the FA maps. First, we
observe that the feature response of our approach is stronger than the feature response
from the FA-based approach by three orders of magnitude. Secondly our approach gen-
erates a more distinctive response to the corners of both the Genu and Splenium of the
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(a) Log Frobenius norm of ST (b) Log row sum norm of ST (c) Log L2 norm of g

(e) Log Frobenius norm of H (f) Log row sum norm of H (g) Log max norm of H

Fig. 3. Histograms of various norms of the structure tensor, gradient vector and Hessian matrix
(abbreviated in the figure as ST, g and H, respectively) for twelve adult brain DT images from
the LBAM database. Shown are results for the proposed methods and FA-based feature detection.
Note the greater norm of our proposed differential operators compared to FA-based approaches,
demonstrating that we are capturing more differential information.

(a) Color FA (b) Harris from FA (c) Proposed Harris (d) Shi-Tom. on FA (e) Proposed Shi-Tom.

Fig. 4. Representative result for the Harris and Shi-Tomasi corner detectors on an adult brain DT
image. Shown are (a) the color FA map, (b) Harris features from the FA map, (c) Harris features
using our method, (d) Shi-Tomasi features from the FA map, and (e) Shi-Tomasi features using
our method. Note that since the responses of the FA-based detectors are extremely weak when
compared to the responses of our proposed detectors, they are shown with different intensity
scales. Also note the clearer response to the corners of the Genu and Splenium using our method.

Corpus Callosum than the FA-based detectors. These results were consistently observed
throughout the datasets.

Finally, Figure 5 shows representative tubular-ness and sheet-ness results. Note that
tubular tracts such as the Cingulum and Fornix are well detected using H2. Sheet-like
tracts such as the Inferior Longitudinal Fasciculus, Corpus Callosum and Corticospinal
Tract are also better detected using H2 compared to H1 and FA-based features. The
FA-based features fail to detect structures in most cases. These results were consistently
observed throughout the datasets.
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(a) Color FA (b) Hessian from FA (c) H1 (d) H2

Fig. 5. Representative results for the tubular-ness and sheet-ness filters on adult brain DTI data.
Shown from top to bottom are two results for tubular-ness and two results for sheet-ness. Shown
from left to right are (a) color FA image, (b) results obtained using [7,9] on FA, (c) results ob-
tained using H1 and (d) results obtained using H2. Note the identified tubular tracts (Cingulum,
Fornix) and the identified sheet-like tracts (Inferior Longitudinal Fasciculus, Corpus Callosum,
Corticospinal Tract) are better detected using H2 than with H1 and FA based method.

4 Conclusion

We derived novel first and second order differential operators for DTI. Unlike existing
state-of-the-art, our operators respect the manifold of symmetric second-order tensors
through the use of the log-Euclidean mapping. We further show how our differential
operators can be naturally incorporated into various feature detectors in order to find
structure in diffusion tensor images that, to date, has not been possible. We extend the
Harris and Shi-Tomasi corner detectors to DTI and show that our approach better distin-
guishes corners in DTI data and is more robust to noise. We also extend the vesselness
filter of [9] and the sheetness filter of [7] to detect tube-like and sheet-like structures.
We show that our methods better detect these tube-like and sheet-like structures in DTI
data and are more robust to noise than existing methods. We believe that our derived
low-level operators and image features are very versatile and will be of great advantage
to classification, registration, and segmentation of DTI data.

This work was supported in part by NSERC and the Institute for Computing, Information and
Cognitive Systems (ICICS) at UBC.
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Abstract. Background: In Diffusion Tensor Imaging (DTI), Riemannian frame-
work based on Information Geometry theory has been proposed for processing
tensors on estimation, interpolation, smoothing, regularization, segmentation, sta-
tistical test and so on. Recently Riemannian framework has been generalized to
Orientation Distribution Function (ODF) and it is applicable to any Probability
Density Function (PDF) under orthonormal basis representation. Spherical Polar
Fourier Imaging (SPFI) was proposed for ODF and Ensemble Average Propaga-
tor (EAP) estimation from arbitrary sampled signals without any assumption.
Purpose: Tensors only can represent Gaussian EAP and ODF is the radial in-
tegration of EAP, while EAP has full information for diffusion process. To our
knowledge, so far there is no work on how to process EAP data. In this paper, we
present a Riemannian framework as a mathematical tool for such task.
Method: We propose a state-of-the-art Riemannian framework for EAPs by rep-
resenting the square root of EAP, called wavefunction based on quantum mechan-
ics, with the Fourier dual Spherical Polar Fourier (dSPF) basis. In this frame-
work, the exponential map, logarithmic map and geodesic have closed forms,
and weighted Riemannian mean and median uniquely exist. We analyze theoret-
ically the similarities and differences between Riemannian frameworks for EAPs
and for ODFs and tensors. The Riemannian metric for EAPs is diffeomorphism
invariant, which is the natural extension of the affine-invariant metric for ten-
sors. We propose Log-Euclidean framework to fast process EAPs, and Geodesic
Anisotropy (GA) to measure the anisotropy of EAPs. With this framework, many
important data processing operations, such as interpolation, smoothing, atlas es-
timation, Principal Geodesic Analysis (PGA), can be performed on EAP data.
Results and Conclusions: The proposed Riemannian framework was validated
in synthetic data for interpolation, smoothing, PGA and in real data for GA and
atlas estimation. Riemannian median is much robust for atlas estimation.

1 Introduction

Diffusion MRI (dMRI) is the unique non-invasive technique to study the white matter
in vivo by probing the water diffusion. Ensemble Average Propagator (EAP) P(R) is
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the Probability Density Function (PDF) in R3 to describe the diffusion process of water
molecules. Under the narrow pulse assumption, P(R) is the Fourier Transform of signal
attenuation E(q), i.e. P(R) =

∫
E(q) exp(−2πiqT R)dq,. R = Rr is the displacement

vector in R-space, q = qu is the reciprocal vector in q-space, u and r are unit vectors.
In Diffusion Tensor Imaging (DTI) [4], P(R) is a Gaussian PDF parameterized by its

covariance matrix, i.e. tensor. Gaussian distribution is well studied in Information Ge-
ometry theory [1]. Riemannian framework [14,13,9] based on Information Geometry
was proposed to process the tensor data. Log-Euclidean framework [2] is to approx-
imate Riemannian framework and efficiently process tensors. Riemannian metric for
tensors is affine-invariant, while Euclidean metric is not [14]. Riemannian framework
and Log-Euclidean framework have proved useful in many works on tensor estimation,
interpolation, filtering, segmentation, registration, statistical analysis [14,13,9,2,11].

Since DTI can not deal with complex diffusion process, many methods beyond DTI
were proposed to estimate EAP or Orientation Distribution Function (ODF), which
is the radial integral of EAP. Recently Spherical Polar Fourier Imaging (SPFI) [3,8]
was proposed to analytically and robustly estimate both ODF and EAP by representing
E(q) using Spherical Polar Fourier (SPF) basis. ODF and EAP are both PDFs. Thus
it is possible to extend the Riemannian framework from tensors to ODFs and EAPs
based on Information Geometry theory. [7,6] and [12] recently developed separately
and in parallel a nonparametric Riemannian framework to process ODF data. To our
knowledge, recent works for EAPs mainly focus on EAP estimation, and there is no
work on how to process EAP data.

In this paper, we first propose the Riemannian framework for EAPs based on the
theoretical results in [7,6]. We analyze theoretically the similarities and differences be-
tween Riemannian frameworks for EAPs and for ODFs and tensors. For instance the
isotropic EAP is not unique, which brings a different definition of Geodesic Anisotropy
(GA) as well as the Log-Euclidean framework. Then we implement the framework us-
ing the orthonormal basis in SPFI [8]. SPFI provides dSPF basis which analytically
obtains GA and Log-Euclidean framework. For the application part, we propose GA
for measuring the anisotropy of water diffusion, and some Riemannian operations for
EAP computing, such as interpolation, PGA, smoothing, atlas estimation.

2 Riemannian Framework for EAPs

In this section we will show Riemannian framework for EAPs and also analyze and
compare it with the Riemannian framework for ODFs [8] and highlight the new prob-
lems faced and their solutions, since the EAP has different properties from the ODF.

Parametric Family. In quantum mechanics, the square root of the probability of find-
ing the subject at a certain time and position is called as wavefunction. Analogously,
the square root of EAP, denoted by ψ(R), is also called as wavefunction. ψ(R) =√

P(R) ≥ 0. Let {Bi(R)}i∈N is a given orthonormal basis function set in R3 which could
sparsely represent ψ(R). then ψ(R) could be represented by finite linear combination
of {Bi(R)},i.e. ψ(R|c) =

∑K
i=1 ciBi(R), where c = (c1, c2, ..., cK)T is called the Rieman-

nian Coordinate [7]. In practice, we always could choose a large enough K to repre-
sent ψ(R), so the assumption here is very weak. Then the Parametric Family or EAP
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space, called PFK , could be formulated in (1) [7,6]. Based on PFK in (1), the Parameter
Space (PS), denoted as PS k, is a subset of sphere S K−1. PS K = {c | ‖c‖ = ∑K

i=1 c2
i =

1,
∑K

i=1 ciBi(R) ≥ 0, ∀R ∈ R3}. In Fig. 1(A), we visualize PS 3 as an example where
{Bi} were chosen as three piecewise constant orthonormal functions, i.e. three bins for
the histogram. Since the formulation in (1) has been well studied in [7,6] and success-
fully applied for ODFs, in the following we will list the results in [7,6] and modify them
if necessary so that they can be applied to EAPs.

PFK =

⎧⎪⎪⎨
⎪⎪⎩P(R|c) = ψ(R|c)2 : ψ(R|c) =

K∑

i=1

ci Bi(R) ≥ 0,
∫

P(R|c)dR = ‖c‖2 = 1, ∀R ∈ R3

⎫⎪⎪⎬
⎪⎪⎭ (1)

Riemannian Metric. [7] proved that based on formulation in (1), the Riemannian

metric [1] is gi j =
∫

∂
√

P(R|c)
∂ci

∂
√

P(R|c)
∂c j

dR = 4δi j. The constant 4 could be ignored, then

PS K is a subset of the unit sphere S K−1 and the metric is just the Euclidean metric in
the sphere. The geodesic distance between two points P(R|c) and P(R|c′) will be the
angle between them, i.e. arccos(cT c′) = arccos(

∫
R3 ψ(R|c)ψ(R|c′)dR). Denote vc is the

tangent vector at c towards c′, then the geodesic, exponential map, logarithmic map all
have closed forms. See Fig. 1(A).

Geodesic: γ(t) : P(R|c(t)), where c(t) = Expc(tLogc(c′)) (2)

Exponential Map: Expc(vc) = c′ = c cosϕ +
vc

‖vc‖ sin ϕ, where ϕ = ‖vc‖ (3)

Logarithmic Map: Logc(c′) = vc =
c′ − c cosϕ
‖c′ − c cosϕ‖ϕ, where ϕ = arccos(cT c′) (4)

Please note that if we change the orthonormal basis {Bi(R)} the exponential map and
logarithmic map are invariant under a change of basis matrix, and the geodesic γ(t) is
also invariant. Different orthonormal basis will obtain equivalent Riemannian frame-
work. The final results of the following Riemannian operations will be the same if the
approximation error is negligible. That is why here we consider the formulation using
orthonormal basis in [7] instead of the formulation using histogram in [12].

Properties of Parameter Space. [7] showed that PS K for EAPs is a closed convex set
of S K−1 and it is contained in a convex cone with 90o. See Fig. 1(C). [7] also proved
for ODFs that “the projection of any c ∈ PS K on the Riemannian Coordinate u of the
isotropic ODF should be more than 1√

4π
, if ODFs are less than 1”, i.e. cT u = cos(c, u) =

∫
χ

√
p(x|c) 1√

|χ|dx > 1√
|χ|

∫
χ

p(x|c)dx = 1√
4π

. However, It is specific for ODFs. Since

the ODF and EAP are both continuous function, it may be more than 1 in some area
although the integral in the whole domain is 1. If P(R|c) > 1, then

√
P(R) < P(R) and

the conclusion will be problematic. Normally for typical ODFs the values are always
less than 1. However, we found that the values of EAPs are normally much larger than
1 because the diffusion time τ is small. Moreover, the isotropic ODF is unique. While
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the isotropic EAP is not unique, because P(R) is isotropic if P(Rr) = F(R),∀r ∈ S 2 and
F(R) could be any positive definite function.

Geodesic Anisotropy (GA), Log-Euclidean Framework. GA for ODFs is defined as
the geodesic distance between the ODF and the isotropic one. Log-Euclidean frame-
work for ODFs could be used to approximate Riemannian framework by projecting the
ODFs onto the tangent space of the isotropic ODF [7]. However, the isotropic EAP is
not unique as discussed above. Please note that the isotropic tensor is not unique in DTI
neither. All tensors with three equal eigenvalues are isotropic, i.e. D = [λ, λ, λ]. GA for
tensors was defined as the geodesic distance from the nearest isotropic tensor [9]. And
the identity tensor was chosen and fixed [2] for Log-Euclidean framework. Analogously
we define the GA as the geodesic distance between the EAP and the nearest isotropic
EAP. It could be proved that for any given EAP with coordinate c, the Riemannian
coordinate of the nearest isotropic EAP with the coordinate u, is just the normalized
version of the isotropic part of c. We omit the rigorous proof due to page limitations.
Furthermore we can also fix a typical isotropic Gaussian distribution for all EAPs. Then
Log-Euclidean framework could be obtained by projecting EAPs onto the tangent space
of the fixed isotropic EAP. The projection diffeomorphism is defined as F(c) = Logu(c)
where u is the Riemannian coordinate for the fixed isotropic EAP [7]. See Fig. 1(B).

Weighted Mean, Weighted Median and Principal Geodesic Analysis (PGA). Given
N EAPs f1, f2, ..., fN in PS K and the weight vector w = (w1,w2, ...,wN)T with

∑N
i=1 wi =

1, wi ∈ [0, 1], the weighted Riemannian mean μw is defined as the minimizer of the
weighted sum of squared distances [14,13,9,7,5]. And the weighted Riemannian median
mw is defined as the minimizer of the weighted sum of distances [10,6].

μw = arg min
f∈PS K

N∑

i=1

wid( f , fi)
2 mw = arg min

f∈PS K

N∑

i=1

wid( f , fi) (5)

[7,6] proved that the weighted Riemannian mean and weighted Riemannian median
uniquely exist in the manifold PS K based on the general results in [5,10]. And they
can be obtained efficiently from gradient descent method on the manifold. Normalized
Euclidean mean is chosen as the initialization, which makes the methods converge fast.
See Algorithm 1 and 2. For Log-Euclidean framework, the Riemannian mean has closed
form, i.e. μw = F−1

(∑N
i=1 wiF( fi)

)
[7]. When Riemannian mean μ of { fi} is obtained,

we can find some Principal Components (PCs) based on Principal Geodesic Analysis
(PGA) [11] by eigen-decomposition of the covariance matrix at μ. If v is one eigen-
vector with eigenvalue λk, then the PC will be Expμ(αkv), where αk ∈ R is the mode
variation. Normally αk is chosen in [−3

√
λk, 3
√
λk] [11]. PGA has been proposed for

tensor analysis [11] and for ODF analysis [12]. However PGA in [12] decompose a
covariance matrix in a very high dimension, which is much inefficient. Actually we
can perform PGA on ODFs and EAPs just in a low dimension via orthonormal basis
representation, which will get the same final results as we discussed above.

Diffeomorphism Invariant: A Natural Extension. What is the connection between
the proposed metric and the previous metric for tensors [14,13,9]? Actually they
are all the Fisher Information metric in Information Geometry. The Fisher infor-
mation metric is actually diffeomorphism invariant. Denote PX(x|c) is a PDF on
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Algorithm 1: Weighted Riemannian Mean Algorithm 2: Weighted Riemannian Median
Input: f1, ..., fN ∈ PS K , w = (w1, ...,wN )T Input: f1, ..., fN ∈ PS K , w = (w1, ...,wN)T

Output: μw, the Weighted Mean. Output: μw, the Weighted Median.

Initialization: μ(0)
w =

∑N
i=1 wi fi

‖∑N
i=1 wi fi‖ , k = 0 Initialization: m(0)

w =
∑N

i=1 wi fi

‖∑N
i=1 wi fi‖ , k = 0

Do Do

v
μ

(k)
w
=

∑N
i=1 wiLog

μ
(k)
w

( fi) vm(k)
w
=

∑N
i=1

wi/d(mk
w , fi)∑N

j=1 w j/d(mk
w , f j)

Logm(k)
w

( fi)

μ
(k+1)
w = Exp

μ
(k)
w

(v
μ

(k)
w

) m(k+1)
w = Expm(k)

w
(vm(k)

w
)

k = k + 1 k = k + 1
while ‖v

μ
(k)
w
‖ > ε while ‖v

μ
(k)
w
‖ > ε

domain χ, h : χ 	→ χ is a diffeomorphism. PY(y|c) is the PDF under g, i.e. y =
h(x). Then PY (y) = |�h−1(y)|PX(h−1(y)). By considering dy = |�h(y)|dx, we have

gi j =
∫
χ

∂
√

PY (y|c)

∂ci

∂
√

PY (y|c)

∂c j
dy =

∫
χ

∂
√

PX (x|c)

∂ci

∂
√

PX (x|c)

∂c j
dx, which means the metric gi j is dif-

feomorphism invariant. So for any two given ODFs or EAPs, the Riemannian distance
between them is diffeomorphism invariant. If we constrain the PDF PX(x|D) as a Gaus-
sian distribution parameterized by tensor D, then it could be easily proved that PY (y|D)
is still Gaussian if and only if h(x) is an affine transform, i.e. h(x) = Ax, A is a nonsingu-
lar matrix. In this sense the proposed Riemannian metric for EAPs is actually a natural
extension of previous affine-invariant metric for tensors [14,13,9]. The diffeomorphism
invariant metric is probably useful in registration.

3 Implementation via Spherical Polar Fourier Imaging (SPFI)

In theory, the Riemannian framework for EAPs could be implemented by any orthonor-
mal basis. However, so far there is no direct way to estimate the Riemannian Coordinate
c from DWI signals E(q). Existing methods only estimate EAPs. SPFI is a fast, regu-
larized, robust method to estimate EAPs without any assumption [3,8]. In SPFI, E(q) is
represented by an orthonormal basis {Bnlm(q)} in formula (6), named SPF basis, where
ζ is a fixed scale parameter, Rn(q) is the Gaussian-Laguerre function and Ym

l (u) is the
l order m degree Spherical Harmonic. [8] proved that the EAP P(R) could be ana-
lytically obtained in formula (8) from the same coefficients {anlm}, where 1F1 is the
confluent hypergeometric function. {Dnlm(R)} is actually an orthonormal basis in R-
space, called Fourier dual Spherical Polar Fourier (dSPF) basis, because of Parseval’s
theorem, i.e. δn′l′m′

nlm =
∫

R3 Bnlm(q)Bn′l′m′ (q)dq =
∫

R3 Dnlm(R)Dn′l′m′ (R)dR. So SPFI actu-
ally provides two orthonormal basis. One is {Bnlm(q)} in q space for E(q) and the other
one is {Dnlm(R)} in R space for P(R).

E(qu) =
N∑

n=0

L∑

l=0

l∑

m=−l

anlmRn(q)Ym
l (u) Bnlm(q) = Rn(q)Ym

l (u) (6)

Rn(q) = κn(ζ) exp

(
− q2

2ζ

)
L1/2

n (
q2

ζ
) κn(ζ) =

[
2
ζ3/2

n!
Γ(n + 3/2)

]1/2

(7)

P(Rr) =
N∑

n=0

L∑

l=0

l∑

m=−l

an,l,m Fnl(R)Ym
l (r) Dnlm(R) = Fnl(R)Ym

l (r) (8)



Diffeomorphism Invariant Riemannian Framework 103

Fnl(R) =
ζ0.5l+1.5πl+1.5Rl

0κn(ζ)
(−1)l/2Γ(l + 1.5)

n∑

i=0

(
n + 0.5
n − i

)
(−1)i

i!
20.5l+i+1.5Γ(0.5l+i+1.5)1F1(

2i + l + 3
2

; l+
3
2

;−2π2R2ζ)

(9)

After obtaining the continuous function P(R) in (8) represented by {Dnlm(R)}, we can
get many discrete samples {ψ(Ri)} from the wavefunction ψ(R) =

√
P(R). Then simi-

larly with [7], a least square fitting using the same basis {Dnlm(R)} is applied to estimate
the Riemannian coordinates c from these samples {ψ(Ri)}. After the Riemannian Coor-
dinate c = {cnlm} is estimated, GA is the distance between c and the nearest isotropic
EAP with coordinate u, which is the normalized version of isotropic part of c. With
the basis {Dnlm(R)}, the isotropic part of {cnlm} is analytically obtained as {cnlmδ

00
lm}.

The isotropic EAP with coordinate (1, 0, ..., 0)T , which is an isotropic Gaussian based
on SPF basis in (6), was chosen and fixed for Log-Euclidean framework. Thus Log-
Euclidean framework can be obtained analytically from the given Riemannian Coordi-
nate thanks to dSPF basis. Moreover we can perform many data processing algorithms,
such as interpolation, smoothing etc. [7,12,14].

4 Applications and Experiments

Experiments on Diffeomorphism Invariance. Here we give a simple example to
demonstrate the diffeomorphism invariance for the Riemannian metric using a affine
transform. Mixture of tensors model P(R) = w1P(R|D1) +w2P(R|D2) was used to gen-
erate the synthetic data. D1 and D2 have the same eigenvalues [1.7, 0.3, 0.3]×10−3mm2/s
with different directions. We estimated Riemannian Coordinates and computed the Rie-
mannian distance between the EAP in the center and the EAPs in other voxels. After-
wards a given affine transform A was performed on the mixture model, i.e. (A◦P)(R) =
w1P(R|AT D1A) + w2P(R|AT D2A). With this transformed model, we calculated again
the distance maps. In Fig. 1, (C1) shows the original EAPs at 15μm and (C2) shows the
transformed EAPs. The distance maps were used to color the glyphs and were set as the
background. It is clear that the distance is invariant under the transform. This experi-
ment showed that Riemannian metric for EAPs is diffeomorphism invariant, which is a
natural extension of affine-invariant metric for tensors.

Interpolation and PGA. We demonstrate the Lagrange interpolation of EAPs in 1D
and 2D in Fig. 1, where the weights are coded by the spatial distance [7]. For 1D case,
two EAPs were generated from tensors with eigenvalues [1.7, 0.3, 0.3]×10−3mm2/s and
[0.3, 0.3, 0.3]× 10−3mm2/s. For 2D case, one EAP was generated from [0.7, 0.7, 0.7]×
10−3mm2/s, the other three from [1.7, 0.3, 0.3] × 10−3mm2/s with 3 orthogonal direc-
tions. Fig. 1(D1) and (D3) show the results for Riemannian framework and (D2) and
(D4) for Log-Euclidean framework. EAPs were visualized at 15μm and the glyphs were
colored by GA values. It is clear that the interpolation from Riemannian framework and
Log-Euclidean framework have very similar results. The first two principal compo-
nents of EAP field in Fig. 1(D3) based on PGA are shown in (E1) and (E2). The two
components showed clearly the three orthogonal directions as well as the mean EAP.
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Fig. 1. (A): an example of PS 3; (B): properties of PS K; (C1,C2): original EAPs and transformed
EAPs; (D1,D2): 1D interpolation via Riemannian framework and Log-Euclidean framework;
(D3,D4): 2D interpolation via Riemannian framework and Log-Euclidean framework; (E1,E2):
the first two PCs in PGA for EAPs in D3; (F1,F2,F3): original EAPs, noisy EAPs, smoothed
EAP; (G1): GA map; (G2,G3): original and noisy atlas; (G4): noisy EAPs from one subject;

Smoothing. Actually all filtering algorithms in [14] for tensors and in [6,12] for ODFs
could be generalized into EAP field. Here we just demonstrate a simple Gaussian
smoothing method. In this method the filtered EAP in every voxel is the weighted
mean/median of EAPs in a given neighborhood. The weights were chosen from spa-
tial Gaussian kernel. Fig. 1(F1) shows the ground truth EAP profiles generated from
tensor model with eigenvalues [1.7, 0.3, 0.3]×10−3mm2/s EAPs in (F2) were estimated
from SPFI from single shell DWI signals with b = 1500s/mm2 and S NR = 5 [8].
The results of Gaussian smooth using Riemannian mean were shown in Fig. 1(F3). The
deviation of the Gaussian kernel was set as 1 voxel.

GA and Riemannian Median Atlas Estimation. Riemannian median is more robust
than Riemannian mean and Euclidean mean, which makes it more appropriate for atlas
estimation [10,6]. We construct an EAP atlas from five monkey data, with three b values
(500/1500/3000s/mm2), 30 directions at each shell. Since so far there is no common
registration method for EAP data and it is also not our focus here, we just use a naive
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way to align the EAP data. All DWIs from 5 subjects were aligned via affine registration
to a template made by non-diffusion weighted images. The affine transformation was
used to rotate the gradient directions for each subject through the finite strain method.
After that, EAP images were estimated via SPFI from registrated DWIs and reorientated
gradient directions. The atlas in every voxel was estimated as the Riemannian median
of the five EAP images. And GA map in Fig. 1(G1) was estimated from the atlas. To
test the robustness, we add Rician noise with S NR = 10 to the DWIs of one subject,
then re-estimate the atlas. Fig. 1 showed the noisy EAPs (G4) and the EAPs of the two
atlases (G2,G3) in the red region in (G1). The atlas from noisy data is much similar
with the one from the real data, which validates the robustness.

5 Conclusion

In this paper, we propose a diffeomorphism invariant Riemannian framework for EAP
computing, which is a natural extension of previous Riemannian framework for tensors
and ODFs. In the proposed framework, exponential map, logarithmic map and geodesic
have closed forms, weighted Riemannian mean and median uniquely exist and could
be calculated efficiently. We analyze theoretically the similarities and differences be-
tween Riemannian frameworks for EAPs and for ODFs and tensors. The isotropic EAP
is not unique, which brings a different definition of GA and the Log-Euclidean frame-
work compare to the Riemannian framework for ODFs. The Riemannian framework for
EAPs is more like the Riemannian framework for tensors, since we need to define what
is the nearest isotropic EAP. And if we constrain the EAP as a Gaussian, the diffeo-
morphism invariance property will be the affine-invariance for tensors. The proposed
Riemannian framework was implemented via SPFI by representing the wavefunction
with dSPF basis, which has closed forms for GA and Log-Euclidean framework. For
application part, we propose GA to measure anisotropy, Lagrange interpolation, Gaus-
sian smoothing, PGA and median atlas estimation for EAP computing.
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Abstract. Diffusion Tensor Imaging (DTI) is a Magnetic Resonance Imaging 
method for measuring water diffusion in vivo. One powerful DTI contrast is 
fractional anisotropy (FA). FA reflects the strength of water’s diffusion 
directional preference and is a primary metric for neuronal fiber tracking. As 
with other DTI contrasts, FA measurements are obscured by the well established 
presence of bias. DTI bias has been challenging to assess because it is a multi-
variable problem including SNR, six tensor parameters, and the DTI collection 
and processing method used. SIMEX is a modern statistical technique that 
estimates bias by tracking measurement error as a function of added noise. Here, 
we use SIMEX to assess bias in FA measurements and show the method 
provides; i) accurate FA bias estimates, ii) representation of FA bias that is data 
set specific and accessible to non-statisticians, and iii) a first time possibility for 
incorporation of bias into DTI data analysis.  

Keywords: DTI, FA, bias, SIMEX, parameter estimation, bias correction, 
diffusion, tensor, imaging.  

1   Introduction 

Radiological practice appears to be on the cusp of reliably and routinely using 
imaging biomarkers as surrogates for traditional tissue biopsy (e.g., virtual biopsy). 
One promising magnetic resonance imaging (MRI) technique, diffusion tensor 
imaging (DTI) provides unique, non-invasive contrasts sensitive to tissue micro-
architecture, which can be correlated with cellular organization – for example, as seen 
through histological analysis [1]. However, quantification of observed data is an 
estimation process and numeric values must be viewed in light of their distributional 
properties. Extensive research has been invested in characterizing the impacts of noise 
and study design on DTI contrasts[2, 3], and it is well recognized that both lead to 
changes in precision (variance) as well as accuracy (bias) of diffusion derived 
measures. Much progress has been made on variability analysis in DTI using Monte 
Carlo and boot-strap techniques [4], but quantitative post hoc assessment of the bias 
in diffusion estimated parameters has remained elusive.  



108 C.B. Lauzon et al. 

 

Bias is explicitly defined as the difference between the expectated value of an 
experimentally observed measure, E(Θobs), and the true value of that measure, Θtruth; 
bias = E(Θobs) – Θtruth. As seen, bias causes the statistical average of a measured DTI 
contrast to converge on the wrong value. Also, differing propensities for motion 
and/or underlying anatomy could lead to systematically different tensor bias between 
disease and healthy subgroups, thus statistically impacting analyses. Bias in DTI is a 
multi-variable function including imaging noise, field in homogeneity, DTI 
experimental parameters, and the underlying biological diffusion parameters. No 
analytic equation for bias in DTI is known and no published method to account for 
bias in empirical DTI data has been tried. Herein, we present a statistical approach to 
estimate the expected level of bias in DTI contrasts on a voxel-wise basis.  

In this initial evaluation, we focus on quantifying  bias in the commonly studied 
and important DTI contrast fractional anisotropy (FA) as measured using the 
traditional log-linear minimum mean-squared error (LLMMSE) tensor estimation 
framework. Significant bias in FA has been well documented both experimentally and 
through computational studies[3, 5]. Within a clinical and research SNR range (~15:1 
– 40:1), FA bias is generally a monotonic decreasing function, with lower FA values 
tending to have larger bias than higher FA values.   

To estimate FA bias, we test the SIMulation EXtrapolation method (SIMEX) which 
emerged from the statistical literature as a way to compensate for bias due to additive 
noise within a regression framework[6, 7]. However, it can also be viewed as a general 
procedure to extrapolate the degree of bias in an estimate given noisy data by studying 
the sensitivity of the model fitting procedure when additional synthetic noise is added. 
Two key assumptions of SIMEX are (i) the bias as a function of SNR is monotonic and 
smooth and (ii) the noise level of the observed data is well understood and estimated. 
Fortunately, (i) is generally holds and for (ii), noise estimation has been well-studied in 
the DTI literature and several robust methods exist to estimate the noise field given 
empirical data [8-10]. 

This manuscript is organized as follows. First, we briefly review the diffusion tensor 
formulation and describe how SIMEX bias estimation can be applied to bias estimation 
for FA. Second, we present a simulation based on empirical data which enables 
knowledge of the true bias level for test comparisons with the SIMEX estimated bias. 
Third, we present single and multi-voxel demonstrations of SIMEX estimation of bias in 
FA. We close with a brief critique and discussion of potential applications for this 
approach and avenues for continuing research.  

2   Theory 

2.1   Diffusion Tensor Imaging 

In DTI, magnetic gradients (g) are used to label the relative position of water at the 
start and end of an experiment. Given the random thermal motions of water, the labels 
add incoherently and result in an attenuated, diffusion weighted image (dwi). In 
general, the greater probabilistic movement, the greater the signal attenuation. In the 
tensor model, the dwi will be a function of the unweighted signal intensity, 
symbolized as So, diffusion direction and magnitude (encoded in diffusion tensor D), 
the experimental timing and gradient strength (encoded in parameter b), and the 
direction of the gradient applied (encoded in g). For a single voxel we write 
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dwi୨ ൌ  S୭exp൫െܾ܂ܒ · ۲ · ൯ . (1)ܒ

Here, j indexes the gradient directions. We define the observed data for a single voxel, Xሬሬറ୭ୠୱ, as a vector with elements xi, representing dwij for j =1,2,…m, and So. Xሬሬറ୭ୠୱ ൌ  ൛dwi |ୀଵ , S୭ ൟ ൌ ቄx|݉  1݅ ቅ . (2)

D is a 3 x 3 symmetric matrix whose Eigenvalues, λ1, λ2, and λ3, describe the three 
principal axis of diffusion. Herein, we consider the FA of the tensor which is the 
normalized standard deviation of the Eigenvalues and reflects the relative degree of 
orientation (i.e., 0: no orientation preference = isotropic diffusion, 1: infinite 
directional preference = 1-D diffusion). 

FA =ඨଷଶ ൫ఒభିఒഥ൯మା൫ఒమିఒഥ൯మ൫ఒయିఒഥ൯మఒభమାఒమమାఒయమ  . (3)

2.2   SIMEX Applied to DTI 

The premise of SIMEX is simple. Bias can be understood by adding noise to data in 
incremental amounts and measuring the resulting contrast. The trend in the contrast 
with added noise should enable prediction of the contrast with ‘removed’ noise. For 
simplicity, the following description assumes a single DTI experiment is performed 
(e.g. single subject, one DTI dataset) and describes the single-voxel case, though the 
analysis can be extended to multiple experiments and multiple voxels.  

Let a truth data set be described by zero experimental noise Xሬሬറ୲୰୳୲୦ ൌ  ሼ x |ୀଵାଵሽ .ݏ .ݐ ሺσ ൌ 0ሻ,  (4)

where σE is the standard deviation of the experimental noise. The function T mapping Xሬሬറ୲୰୳୲୦ to FA determines the calculated ground truth FA value, FAtruth,  FA୲୰୳୲୦ ൌ ൫൛Xሬሬറ୲୰୳୲୦ൟ൯ . (5)܂

The observed data of an actual experiment contains experimental noise and is described 
by, Xሬሬറ୭ୠୱ ൌ Xሬሬറ୲୰୳୲୦  σZሬറ  . (6)

Here, Zሬറ is a vector of m+1 random drawings from a standard normal distribution (and 
noise is independent across voxels when expanded to the multi-voxel case). The 
resulting observed FA from the experiment is then, FA୭ୠୱ ൌ ൫൛Xሬሬറ୭ୠୱൟ൯ . (7)܂

In SIMEX, synthetic normally distributed noise with standard deviation ω1/2σE is 
added to Xሬሬറ୭ୠୱ, and the new simulated data is written as, Xሬሬറ.େ.ሺωሻ ൌ Xሬሬറ୭ୠୱ  ωଵ ଶൗ σZሬറ.େ.  . (8)
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M.C. stands for ‘Monte Carlo’ (Note, M.C. replaces ‘b’ as defined in the SIMEX 
literature[7]). The simulated FA is then described by, FA.େ.ሺωሻ ൌ ൫൛Xሬሬറ.େ.ሺωሻൟ൯܂ . (9)

The variance of the simulated data as a function of ω is   var ቀXሬሬറ.େ.ሺωሻቁ ൌ  var ቀσZሬറ   ωଵ ଶൗ σZሬറ.େ.  ቁ ൌ  
 σଶሺ1  ωሻ . 

(10)

A key observation is to note that at the value ω = -1, (which cannot be simulated) the 
variance goes to 0. For repeated Monte Carlo simulations of FAM.C.(ω), a mean value 
can be calculated, FAതതത.େ., and the trend approximated by fitting FAതതത.େ.(ω) with a 
standard non-linear equation, FA෪ሺωሻ,  FA෪ሺωሻ ൌ a  b1  ω (11)

The FA at zero noise can then be estimated by solving eq. 11 for ω = -1,  FAୗ୍ଡ଼ ൌ FA෪ሺെ1ሻ . (12)

The bias in the data can then be estimated, Estimated Bias ൌ FA୭ୠୱ െ FAୗ୍ଡ଼ . (13)

 

Fig. 1. Flow chart of steps to create SIMEX Estimated Bias and True Bias maps. Variables 
refer to terms defined explicitly by equations in the Theory section. 
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The true bias can also be calculated if the truth data is known, True Bias ൌ ۳ሺFA୭ୠୱሻ െ FA୰୳୲୦ . (14)

If the true extrapolant function could be used in place of eq. 11, then FASIMEX would 
be an asymptotically unbiased estimator of FAtruth. Under the condition where the true 
but unknown extrapolant is smooth w.r.t. ω, the approximating extrapolant, eq. 11, 
can provide approximately unbiased results. 

3   Methods and Results  

The steps used here to evaluate SIMEX on FA are summarized in the flow chart of 
Fig. 1 and exampled by individual voxels in Fig. 2. Unless otherwise stated, all 
processing and analysis was performed in Matlab 2010 (Mathworks, Natick, MA). 
Diffusion tensor estimates were calculated by fitting the diffusion model (eq.1) to the 
data using a simple LLMMSE. In all cases, noise was added to data using a Rician 
distribution, which is approximately Gaussian for SNR > 5:1[11]. 

Empirical Data. Empirical data (KKI2009-33-DTI) were downloaded from the 
Multi-Modal MRI Reproducibility study available online at www.nitrc.org [12]. Full 
collection details are provided in the reference. Briefly, DTI data was collected using 
a multi-slice, single-shot, echo planar imaging (EPI) sequence. Thirty two gradient 
directions were used with b = 700 s/mm2 (m = 32, b = 700, eq. 1 & 2). Five So images 
were collected and averaged into a single So. The resulting images consisted of sixty-
five transverse slices with a field of view  = 212 x 212 reconstructed to 256 x 256.  

Creating Noiseless Ground Truth (eq. 4). The 32 dwi images were registered to the 
single So image using FLIRT affine registration (FMRIB, Oxford, UK). For spatial 
consistency, the resulting affine transformation matrix was applied to the gradient 
table. A single axial slice of interest was selected and diffusion tensor estimates (D) 
for that slice were calculated. Using the So image, the estimated diffusion tensor, and 
the given g and b as inputs to eq. 1, dwi images were simulated. The So image and the 
32 noiseless dwi images make the noiseless ground truth dataset, Xሬሬറ୲୰୳୲୦. 

Creating Observed Data (eq. 6). To create the observed data, Xሬሬറ୭ୠୱ, noise was added 
to the ground truth data set such that SNR = 35:1. The signal strength was estimated 
from the average signal intensity of the masked So image. Noise, σE = signal/35, was 
added to the ground truth data to create the 32 dwi images and the single So image.  

Calculating the Estimated Bias (eq. 13). To calculate FASIMEX, first a plot of FAതതത.େ.ሺωሻ needed to be constructed. 500 Monte Carlo simulations for 20 different ω 
values were performed and FAതതത.େ.ሺωሻ calculated from the average. Each simulation 
consisted of a noise adding step to create XM.C. (eq. 8), followed by a calculation of 
FAM.C.. Example FAതതത.େ.ሺωሻ for three voxels are shown in Fig. 2A. FA෪ሺωሻ was fit 
using the empirical non-linear equation (eq. 11). The fit equation was extrapolated to 
ω = -1, producing FASIMEX (Fig. 2B). The FAobs from eq. 13 was calculated directly 
from diffusion tensor fits to the observed data set, Xሬሬറ୭ୠୱ. The difference of FASIMEX 
and FAobs was taken and the Estimated Bias calculated. 
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Fig. 2. (A) Exploratory SIMEX plots of simulated FAM.C. as a function of SNR for three voxels 
from the simulated observed data. 1000 Monte Carlo simulations were averaged for each FAതതത.େ.. The FAobs is the point at the highest SNR value (SNR = 35:1). An upward bias with 
decreasing SNR is observed for all three voxels. (B) FAM.C.(ω) and the extrapolation fit for 
three voxels in the observed data set. The x-axis for extrapolation is ω ~1/SNR and the fit is 
extrapolated to ω = -1. The ideal FASIMEX (blue triangles) represents the extrapolated FASIMEX 
value if the true bias was correctly estimated.  

 

Fig. 3. Simulated outcomes for SIMEX at several SNR values. FAതതത୭ୠୱ values for each SNR value 
(circles) were calculated starting from a voxel in the simulated truth data. The  FAതതത୭ୠୱ values are 
shown with the standard deviation (error bars) from 1000 simulations run at each SNR value. 100 
observations at each SNR value were randomly chosen for SIMEX. The median FASIMEX values 
(triangles) are shown with the standard deviation(error bars). The median value was chosen due to 
the decreased robustness of only 100 simulations. 

Calculating True Bias (eq. 14).  The average of 1000 iterations was used to estimate the 
expected value of FAobs, FAതതതത୭ୠୱ~ E(FAobs). Each simulation consisted of first adding noise 
(SNR = 35:1) to Xሬሬറ୲୰୳୲୦ followed by calculation of FA. FAtruth was calculated directly 
from Xሬሬറ୲୰୳୲୦. The True Bias was calculated from the difference between FAതതത୭ୠୱ and FAtruth. 
Exploratory M.C. simulations applying SIMEX to different SNR levels of Xሬሬറ୭ୠୱ for a 
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single ground truth voxel are shown in Fig. 3. The True Bias and Estimated Bias are 
compared in Fig. 4. The results shown in Fig. 4 were typical for multiple test trials (data 
not shown). 

4   Discussion 

Potential systematic differences in distributional properties of tensor-derived contrasts 
pose serious hazards for statistical analysis. Understanding “statistical artifacts” in 
DTI has long been an essential challenge in proper interpretation of DTI contrasts 
[13]. Routine approaches for interpreting contrasts (e.g., regions of interest, voxel-
based morphometry, tract-based spatial statistics) hinge upon the assumption of 
equivalent (or zero) bias between populations. If this assumption is violated then the 
inferences (and p-values) may be suspect. In any empirical experiment, there will be 
variations in bias due to subject characteristics, protocols, scanner stability, 
hardware/software changes, etc. Without a method to estimate bias in measures 
derived from individual empirical datasets, evaluation of any change requires an 
extensive simulation study based on a range of potential anatomical models.  

With the proposed SIMEX approach, it is possible to estimate bias in contrasts on 
a voxel-by-voxel level given the empirical data. SIMEX proved a sensitive method 
for detecting FA bias as evidenced by its success on the high SNR (and therefore 
relatively low bias) dataset used here (Fig. 4). Although bias may be negligible for 
some individual cases at high SNR values (such as exampled for high SNR values in 
Fig. 3), bias may become increasingly important at lower SNR values or in hypothesis 
test settings where even a small bias can significantly inflate the Type-I error rate. To 
that end, the individual voxel test case (Fig. 3) suggests SIMEX to be a promising 
technique for empirical data collected at lower SNR levels (stable median FASIMEX 
values) as well as a reliable method for repeated use on individual datasets within 
grouped data (stable error bars).  The instability of the SIMEX estimate for SNR ≤ 
10:1 (Fig. 3) is likely to be a result of the non-monotonic behavior of bias at 
extremely low SNR values [5]. 

 

 

Fig. 4. (A) The ‘ground truth’ FA map (FAtruth) of the slice selected for data analysis. (B) The 
True Bias map for an SNR of 35:1 is compared to (C) the absolute value of the Estimated Bias 
at SNR = 35:1. The absolute value difference map was calculated from the raw bias data (not 
the difference in the absolute values). For a significant majority of voxels the True Bias is 
positive and the Estimated Bias is greater than the True Bias. 
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We note that at these early stages, we are not specifically recommending using the 
estimated bias measures to correct for voxel-wise bias. Optimization of user input 
SIMEX parameters (e.g. the approximation function in eq. 11 or the number of Monte 
Carlo iterations) and repeat testing on empirical data of various SNR levels is 
underway.  Refinements may help decrease the variability in the SIMEX estimate 
(Fig. 3 red error bars) and mediate some of the isolated outliers seen in Fig. 4D. 
Additionally, methods for constructing error estimates of the measured SIMEX bias 
exist and have yet to be tested in the context of DTI[6].  With continued future 
refinement and careful incorporation of robust/advanced tensor estimators it may be 
possible to produce unbiased contrast estimates without the disadvantages of direct 
maximum likelihood methods[14].  

In summary, a method for direct, empirical assessment of bias in tensor derived 
contrasts opens many possibilities for useful statistical assessments and improved 
analysis approaches. Further investigation is warranted into bias estimation with other 
tensor contrasts, using advanced tensor fitting methods, and examining quantitative 
tissue models beyond the tensor formulation. 
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Multiple Shells Acquisition in Diffusion MRI
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Abstract. We evaluate the impact of radial and angular sampling on
multiple shells (MS) acquisition in diffusion MRI. The validation of our
results is based on a new and efficient method to accurately reconstruct
the Ensemble Average Propagator (EAP) in term of the Spherical Po-
lar Fourier (SPF) basis from very few diffusion weighted magnetic res-
onance images (DW-MRI). This approach nicely exploits the duality
between SPF and a closely related basis in which one can respectively
represent the EAP and the diffusion signal using the same coefficients.
We efficiently combine this relation to the recent acquisition and recon-
struction technique called Compressed Sensing (CS). Based on results
of multi-tensors models reconstruction, we show how to construct a ro-
bust acquisition scheme for both neural fibre orientation detection and
attenuation signal/EAP reconstruction.

Keywords: Diffusion MRI, Compressed sensing, Ensemble Average
Propagator recovery, Propagator, Orientation Distribution Function,
Spherical Polar Fourier, Multiple Shells Sampling.

1 Introduction

Since the introduction of CS by [5], this method has been used in a large range
of domains including image and video compression as well as geophysics and
medical imaging. In [8], we apply CS in diffusion magnetic resonance imaging
(dMRI) for modelling the EAP, in SPF basis introduced by [1], from highly
under sampled diffusion weighted MR images (DW-MRIs).

In [8], the quality of reconstruction is sensitive to the acquisition scheme.
Hence, in order to remove the variance of the results due to the random aspect
of the sampling scheme, it is necessary to find a robust and efficient way to ac-
quire DW-MRIs. For this purpose, we propose to evaluate and compare several
sampling protocols. In this study, we begin in 2 by summarizing the EAP based
CS-reconstruction proposed in [8]. The section 3 aims to describe some tech-
niques to build sampling scheme. Finally in section 4 we present several sets of
experiments in order to examine the robustness and efficiency of these schemes.

2 EAP Based CS Reconstruction

The method described in [8] enables the modeling of the EAP in the SPF basis,
using the recent technique known as Compressed Sensing (CS). The method

G. Fichtinger, A. Martel, and T. Peters (Eds.): MICCAI 2011, Part II, LNCS 6892, pp. 116–123, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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allows us to analytically reconstruct the propagator at any radius and, also, to
derive one of its famous feature: the Orientation Distribution Function (ODF).
The CS reconstruction is based on a l1 minimization scheme promoting the signal
sparsity. For a more mathematical definition, suppose our signal of interest is a
vector x ∈ R

m. Let y ∈ R
n, with n � m, be an observation representative of

x given by the sensor of a given application. y = Ax + η, where A ∈ R
n×m is

the measurement matrix, so called the CS matrix, and η ∈ R
n represents the

acquisition noise. Our goal is to find x given the measurement vector y. Since
y has less entries than x, this ill-posed problem cannot be resolved without any
prior knowledge about the signal to recover.

We condider the signal admits a sparse representation with respect to an
orthonormal basis B. c ∈ R

nc is the vector of transform coefficients {ci =
〈x, bi〉, bi ∈ B, i = 1, ..., nc}. We can constrain most of the transform coeffi-
cients to be zero by minimizing the l1 norm defined by ‖c‖1 =

∑nc

i=1 |ci| [7].The
solution x of our problem is given by solving the following convex optimization
problem :

arg minxJ(x) = ‖Ax − y‖2
2 + λ‖c‖1. (1)

The first term is the data consistency constraint, ‖c‖1 is the sparsity constraint.
λ is the Lagrange parameter that balances the confidence between the measured
signal y and the sparsity constraint. The data consistency constraint enables the
solution to remain close to the raw data acquisition, whereas the minimization of
the second term promotes sparsity. In short, this mathematical problem searches
for the sparsest solution while remaining close to the acquired data.

In our previous paper [8], we define B as the so called Spherical Polar Fourier
(SPF) basis in spherical coordinates (r, θ, ϕ). This orthonormal basis is the com-
bination of the real spherical harmonics Y l

m and the Gauss-Laguerre functions
Rn. It is expressed as Ψn
m(r, θ, φ) = Rn(r)Y 


m(θ, φ), where � ∈ N is the spheri-
cal harmonic order, −l ≤ m ≤ l the SH degree and n the Gauss-Laguerre order.
This basis enables a complete description of the diffusion propagator.

We described a method to accurately reconstruct the EAP P from under-
sampled measurements. In this method P was estimated by a truncated linear
combination of the SPF basis functions Ψn
m

P (r, θ, φ) =

N∑
n=0

L∑
�=0

�∑
m=−�

cn�mΨn�m(r, θ, φ), (2)

where cn
m = 〈P, Ψn
m〉 are the SPF transform coefficients.
While modelling the EAP with respect to the SPF basis, we have shown

that we can reconstruct the corresponding attenuation signal E by keeping the
same coefficients {cn
m, n = 0, ..., N, l = 0, ..., L,m = −l, ..., l} but by using
a new family of functions called the SPF dual basis {Φn
m, n = 0, ..., N, l =
0, ..., L,m = −l, ..., l}. E can, thus, be written as

E(q, θ, ϕ) =

N∑
n=0

L∑
�=0

�∑
m=−�

cn�mΦn�m(q, θ, φ) (3)
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where q = |q| is the norm of the effective gradient q in q-space and θ, ϕ the
direction angles. Suppose nq is the number of measurement samples, E ∈ R

nq

a vector representing the signal attenuation, c ∈ R
nc a vector of the SPFd

coefficients cn
m and Φ ∈ R
nq×nc the matrix constructed with the SPFd basis

functions

Φ =

⎛⎜⎝ Ψn�m(r1, θ1, φ1) · · · ΨNLL(r1, θ1, φ1)
...

. . .
...

Ψn�m(rnq , θnq , φnq ) · · · ΨNLL(rnq , θnq , φnq )

⎞⎟⎠ , (4)

We can write equation (3) as an over determined linear system, E = Φc
Let Φu ∈ R

nu×nc be the undersampled version of Φ operator and Eu ∈ R
nu the

vector of undersampled signal attenuation. We can rewrite the problem described
in equation 1

arg mincJ(c) = ‖Φuc− Eu‖2
2 + λ‖c‖1. (5)

Eq. (5) searches for the EAP coefficients with respect to the SPF basis, i.e.
we can compute a continuous version of the true propagator. Using the same
coefficients, we can as well model the attenuation signal with respect to the
SPFd basis functions. Moreover, in [8] we give an analytical estimate of the
ODF in terms of spherical harmonic functions and the coefficients cn
m.

In [8], we randomly took 80 measurements spread on 3 shells with b values
1000, 2000, 3000 s/mm2. However, the random aspect of the acquisition process
makes the reconstruction very sensitive to the sampling scheme. We selected it
as follow: on 100 sampling schemes generated, we kept the one that leads to
the best results. In this way, good results were observed while performing the
reconstruction on our data set but were not observed in all cases. In the next
section, we propose several sampling schemes in order to make the method more
robust to this reconstruction phase.

3 Sampling Design

3.1 Jones

References [6,4] give an algorithm to uniformly distribute N points qn ∈ R3 on a
sphere by considering each point as an antipodal pair of electrical charges. The
method involves the minimization of the electrostatic force of repulsion between
each couple of charges. The electrostatic repulsion between two points qi and qj

is given by

E(qi, qj) =
1

‖qi + qj‖
+

1

‖qi − qj‖
(6)
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For a set of N points, the energy to minimize becomes

JJ =
∑
i�=j

E(qi, qj) (7)

Reference [3] provides Camino, an Open-Source Diffusion-MRI Reconstruc-
tion and Processing software. They include several sets of directions, from N=3
to 150 points, computed by electrostatic energy minimization.

3.2 Generalized Jones

This method is proposed by [2] as a generalization of [6] to multi-shells acqui-
sition. It enables the distribution of N points qn ∈ R3 on K shells of radius rk.
The points from each shell have staggered directions and follow a near-optimal
uniform distribution. Another important point in this method is the possibility
to balance the proportion αk of samples between shells. We will take advantage
of this feature in order to test out different spherical distributions.

Firstly, the method consists in minimizing the electrostatic repulsion between
every point for each shell independently, that is

E1 =
∑

k

rkαk

∑
i�=j s.t ‖qi‖=‖qj‖=rk

E(qi, qj) (8)

Then, in order to have staggered directions between shells, [2] introduces a
new term that minimizes the electrostatic repulsion of the N points projected
on the unit sphere. It comes to minimize

E2 =
∑
i�=j

1∥∥∥ qi
‖qi‖ − qj

‖qj‖

∥∥∥ +
1∥∥∥ qi

‖qi‖ +
qj

‖qj‖

∥∥∥ (9)

Finally, the energy to minimize is JGJ = (1 − μ)E1 + μE2, where μ is a
weighting factor.

3.3 5 Sampling Schemes

We perform our experiments on five sampling schemes to evaluate the impact
of the angular sampling in MS acquisition : Regular sampling (RS) means
we take the same directions on each shell. These directions are provided by
the application of Jones algorithm. Uniform Jones sampling (UJS) uses
the generalized Jones algorithm by setting the parameters in such way that the
samples are distributed along a spherical uniform law (The number of point
on each shell is proportional to the square of its radius). Constant Jones
sampling (CJS) uses the generalized Jones algorithm by setting the parameters
in such way that there is a constant number of samples by shell. Constant
random sampling (CRS) means we randomly take directions on each shell
by setting a constant number of samples by shell. Uniform random sampling
(URS) means we randomly take directions on each shell in such way that the
samples are distributed along a spherical uniform law.
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4 Experimental Results

In this section, we review the outcome of angular sampling as well as radial
sampling on the CS reconstruction defined in section 2. The performance of
each sampling scheme is determined on both attenuation signal reconstruction
and neural fibre orientation which is given by the maxima of the estimated ODF
estimated as in [8]. We evaluate the maxima extraction by the Percentage of
Corrected Number of Detected Maxima (PCNDM) obtained on a predefined
number of trial. Each time the number of detected maxima Nm is correct we
also compute the Angular Error in degrees 1

Nm

∑Nm

m=0
180
π arccos(ũm·um), where

ũm is the orientation of the detected maxima and um the ground truth. The
mean over all the trial gives the Mean Angular Error (MAE).

The quality of the signal attenuation estimation S̃ is given by the Nor-
malized Mean Square Error (NMSE). For N sampling points qn the NMSE is∑N

i=1 |S(qi)−S̃(qi)|2∑N
i=1 |S(qi)|2 , where S is the ground truth signal attenuation. Then, we

average the NMSE obtained in all the trials.
Before initiating the procedure, we set some reconstruction parameters. SNR

ζ=20, for average quality data. In eq. 5, we set λ to 0.01 as in [8].
We reconstruct the propagator from a multi-Gaussian model through four

scenarios : One fiber, two 60◦-crossing fibres, two 70◦-crossing fibres, two 90◦-
crossing fibres. All the results are obtained on 1500 independant trials.

Angular Profile: For each scenario we use three shells with b values equal to
500, 1500, and 3000. We begin by evaluate the five sampling schemes presented
in section 3.3 while using only N=60 samples in the reconstruction. Figure 1
presents the results through the computation of the Percentage of Corrected
Number of Detected Maxima (PCNDM), the Mean of Angular Error (MAE) in
degrees and the Normalized Mean Square Error (NMSE) respectively on line 1,
2 and 3. Each color corresponds to one the five sampling schemes. Each group
of five bars correspond to one of the scenarios presented at the beginning of
the section (One fiber, two 60◦-crossing fibres, two 70◦-crossing fibres, two 90◦-
crossing fibres). We can see that, in term of PCNDM, two schemes stand out: the
UJS and RS schemes (green and dark blue). However, due to the bad capacity
of the RS scheme to resolve 60◦-crossing fibres and most probably low degrees
as well, we cannot rely upon it for maxima extraction. This is verified by looking
at the MAE (second line) of RS scheme. Once again UJS gives the best results,
i.e. the lowest MAE. Overall, orientation detection is better performed when a
spherical uniform distribution is applied compared to a constant distribution.
Constant distribution means we take the same number of samples on each shell.
Random angular sampling confirms this point. Concerning the NMSE (third
line), three sampling schemes are quite equivalents: the RS, the UJS and CJS
schemes. Even if the regular one is slightly better than the other, it is difficult
to distinguish one scheme from another. Here again random sampling does not
meet the CS expectations.

We illustrate, as well, the evolution of the PCNDM, MAE and NMSE (from
left to right in fig. 2) against the number of samples taken in the reconstruction.
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Fig. 1. Reconstruction results while using only N=60 samples in the reconstruction.
Five angular sampling schemes are examined : Regular sampling (dark blue bars), Con-
stant Jones sampling (light blue bars), Uniform Jones sampling (green bars) Constant
random sampling (orange bars), Uniform random sampling (red bars). From top to
bottom the three lines respectively represent the Percentage of Corrected Number of
Detected Maxima (PCNDM), the Mean of Angular Error (MAE) in degrees and the
Normalized Mean Square Error (NMSE). Each group of five bars correspond to one of
the following scenarios : One fiber, two 60◦-crossing fibres, two 70◦-crossing fibres, two
90◦-crossing fibres (from left to right).

Fig. 2. Evolution of the reconstruction results against the number of samples for the
60◦-crossing fibres. Five angular sampling schemes are examined : Regular sampling
(dark blue), Constant Jones sampling (red), Uniform Jones sampling (black) Constant
random sampling (green bars), Uniform random sampling (light blue). (a) represents
the Percentage of Corrected Number of Detected Maxima (PCNDM), (b) the Mean of
Angular Error (MAE) in degrees and (c) the Normalized Mean Square Error (NMSE).

Only the results for 60◦-crossing fibres are represented. For maxima extraction
(see PCNDM (a) and MAE (b)), the UJS overcomes the other schemes for every
number of samples. In term of NMSE, the figure 2.c shows that the gap between
the RS, the UJS and CJS is not sufficiently large in order to distinguish one
scheme from another. Random sampling gives less stable curves than the others.
It shows the problem of sensibility for this kind of scheme in our reconstruction.
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In conclusion with respect to the angular sampling, UJS is a robust and
efficient way to build MS schemes.

Radial Profile: Now we want to examine the influence of the radial sampling.
Due to the robustness of UJS, we decide to keep it while changing the number
of shells from 1 to 12.

Let us examine the figure 3(a) and (b). These results show that, above 3 shells,
the MAE and the PCNDM do not vary a lot. It means the uniform sampling
scheme is not sensitive to the number of shells used for the acquisition when
fibre orientation detection is required. With 1 and 2 shells, we get a higher
PCNDM than previously. However this improvement is done to the price of an
increasing MAE. Moreover, when few shells are taken for sampling, it is more
difficult to catch significant information of the radial profile. The b values have
to be cautiously chosen if few shells are used. By regularly taking more and more
shells in a MS process, we cover more precisely the radial profile of our signal
and we get rid of the choice of b-values.

Concerning the NMSE, figure 3(c) shows that increasing the number of sample
decreases the NMSE until the number of shells exceeds a specific value. This limit
may due to the fact that a too big increase of the radial resolution lead to a fall of
the angular resolution. Figure 3(c) shows a limit of 9 shells in our case. However,
we dont need to reach this point. Indeed the quasi-flatness of the curves before
9 shells allows us to use less shells for sampling while keeping the advantage of
MS sampling.

Fig. 3. Evolution of the reconstruction results against the number of shells. Uniform
Jones sampling is used while changing the number of shells from 1 to 12. Four scenarios
are examined : One fiber (blue curve), two 60◦-crossing fibres (red curve), two 70◦-
crossing fibres (black curve), two 90◦-crossing fibres (green curve). (a) represents the
Percentage of Corrected Number of Detected Maxima (PCNDM), (b) the Mean of
Angular Error (MAE) in degrees and (c) the Normalized Mean Square Error (NMSE).

Conclusion of the Experiments: With respect to the angular profile, one
sampling scheme stand out : the UJS scheme. It allows us to correctly detect the
orientation of neural fibres and especially for low number of samples (N=60).
It also gives good results in terms of NMSE. The results show again that the
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signal attenuation reconstruction and maxima extraction are very sensitive to
the sampling scheme. Even if random sampling (CRS, URS) can work better
than near-regular sampling (RS, CJS, UJS), we cannot ensure that it will work
in every case. Fibre orientation detection is not sensitive while changing the
number of shells of the UJS scheme. A great advantage of MS sampling, compare
to one shell sampling, lies in the quasi non-sensibility in the choice of b-values.
Indeed we just need to acquire our signal on shells regularly spaced. On the
other hand, due to the small number of point used, a compromise has to be
done between radial and angular resolution.

5 Conclusion

The main contribution of this paper is to evaluate different way to sample q-space
in dMRI. We showed that multiple shells acquisition is of great interest when
dealing with fibres orientation detection and attenuation signal reconstruction.
Hence this method generalizes the Q-ball imaging while being able to reconstruct
the EAP and signal attenuation at any radius. In our study, we also showed
that generalized Jones algorithm is a good way to build robust multiple shells
sampling schemes and that the use of a spherical uniform distribution improves
the results.
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Abstract. Diffusion-weighted imaging (DWI) enables non-invasive in-
vestigation and characterization of the white-matter but suffers from a
relatively poor resolution. In this work we propose a super-resolution
reconstruction (SRR) technique based on the acquisition of multiple
anisotropic orthogonal DWI scans. We address the problem of patient
motions by aligning the volumes both in space and in q-space. The SRR
is formulated as a maximum a posteriori (MAP) problem. It relies on
a volume acquisition model which describes the generation of the ac-
quired scans from the unknown high-resolution image. It enables the in-
troduction of image priors that exploit spatial homogeneity and enables
regularized solutions. We detail our resulting SRR optimization proce-
dure and report various experiments including numerical simulations,
synthetic SRR scenario and real world SRR scenario. Super-resolution
reconstruction in DWI may enable DWI to be performed with unprece-
dented resolution.

Keywords: Diffusion imaging, super-resolution, orthogonal acquisitions.

1 Introduction

Diffusion-weighted imaging (DWI) is a key imaging technique to investigate and
characterize the white-matter architecture and microstructure. It is based on the
acquisition of several diffusion-sensitized images, probing the water diffusion in
various directions and at various diffusion scales. DWI is, however, strongly lim-
ited by the relatively low resolution achievable by today’s imaging techniques:
while individual axon diameter is on the order of 1-30μm, typically achievable
DWI resolution is on the order of 2x2x2mm3. Anisotropic acquisitions with a
better in-plane resolution (up to 1x1mm2) can be performed on modern scanners
but lead to a lower signal to noise ratio (SNR) and are not adapted to further
perform tractography. Consequently, due to strong partial volume effect, DWI
has been limited to the investigation of the major fiber ”highways” in the brain.
Increasing the resolution of DWI acquisitions holds out the potential to allow
investigation of novel fiber structures and will enable a more accurate white-
matter and brain connectivity assessment. However, increasing the resolution is
challenging in DWI. First, the common anatomical imaging resolution enhance-
ment techniques, based on the modification of the pulse sequence, cannot be
employed in DWI. The data of a same slice cannot be acquired over many ex-
citations due to phase inconsistencies resulting from even minimal physiological
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motion during the application of the sensitizing gradients. Second, the SNR is
directly proportional to the voxel size, and proportional to the square root of the
number of averages. Consequently, 64 averages are necessary to increase the res-
olution from 2x2x2mm3 to 1x1x1mm3 while ensuring a similar SNR. A 5 minute
acquisition would become a 5 hour scan, which is not realistic.
Solutions to achieve higher resolution include improvements of the MRI scanner
hardware itself, such as employing higher magnetic fields (7 Tesla, 11 Tesla) or
stronger and faster gradients. Another solution is to consider adapted acqui-
sitions and post-processing algorithms. Super-resolution (SR) approaches were
originally developed for the reconstruction of high-resolution (HR) images from a
set of low-resolution (LR) images in video sequences [6]. SR techniques have also
been applied to anatomical magnetic resonance imaging (MRI) [4]. Calamante
et al. [1] have explored the application of interpolation of fiber tracts inside voxels
but do not increase the resolution of the imaging data. To our knowledge, only
[9] have used SR in DWI. They proposed to employ the Irani-Peleg SR technique
[6] from a set of spatially in-plane subpixel-shifted scans. However, MRI being
a Fourier acquisition technique, employing in-plane shifting has been shown to
be equivalent to a global phase shift in k-space [3]. Such a technique does not
enable any resolution enhancement in MRI but is equivalent to interpolation by
zero-padding of the raw data in the temporal domain. Recently, sub-voxel spatial
shifts in the slice-select dimension have been shown to enable SR in anatomical
MRI [4]. Scattered data interpolation has been used to combine multiple DWI
images of moving subjects [7]. Other techniques using multiple and orthogonal
fast slice scans have enabled the SR reconstruction of moving subjects in fetal
imaging [2].

In this work we propose to investigate a novel super-resolution reconstruction
(SRR) approach for DWI. It is based on the acquisition of multiple anisotropic
orthogonal DWI scans (see Fig.1a). First, we propose a technique to align each
volume both in space and in q-space. Second, we formulate the super-resolution
reconstruction from multiple scans as a maximum a posteriori estimation prob-
lem. Inspired by recent developments in fetus anatomical imaging [2], our ap-
proach relies on an image acquisition model. It describes the generation of the
acquired volumes from the unknown HR volumes we aim to recover. Our for-
mulation enables introduction of image priors that exploit spatial homogeneity
and provide regularized solutions. We report various experiments including nu-
merical simulations, synthetic SRR scenario and real world SRR scenario. The
results indicate resolution enhancement in DWI through SRR.

2 Material and Methods

DW Signal Smoothness Hypothesis and Interpolation in q-space. We
consider K orthogonal DWI LR acquisitions containing G sensitizing-gradients
each. The KG volumes should all be properly aligned to enable the super-
resolution reconstruction. First we perform an alignment in space: we register
each volume to a reference volume, chosen as the B = 0s/mm2 volume of the first
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(a) (b)

Fig. 1. (a) Scheme illustrating the super-resolution reconstruction from the acquisition
of two orthogonal thick slices. (b) Alignment in q-space: the gradient images of each
acquisition k > 1 are resampled so that its gradient directions gk (red dots arrows)
correspond to the reference gradient directions of the first acquisition g̃ (grey plain
arrows). At each voxel, we compute novel intensities corresponding to the gradients g̃
by interpolation in q-space from the observed intensities corresponding to gk.

DWI LR acquisition. Each gradient orientation is compensated for the rotation
component of the transformation, providing a gradient set gk = (gk

1 , . . . , g
k
G) for

each acquisition k.
Because of possible patient motions between the scans, the resulting G gradi-

ent images may correspond to slightly modified sensitizing gradients across the K
DWI acquisitions. However, it is essential that the images combined by the SRR
technique correspond to the same “scene”, namely that they correspond to the
exact same gradient direction and show identical diffusion-attenuation patterns.
Consequently, we propose to perform an alignment of the volumes in q-space (see
Fig.1b). We consider that the DW-signal varies smoothly in q-space and propose
to resample the gradient images. We consider the gradients of the first DWI LR
acquisition as the reference gradients g̃ = g1. We align in q-space each other
k ≥ 2 DWI acquisition so that their gradients exactly match g̃. This is done by
using interpolation in q-space. At each voxel, we consider the G intensity values
corresponding to the gradients gk. We then compute the new intensity values
corresponding to the gradients g̃. The interpolation is performed via Kriging [8],
a general and efficient statistical interpolation framework originally introduced
for geology and mining applications. This enables us to easily perform scattered
data interpolation. It determines the weights of the contribution of each observed
data via the resolution of a simple linear system. In the absence of motion (i.e.
a gradient gj exactly matches a gradient g̃j′), the interpolated intensity match
exactly the observed intensity. As a result, the K LR acquisitions are all aligned
in space and represent the same sensitizing-gradient set g̃.

Super-Resolution Model-Based Reconstruction. In this section each LR
volume is considered to be aligned in space and in q-space. The SRR technique
we now address is performed for each gradient image separately. For each gra-
dient g̃j, we aim to recover the HR image xj underlying the K LR images yj =
(y1,j , . . . ,yK,j). By omitting the gradient dependency to simplify the notations,
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we consider the K LR volumes y = (y1, . . . ,yK) to be the degraded version of
the same unknown HR volume x. x is estimated according to the maximum a
posteriori principle, by maximizing:

x̂MAP = arg max
x

p(x|y) = arg max
x

p(y|x)p(x) = arg max
x

[ln p(y|x) + ln p(x)] , (1)

which decomposes into a likelihood term and a prior term.
Likelihood term p(y|x): we consider a model describing how the LR volumes are
obtained from the unknown HR volume. In a trade-off between a realistic model
and a feasible solution, we consider the following acquisition model:

yk = DkBkMkx + εk , (2)

where the volumes yk and x are expressed as column vectors by a lexicographi-
cal reordering of the pixels, Dk is a down-sampling matrix, Mk is the warping
matrix that maps the HR volume x to the LR volume yk and εk is the residual
noise vector. Bk is the blur, or point spread function (PSF) of the MRI signal
acquisition process. It is constructed from the imaging parameters. The PSF can
be separated into three components corresponding to the slice-selection direc-
tion and the phase- and frequency-encoding directions. As in [3], we currently
consider a PSF in the slice-selection direction only, which describes the slice se-
lection profile. We consider a Gaussian slice selection profile of variance σ2

PSF.
Consequently, on the basis of Eq.2, the unknown HR volume x goes through
geometric and signal operations, including motion, signal averaging, and resam-
pling, to generate the acquired LR volume yk. Assuming a Gaussian noise with
zero-mean and variance σk for εk, the likelihood of the LR volume yk under the
model in Eq.2 can be written as:

p(yk|x, σk) =
1

σk

√
2π

exp

(
−||yk − DkBkMkx||2

2σ2
k

)
. (3)

Assuming statistical independence of the noise between the acquisitions, we have
p(y|x, σ) =

∏K
k=1 p(yk|x, σk) with σ = (σ1, . . . , σK).

Prior term p(x): the term p(x) in Eq.1 enables us to incorporate a prior knowl-
edge on x. In this work we consider a regularization prior that exploits spatial
homogeneity. More precisely, we favour smoothness of x by setting p(x|λ) =
exp(−λ||Qx||2) where the matrix Q is symmetric definite positive and repre-
sents a linear high-pass operation. The parameter λ controls the regularization
strength. In this work, Q is chosen as the 3-D discrete Laplacian corresponding
to the following approximation of the partial derivative for a 3-D image I indexed
by u ∈ IN3, and for a direction um ∈ IN3 (m ∈ {1, 2, 3}):

∂mI(u) ≈
(
I(u + um) − 2I(u) + I(u − um)

)
/(2||um||). (4)

Ultimately, by considering the same σk across acquisitions, maximization of
the posterior distribution in Eq.1 leads to the following minimization:

x̂ = arg min
x

K∑
k=1

||yk − DkBkMkx||2 + λ||Qx||2 . (5)



128 B. Scherrer, A. Gholipour, and S.K. Warfield

DWI-SRR Optimization Procedure. The matrix DkBkMk is especially
large and the classical solution through pseudo-inverse is prohibitive. Instead we
use a steepest descent iterative minimization approach. Differentiation of Eq.5
leads to the following update at each step:

x̂n+1 =x̂n − α

[
K∑

k=1

MT
k BT

k DT
k (DkBkMkx̂n − yk) − λQTQx̂n

]
, (6)

where α is the step size and MT
k denotes the transpose of Mk. The iterative

algorithm is initialized by setting x̂0 equal to the mean of the aligned LR vol-
umes. The iterative minimization is stopped when ||x̂n+1 − x̂n||1 < TSTOP. The
DWI-SRR optimization procedure is synthesized by the following pseudo-code:

FOR each LR study k
FOR each gradient image of k

MT
k ← Register to the reference volume

Apply the transform to the gradient
ENDFOR

ENDFOR
FOR each output gradient gg

FOR each LR study k
yk ← Compute the gradient image for gg (q-space interpolation)

ENDFOR
Compute x̂0 ← Mean of the MT

k DT
k yk

WHILE ||x̂n − x̂n−1||1 ≥ TSTOP

x̂n+1 ← Update with Eq. 6
ENDWHILE

ENDFOR

3 Results

The SRR procedure was implemented in C++ and optimized with various tech-
niques to reduce the processing burden. The MT

k BT
k DT

k DkBkMk and
MT

k BT
k DT

k yk matrices were precomputed, and the derivative of the Laplacian
corresponding to the finite difference scheme in Eq.4 computed analytically. To
accelerate the convergence, the steepest descent algorithm was implemented with
a variable per-voxel step-size α which incorporates inertia: the step-size is mul-
tiplied by 1.1 when the sign of two consecutive computed gradient does not
change, and divided by two otherwise. α is initialized to 0.01 and constrained to
lie in

[
0.1, 10−6

]
. The FWHM for the Gaussian slice model was set to half the

slice thickness, by setting σPSF = (slice thickness)/(4
√

2 ln 2). Other parameters
were set to λ = 0.001 and TSTOP = 10−5.

Numerical Simulations. We first performed numerical simulations. The DW-
signal for tensors (see Fig.2a) was simulated with a b-value of 1000s/mm2 for
15 directions, and corrupted by Rician noise (SNR of 30dB for the b=0s/mm2

image). Linear down-sampling with a factor of 4 was applied to each gradient
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(a) (b) (c) (d) (e) (f) (g)

Fig. 2. Numerical simulations from the tensors of Fig.a. Fig.b-d: Tensors estimated
resp. from a single LR acquisition, from the mean of the LR acquisitions and from the
SRR. Fig.e-g: Corresponding tensor fractional anisotropy. It shows the tensor directions
to be well estimated from the mean (Fig.c). However, the SRR provides a much more
accurate reconstruction of the complete tensor (see the better FA uniformity in Fig.g).

(a) (b) (c)

Fig. 3. Fig.a: Synthetic SRR scenario from a real acquisition. a.a: b=0 image. a.b:
Axial down-sampled b=0 image with a factor of 4. a.c: Mean of the b=0 images of the
LR acquisitions. a.d: SRR of the b=0 image. The SRR is better contrasted and is less
blurry than the mean. Fig.b and Fig.c: Quantitative evaluation of the reconstruction
accuracy in term of PSNR for the /2 and /4 down-sampling, for each gradient direction.

image in each of the three directions, providing three simulated LR acquisitions.
Various tensor estimation were performed (see Fig.2b-d), and the corresponding
fractional anisotropy (FA) computed (Fig.2e-g) (ground truth FA=0.8).

Synthetic SRR Scenario. We then simulated a SRR scenario by down-
sampling in each of the three directions a real DWI acquisition (Siemens

3T Trio, 32 channel head coil, 68 slices, FOV=220mm, matrix=128x128,

resolution=1.7x1.7x2mm3 , TE=86ms/TR=8800ms, 30 directions at B=1000s/mm2,

5 B=0s/mm2). A down-sampling of factor 2 and 4 were considered. The SRR at
the original resolution was estimated and qualitatively compared to the original
image (see Fig.3a). The SRR estimation time was approximately 2 hours on a
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Fig. 4. 3-Dimensional angular reconstructions of the diffusion signal at four voxels
whose position is shown on the b=0s/mm2 image (left image). The voxels were cho-
sen to have a high FA (FA > 0.9). The obtained 3-D shapes are proportional to the
apparent diffusion coefficient (ADC). Comparison between the 3-D reconstruction per-
formed from the mean image (first line) and from the SRR estimate (second line). The
stick indicates the major fiber direction estimated by a single-tensor model. The color
encodes for the error with the ground-truth (difference in image intensity). It shows
the SRR estimate to provide a much better reconstruction for each gradient image.

(a) (b) (c) (d)

Fig. 5. Real SRR scenario. Fig.a-b: FA computed from the mean of the LR acquisition
(a) and from the SRR (b). Fig.c-d: idem for MD. It shows that the SRR leads to more
contrasted and less blurry FA and MD estimates.

3Ghz Intel Xeon (3 to 4min per gradient image). Fig.3b-c report, for each gradi-
ent direction, the Peak Signal to Noise Ratio (PSNR) with the original acquisi-
tion. The PSNR is defined by 20 log10(MAX/

√
MSE) with MAX the maximum

intensity and MSE the mean square error. Fig.4 synthesizes, for four voxels, the
error with the ground-truth for all the gradient directions via a 3-D angular
reconstruction.

Real SRR scenario. Finally, we performed the acquisition of three anisotropic
DWI scans (same parameters as before, except: 1.6x1.6mm2 in-plane res., 5mm slice

thickness, 38 slices, TE/TR=87/4700ms) and achieved the reconstruction at
1.6x1.6x 2.5mm3. Fig.5 shows the FA and the mean-diffusivity (MD) computed
from the mean of the LR acquisitions and from our SRR technique. As in
Fig.2, the images are less blurry and more contrasted when employing our SRR
technique.
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4 Discussion

We have proposed a novel SRR technique for DWI based on the acquisition of
orthogonal anisotropic DWI scans. To our knowledge, it is the first attempt to
perform SRR in DWI in the last decade, since [9]. In contrast to [9], we take into
account possible patient motions by aligning the volumes in both space and q-
space. In addition, we formulate the SRR as a MAP estimation problem. For each
gradient, we estimate the underlying unknown HR volume given the acquired LR
DWI scans. Our formulation enables us to integrate an image acquisition model
and to integrate image priors. We have shown that the SRR estimate outperforms
the mean of the LR acquisitions, providing a better contrast and less blurry
results for the gradient images (Fig.3a) and for diffusion parameters such as the
FA or the MD (Fig.2 and Fig.5). The quantitative evaluation showed an increase
of PSNR on the order of 6dB and 2dB for our two synthetic down-sampling
scenarios (Fig.3b-c). In future work, we will evaluate the benefits of correcting
for the geometric distortions. Indeed, the acquisitions show locally very different
geometric distortion patterns due to different phase-encoding directions. As a
result, accurate alignment of the images is difficult, which can locally perturb the
SRR. We will investigate the effectiveness of employing a distortion correction
technique by acquisition of a magnetic field map [10] or by the acquisition of
two DWI scans with reversed phase directions [5]. Finally, we will investigate
the introduction of novel priors. Particularly, incorporating the brain anatomy
description provided by a HR T2-w scan may enable improved SRR in DWI.

SRR techniques are of great interest for medical imaging because they enable
us to go beyond the limits dictated by the hardware. With today’s scanners,
they may enable routine HR investigation of the brain white-matter in clinically
compatible scan time. Combined with future MRI hardware improvements, they
may enable DWI to be performed with unprecedented resolution.
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Abstract. White matter fiber tractography plays a key role in the in
vivo understanding of brain circuitry. For tract-based comparison of a
population of images, a common approach is to first generate an atlas
by averaging, after spatial normalization, all images in the population,
and then perform tractography using the constructed atlas. The recon-
structed fiber trajectories form a common geometry onto which diffusion
properties of each individual subject can be projected based on the cor-
responding locations in the subject native space. However, in the case
of High Angular Resolution Diffusion Imaging (HARDI), where model-
ing fiber crossings is an important goal, the above-mentioned averaging
method for generating an atlas results in significant error in the estima-
tion of local fiber orientations and causes a major loss of fiber crossings.
These limitatitons have significant impact on the accuracy of the recon-
structed fiber trajectories and jeopardize subsequent tract-based anal-
ysis. As a remedy, we present in this paper a more effective means of
performing tractography at a population level. Our method entails de-
termining a bipolar Watson distribution at each voxel location based on
information given by all images in the population, giving us not only the
local principal orientations of the fiber pathways, but also confidence lev-
els of how reliable these orientations are across subjects. The distribution
field is then fed as an input to a probabilistic tractography framework
for reconstructing a set of fiber trajectories that are consistent across all
images in the population. We observe that the proposed method, called
PopTract, results in significantly better preservation of fiber crossings,
and hence yields better trajectory reconstruction in the atlas space.

1 Introduction

Diffusion Tensor Imaging (DTI) is a powerful imaging modality that allows
probing into the intricate micro-architecture of white matter. It plays an indis-
pensable role in characterizing neural pathways in vivo by means of fiber trac-
tography, which entails reconstructing the trajectories of fiber paths by tracing
the direction of maximal water diffusion. Such estimated fiber paths can sub-
sequently be used, for instance, to investigate brain connectivity alterations in
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mental and neurological disorders. Tract pathology can be evident, as in the
case of brain tumors where tracts are grossly displaced, or subtle, as in the
case of neuropsychiatric disorders, such as schizophrenia where disruptions are
manifested as change of diffusion properties within the tracts.

The core assumption of DTI — Gaussianity of water diffusion — however,
does not always hold true. Modeling water diffusion using the single tensor for-
mulation ignores this complexity and results in loss of information. One of the
methods proposed to remedy the shortcomings of DTI is High Angular Resolu-
tion Diffusion Imaging (HARDI) [1], where diffusion signals are acquired along a
significantly larger number of directions than is normally employed in DTI. This
allows modeling of the complex non-Gaussian diffusion process and construction
of spherical functions with multiple local maxima which are potentially aligned
with the underlying fiber bundle orientations. Accordingly, one naturally wants
to extend existing DT-based tractography algorithms to work with HARDI data
to better deal with fiber crossings and to reconstruct fiber trajectories that re-
semble more closely the anatomical fibers connecting different functional regions
of the brain.

In this paper, we detail a tractography algorithm, called PopTract, that
allows effective reconstruction of fiber trajectories in the atlas space by more
faithfully preserving fiber crossings. Tractography in the atlas space, as was
done in previous works [2], allow the reconstructed trajectories to form a com-
mon geometry onto which diffusion properties from the individual images can
be projected for tract-based comparison. To this end, a common step involves
averaging the tensors [2], the Fiber Orientation Distributions (FODs) [3], or the
diffusion signals [4] after spatial normalization, resulting in an atlas on which
tractography can be performed after determining the local fiber orientations.
We will show, however, that this approach causes significant deviation of the
estimated local orientations from the ‘true’ orientations. The major reason for
this is the smearing of the orientation profile, caused by averaging misaligned
ODFs.

2 Approach

The main idea of our approach is to model the orientation distribution at each
voxel location by simultaneously considering all images in the population. Similar
to the average atlas approach, we want to use this orientation information to
reconstruct a set of fiber trajectories that will form a common datum, based
on which inter-subject tract-based morphometry can be performed. Unlike the
average atlas approach, however, orientations are not estimated after, but prior
to, averaging in the common space to avoid estimation inaccuracy caused by
ODF smearing. The estimated orientation fields are transformed to a common
atlas space where the maximum likelihood parameter estimates of the Watson
distribution at each voxel location are determined. A probabilistic tractography
algorithm is then be used to reconstruct the fiber trajectories.
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2.1 Modeling Local Fiber Orientations

Assuming for a moment that the orientation fields computed from N diffusion-
weighted images are spatially normalized to a common space and that each voxel
location of an orientation field contains only one fiber orientation, our goal now
is to accurately relate these orientations to an underlying model. At each voxel
location of orientation field i ∈ {1, . . . , N}, the local fiber orientation is denoted
by a unit vector vi. We model the distribution of orientations across subjects
using the bipolar Watson distribution, probability density function (PDF) of
which is given by [5] f(v|μ, κ) = C(κ)eκ(μTv)2 . The parameter μ is a unit vector
called the mean orientation and κ is a positive constant called the concentration
parameter. The density has maxima at ±μ and becomes more concentrated
around ±μ as κ increases. The density is also rotationally invariant around ±μ.
C(κ) is a normalizing constant to ensure that the density function integrates to
unity over the unit sphere.

Parameter Estimation. (Single Fiber Orientation) Assuming that the orien-
tation vectors obtained from the images, v1, . . . ,vN , are random samples from
the Watson distribution, the maximum likelihood estimate (MLE) of μ is the
eigenvector corresponding to the largest eigenvalue λ1 (λ1 ≥ λ2 ≥ λ3) of the
symmetric positive definite matrix [5] A = 1

N

∑N
i=1 vivT

i . Matrix A is called the
dyadic tensor. The MLE of κ is (1 − λ1)−1, asymptotically when κ → ∞ [5].
When κ = 0, the distribution is uniform. As κ increases, the PDF becomes
more concentrated about ±μ. Therefore, orientations that depart from ±μ are
penalized more heavily when there is a strong alignment of the local fiber orien-
tations from all subjects. (Extension to Multiple Fiber Orientations) Denoting
the maximum number of possible orientations as Ω, we now denote the set of
direction vectors at each voxel as {v[D]

i }, where D = 1, . . . , Ω. In the case where
there is less than D orientations, the surplus orientation vectors are simply set
to nil. For DTI, Ω is limited to 1. For HARDI, however, the representation mod-
els used often allows more than one fiber orientations, hence Ω ≥ 1. Assuming
the presence of multiple compartments in each voxel, each representing the local
structure of a fiber bundle, and that there is no exchange between the different
compartments, we estimate the parameters of the PDF for each compartment
independently. That is, for compartment D, we estimate μ[D] and κ[D] using
v[D]

1 , . . . ,v[D]
N .

2.2 Reconstructing Fiber Trajectories

A white matter fiber can be modeled as a finite-length path parameterized by
a train of unit length vectors. We use the following notation for such a path:
v(1:T ) = {v(1), . . . ,v(T )}. We further assume that a fiber path can be traced by
tracking the trajectory of a particle traveling in an orientation field. Each par-
ticle is endowed with an initial speed in an appropriate direction. It then moves
with constant speed to position p(t) according to p(t+1) = p(t) + sv(t), where s
is the step length. At each point in space, vector v(t) is drawn from distribution
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f(v(t)|v(t−1),θ(t), D(t)), where the set of parameters for the Watson distribu-
tions are collectively denoted as θ(t) = {μ[1]

(t), . . . ,μ
[Ω]
(t) , κ

[1]
(t), . . . , κ

[Ω]
(t) }. The above

distribution is in fact the Watson distribution discussed in Section 2.1. It is, how-
ever, now dependent on the prior orientation vector v(t−1) in determining which
orientation compartment D(t) = 1, . . . , Ω to follow in the case where a voxel con-
tains multiple orientations. Assuming that the Watson distribution is not directly
dependent on v(t−1) but only on D(t), we can simplify f(v(t)|v(t−1),θ(t), D(t))
to become f(v(t)|θ(t), D(t)). Specifically,

f(v(t)|v(t−1),θ(t), D(t)) = f(v(t)|θ(t), D(t)) = C
(
κ

[D(t)]

(t)

)
eκ

[D(t)]

(t) ((μ
[D(t)]

(t) )Tv(t))
2

(1)
and

f(D(t)|v(t−1),θ(t)) ∝
⎧⎨⎩ρ̄

[D(t)]

(t)

[
vT

(t−1)μ
[D(t)]

(t)

]2
,
∣∣∣vT

(t−1)μ
[D(t)]

(t)

∣∣∣ ≥ cos(φ)

0, otherwise
(2)

where φ is the maximum allowed turning angle and ρ̄
[D]
(t) is defined as ρ̄

[D]
(t) =

1
N

∑N
i=1 ρ

[D]
i,(t), with ρ

[D]
i,(t) being the value of the ODF at the voxel location de-

termined by p(t), sampled at orientation v[D]. The tracing is stopped if the

trajectory reaches a voxel with orientation coherence β[D] = 1 −
√

λ
[D]
2 +λ

[D]
3

2λ
[D]
1

,

β[D] ∈ [0, 1] falling below a predefined threshold β0, or simply when the brain
boundary is encountered. The λ’s are the eigenvalues of the dyadic tensor at each
voxel location. Perfect alignment of the orientations in compartment D results
in β[D] = 1 and an uniform distribution of orientations results in β[D] = 0.

3 Results

3.1 Synthesized Dataset

To evaluate the effectiveness of the proposed method in preserving fiber cross-
ings and in correctly estimating the orientations, we synthesized an 8× 8 image
(Camino [6]; two-tensor model) with each voxel containing a crossing with two
orientations - one vertical and one horizontal. To simulate inter-subject variabil-
ity, we perturbed the synthesized diffusion-weighted signals by applying random
rotation matrices (angles: 15◦, 30◦, 45◦, 60◦) and adding isotropic complex Gaus-
sian noise (SNR = 8, 16) to each voxel. The ODF at each voxel is then computed
using Camino [6]. We applied these perturbations 10 times to the no-noise image
and then used the resultant images to attempt to recover the ‘true’ population-
based orientations. We show, for qualitative evaluation, the results for the case
of 45◦ and SNR = 16 in Fig. 1. It can be observed that the average atlas method
(Fig. 1(b)), generated by averaging the respective ODFs, resulted in loss of fiber
crossings and significant deviation in the estimated orientations. The proposed
method (Fig. 1(c)) gave a more consistent result.
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(a) Ground Truth (b) Average Atlas (c) PopTract

Fig. 1. Estimation of orientations using different schemes

For quantitative evaluation, we measured the orientational discrepency (OD)
of the estimated orientations with respect to the ground truth orientations. As-
suming that U(x) is the set of ground truth directions at voxel location x and
V(x) is the corresponding set of estimated directions, OD is defined as

OD(x) =
1
2

[
max

u∈U(x)
min

v∈V(x)
dθ(u,v) + max

v∈V(x)
min

u∈U(x)
dθ(v,u)

]
(3)

where dθ(u,v) gives the angle difference between u and v, i.e., dθ(u,v) =
cos−1(|u · v|). The absolute value is taken since diffusion is assumed to be an-
tipodal symmetric. In cases of multiple local maxima, the term minv∈V dθ(u,v)
returns the angle difference between u with an orientation v in V that is most
closely aligned with itself. Evaluating the OD between the estimated orientations
with the ground truth under different rotation angles and SNRs, the results,
shown in Fig. 2, indicate that the proposed method is capable of estimating
orientations which are closer to the ground truth, with improvement especially
prominent when the angles of rotation is large.

Fig. 2. Orientational dicrepancy between the estimated orientations and the ground
truth orientations under different rotation angles and signal-to-noise ratios.

3.2 In Vivo Dataset

Materials. Diffusion-weighted images were acquired for 14 adult subjects us-
ing a Siemens 3T TIM Trio MR Scanner with an EPI sequence. Diffusion
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(a) Template

(b) Average Atlas (c) PopTract

Fig. 3. Fiber crossings. A significant loss of crossings can be observed for the average
atlas method.

gradients were applied in 120 non-collinear directions with diffusion weighting
b = 2000 s/mm2, flip angle = 90◦, repetition time (TR) = 12,400 ms and echo
time (TE) = 116 ms. The imaging matrix was 128×128 with a rectangular FOV
of 256 × 256 mm2. 80 contiguous slices with a slice thickness of 2 mm covered
the whole brain. Data post-processing includes brain skull removal, motion cor-
rection and eddy current correction using algorithms developed and distributed
as part of the FMRIB Software Library (FSL) package.

Spatial Normalization and Orientation Estimation. The local maxima
of an ODF reflect local fiber orientations. In our case, the orientations were
computed with Camino [6] by locating the peaks of the ODFs using Powell’s
algorithm on a set of sample points generated by randomly rotating a unit
icosahedron 1000 times. We limited the maximum number of orientations for
each voxel to two. This choice is guided by several previous studies [7,8], where
the estimation of two orientations is generally deemed as stable. One image was
selected, out of the 14 images, as the template onto which 13 other images were
registered using a deformable spherical-harmonics-based HARDI registration al-
gorithm [9] to align the ODFs. The estimated transformations were used to map
the respective orientation fields to a common space. When transforming the ori-
entations, they were reoriented using v′ = Fv/||Fv||, where F is a local affine
transform matrix computed from the image transformation map. For generating
the average atlas, transformation of the ODF was performed based on a method
similar to that proposed by Rafflet et al. [3]; we approximated the ODF using a
number of Point Spread Functions (PSFs), reoriented these PSFs individually,
and then recomposed the reoriented PSFs to obtain the transformed ODF. The
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(a) Forceps Minor (b) Cingulum Bundle

Fig. 4. Fiber trajectory reconstruction of the (a) forceps minor and (b) cingulum bun-
dle. The results given by the average atlas method and PopTract are shown on the
left and right, respectively. The coloring indicates the probability of finding a fiber at a
specific spatial location. Dark red indicates a high probability of a particular location
being traversed by fibers, and dark blue indicates otherwise.

same exact set of deformation fields, as applied to the orientation fields, were
used to align the ODF fields. The average ODF at each voxel was then used to
estimate the local fiber orientations.

Crossings. Similar to the results shown for the synthesized data (Fig. 1), sig-
nificant loss of fiber crossings can be observed in the case of the in vivo data
when the average atlas method is used for estimating the orientations (Fig. 3).

Tractography. For evaluation, we considered the following commonly studied
fiber bundles: 1) The forceps minor, also known as the anterior forceps, is a
fiber bundle which connects the lateral and medial surfaces of the frontal lobes
and crosses the midline via the genu of the corpus callosum; 2) The cingulum
is a medial associative bundle that runs within the cingulate gyrus all around
the corpus callosum. To test whether these fiber bundles were preserved by the
proposed method, we placed single voxel seeds at the points where the midline
crosses the genu of the corpus callosum, and also a seed along the cingulate
gyrus, and performed tractography based on these seeds. The tractography pa-
rameters used were φ = 70◦, β0 = 0.1 and s = 1. 3000 fibers were initiated
from each seed. An identical set of parameters was used for the average atlas
method. The results, shown in Fig. 4, indicate that the average atlas method
results in premature termination of the tracking of the fiber bundles. Specifically,
in Fig. 4(a), we find that PopTract, as opposed to the average atlas method,
not only reconstructed the full forceps minor, with both frontal extensions of the
fiber bundles intact, but also part of the anterior thalamic radiations. Similar
conclusion can be made from Fig. 4(b), where PopTract shows a complete
reconstruction of the cingulum bundle and the U-shaped fibers connecting the
medial frontal, parietal, occipital and temporal lobes with different portions of
the cingulate cortex. PopTract, therefore, in contrast to the conventional aver-
age atlas method, gives a more complete reconstruction of the fiber trajectories,
which are more consistent with our anatomical knowledge of the bundles.
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4 Conclusion

We have presented a tractography algorithm, called PopTract, that is more
effective in preserving fiber crossings and is more accurate in estimating local
fiber orientations. PopTract results in more reasonable reconstruction of the
fiber trajectories that are in closer agreement with known fiber bundles.
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EB008374, EB009634, MH088520, HD05300, MH064065, and NS055754.
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Segmenting Thalamic Nuclei:

What Can We Gain from HARDI?�
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Abstract. The contrast provided by diffusion MRI has been exploited
repeatedly for in vivo segmentations of thalamic nuclei. This paper sys-
tematically investigates the benefits of high-angular resolution (HARDI)
data for this purpose. An empirical analysis of clustering stability reveals
a clear advantage of acquiring HARDI data at b = 1000 s/mm2. However,
based on stability arguments, as well as further visual and statistical ev-
idence and theoretical insights about the impact of parameters, HARDI
models such as the q-ball do not exhibit clear benefits over the standard
diffusion tensor for thalamus segmentation at this b value.

1 Introduction

Since Wiegell et al. [1] demonstrated that the striations within the thalamic
nuclei provide sufficient contrast in diffusion MRI to allow for an automated
segmentation, several groups have proposed algorithmic methods to segment
these nuclei based on the diffusion tensor (DTI) model [2–5]. More recently,
segmentations of the thalamic nuclei have been achieved using high angular
resolution (HARDI) data and the q-ball model [6, 7]. However, we are not aware
of any studies that investigate the relative benefit from using HARDI models for
this particular task, or provide guidelines on which model is most suitable for
which measurement setup. It is the goal of our investigation to find out what
can be gained from using HARDI data and specific HARDI models for this task.

Studying this question is essential to further refine methods for thalamus
segmentation, but it is complicated by the fact that final segmentations do not
only depend on the chosen model, but also on the algorithmic method and spatial
regularization. Moreover, it is certainly possible to verify the overall plausibility
of a segmentation by comparing it to known anatomy [1–7], but a lack of exact
and reliable ground truth for individual subjects makes it difficult to argue about
the relative validity in case of more subtle differences.

Therefore, we only turn to actual segmentations after a visual (Section 2.1)
and statistical (Section 2.3) investigation of distance measures that result from
different models, and a theoretical analysis of their parameters (Section 2.2). As
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(a) (b) (c) (d) (e) (f) (g) (h)

Fig. 1. Distances from a reference voxel (a) show a large agreement between the diffu-
sion tensor deviatoric (b) and the q-ball model (c). The Sobolev norm (d) weights the
higher orders (f)–(h) stronger than the second order (e).

an objective way of judging segmentations, we then perform an analysis of their
stability under small perturbations of the input (Sections 2.4 and 3).

2 Evaluating Benefits of the Q-Ball Model

2.1 Distance Maps

Measures of dissimilarity between the values in different voxels are at the center
of all segmentation approaches, so it is a natural first step to study their behavior.

Figure 1 shows an axial slice through the right thalamus in one of our subjects.
Our data has 60 gradient directions at b = 1000 s/mm2, with 1.72 mm isotropic
voxel size. Distances to a reference voxel, marked by a circle in (a), are linearly
mapped to grayscale, from zero to the largest value in each map. To reduce the
impact of partial voluming with the adjacent ventricles, we consider the diffusion
tensor deviatoric D̃ = D − tr(D)/3I instead of the full tensors D (tr is matrix
trace and I is the identity).

The Frobenius norm ‖D‖ =
√

tr(DTD) of differences in D̃ (Fig. 1 (b), range
[0, 7.91 × 10−3 mm2/s]) produces a similar map as the �2 norm of q-balls (c,
[0, 0.48]), modeled by order-8 spherical harmonics (SHs). The Sobolev norm [7]
(d, [0, 0.81]) is designed to be more sensitive to the alignment of peaks in the
q-ball than the �2 norm. Its map reveals similar overall structure, with highest
distances at the posterior end of the thalamus, but exhibits reduced contrast.

2.2 Influence of Model Parameters

We have used Laplace-Beltrami regularization for the q-balls [8], which intro-
duces a regularization parameter (λ = 0.008). The Sobolev norm involves three
additional parameters (α = 1, t = 0, γ = 0.21). Even though we carefully cal-
ibrated these values according to the synthetic model proposed in [7], modified
to match our experimental setup, it is informative to consider how our result
depends on their exact choice.

The Sobolev norm amounts to a weighted �2 norm, in which higher orders are
weighted more strongly [7]. This motivates mapping the �2 distances of the SH
coefficients of orders 2 (Fig. 1 (e), [0, 0.47]), 4 (f, [0, 0.062]), 6 (g, [0, 0.026]) and
8 (h, [0.011]) separately. Since q-balls integrate to unity by definition [9], there is
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no variability in order zero. All parameters of the Sobolev norm lead to squared
distances that are linear combinations of the squared values from Fig. 1 (e)–(h).

We observed that the effect of different regularization parameters λ is also
well-approximated by a re-weighting of different SH orders. This is explained
by the fact that with Laplace-Beltrami regularization, the SH coefficient vector
c ∈ R

C is obtained from the diffusion-weighted signal vector s ∈ R
N via

c = (BTB + λL)−1BT s, (1)

where the (i, j)th element of B ∈ R
N×C is computed by evaluating the SH basis

function Yj at the position (θi, φi) of gradient vector i. The diagonal matrix
L ∈ R

C×C has entries l2j (lj + 1)2, lj being the order of SH coefficient cj. In the
interest of space, the reader is referred to [8] for details on this notation.

Typical HARDI acquisition schemes achieve a near-uniform distribution of
gradient directions over the (hemi-)sphere. In this case, up to a factor of 4π/N ,
dot products between the columns of B numerically approximate the integral

〈S(1), S(2)〉 =
∫ π

θ=0

∫ 2π

φ=0

S(1)(θ, φ)S(2)(θ, φ) sin θ dφ dθ, (2)

which defines a scalar product for real-valued functions on the sphere. Given the
orthonormality of the SH basis functions from [8] with respect to (2), this leads
to the approximation BTB ≈ N/(4π)I.

Consequently, (BTB + λL)−1 in Eq. (1) is approximated by a diagonal ma-
trix with entries (N/(4π) + λl2j (lj + 1)2)−1. Thus, the regularized c̃l,m can be
approximated by scaling the unregularized cl,m,

c̃l,m ≈ cl,m ×
(

1 +
4πλl2(l + 1)2

N

)−1

. (3)

In the �2 norm ‖c̃‖, this is reflected by a re-weighting of the terms cl,m by a
function of SH order l and the regularization parameter λ.

Even replacing the q-balls by a different HARDI model, spherical deconvo-
lution [10], would only amount to a re-weighting of different SH orders in the
�2 norm. The reason is that linear deconvolution is performed by scaling the
SH coefficients of the diffusion weighted signal by a function of SH order, which
depends on the fiber response function [10]. Analytically evaluating the Funk-
Radon transform, which relates the diffusion-weighted signal to the q-ball, re-
veals that it can be expressed in the same way [8].

These insights illustrate the high relevance of the maps in Fig. 1 (e)–(h) to our
problem: They serve as linear building blocks of the distance maps that would
result from q-ball or spherical deconvolution models, combined with either the
�2 or the Sobolev norm. We cannot expect any structures that are not present in
these maps to be brought forward by changing the parameters of these models.

Visually, the spatial structure of the second order map (e) largely agrees with
the structure from the diffusion tensor deviatoric in (b). It is more difficult to
discern structure in the higher orders. In this respect, the thalamus appears
to differ from white matter, where higher orders carry meaningful structure in
regions of fiber crossings, even at moderate b-values [11].
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Table 1. A statistical investigation of distance measures (separately in the left/right
part of the thalamus) supports the visual impression that distances at spherical har-
monics order 2 expose a much clearer spatial structure than at higher orders.

order 2 order 4 order 6 order 8

d̄2
A/d̄2

N 8.17/8.19 1.83/1.75 1.63/1.58 1.60/1.58
skewness of d2

N 2.82/2.65 1.87/1.50 1.30/1.45 1.19/1.26

2.3 Distance Statistics

To quantify the visual impression that the distances at higher orders reveal much
less spatial structure than distances at SH order two, we have computed average
squared distances d̄2

A between all pairs of voxels (in a full 3D thalamus mask,
for the left and right side separately), and compared them to average squared
distances d̄2

N between face neighbors. If the voxels contained noise without any
spatial structure, the expected ratio were d̄2

A/d̄2
N = 1. Piecewise smooth or

piecewise constant data with clear spatial structure should lead to d̄2
A/d̄2

N � 1.
Table 1 shows that d̄2

A/d̄2
N is much larger for order 2 than it is for higher orders.

We have also considered the distribution of d2
N , the squared distances between

face neighbors. In case of homogeneous regions that are separated by clear bound-
aries, we expect most distances to be small (within regions), with a heavy tail
of much larger distances from boundaries. This should lead to a positive skew
in the distribution. In fact, Table 1 reveals such a skew, most pronounced in the
second order distances.

2.4 Stability Analysis

Even though the distance maps from DTI and q-balls look similar, we found that
the resulting segmentations differ to some degree. In order to assess whether these
differences are significant, we compute the adjusted RAND index [12] between
the segmentations to quantify their overlap, and compare it to the overlap of
segmentations from the same model, but slightly perturbed data.

It is widely accepted that successful segmentation of thalamic nuclei requires
some sort of regularization that favors spatially connected structures. All meth-
ods we are aware of include such regularization, either by combining the data-
based distance with a spatial distance [1, 3, 6, 7], through coupling forces in a
level set framework [4], by Markovian relaxation [2], or by learning an atlas from
the joint segmentation of multiple subjects [5].

Unfortunately, spatial regularization might lead to paradoxical results in a sta-
bility analysis: If a model does not reveal clear structure in the data, the resulting
segmentation might be dominated by spatial information and consequently ap-
pear more stable than an alternative model that does reveal (somewhat fragile)
structure. Such misleading results can be difficult to detect, even when checking
the plausibility of the obtained segmentations.

To illustrate this, Fig. 2 (a) reproduces the segmentation presented by Grassi
et al. [6] based on our own data. We use k-means with a linear combination of
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(a) (b) (c)

Fig. 2. Given an individual segmentation result (a), it can be difficult to judge the
relative influence of data-based (b) and spatial distances (c). The same slice is shown
as in Fig. 1, rotated clockwise by 90◦.

Euclidean spatial distance and the �2 distance between q-balls, giving the spatial
distance the minimum weight required to obtain connected components. As in
[6], an axial slice of the thalamus is segmented into a pulvinar, a lateral, a medial,
and an anterior region. It is reassuring that a very similar result is obtained
without spatial regularization (Fig. 2 (b)). However, even if we do not make any
use of the data (Fig. 2 (c)), spatial distances alone lead to a segmentation that
looks similar enough that it might pass a superficial test of plausibility.

Therefore, we run k-means based on the diffusion information alone, on the
right thalamus (in 3D) and for different numbers of regions (2–7). Since the
result of k-means may depend on the initialization, we perform each clustering
ten times, from randomly selected seeds, and keep the result with the lowest sum
of squared distances of data points to their cluster centers. In order to create
slightly perturbed model fits without changing the noise characteristics of the
data, we obtained 150 perturbed models via weighted least squares, where the
weights of the 60 available directions were sampled uniformly at random from
[0, 1]. The average relative distance ‖Dp−D‖/‖D‖ of a diffusion tensor Dp that
has been perturbed in this way to its unperturbed version D is around 3%.

The solid lines in Fig. 3 (a) plot the mean adjusted RAND index when compar-
ing segmentations of perturbed data to their unperturbed counterparts. Results
from the diffusion tensor are marked with circles, q-ball with the �2 norm by
squares, and q-ball with Sobolev norm by triangles. None of the models consis-
tently produced more stable results than the others, but we noticed a steep drop
in stability for more than five regions, especially when using q-balls.

The dashed lines in the same Figure plot the mean adjusted RAND when
comparing segmentations from the same weighting of gradients, but different
models. The average overlap of DTI vs. q-ball with �2 norm (squares) and DTI
vs. q-ball with Sobolev norm (triangles) on the same data is consistently larger
than the overlap when using the same model on perturbed vs. unperturbed data.

This effect is statistically significant. For each set of random weights, we com-
pared the overlap within the same model (perturbed vs. unperturbed) to the over-
lap across models (DTI vs. q-ball). For all numbers of regions, we found the latter
to be greater in so many cases that a one-sided binomial test rejects, with p < 0.01
(the largest p was p = 5.5×10−5), the null hypothesis that the within-model over-
lap and the across-model overlap are equally likely to be greater than each other.
We conclude that segmentations change significantly more under slight perturba-
tions of the input than when switching between diffusion tensor and q-ball models.
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(a) (b)

Fig. 3. Solid lines in (a) show segmentation stability under slight perturbations of
the input (DTI: black circles, q-ball with �2 norm: red squares, Sobolev norm: blue
triangles). It is consistently lower than the average similarity between results from
DTI and q-ball on the same data (dashed lines). However, (b) shows that 60 directions
(black circles) improve stability considerably when compared to 40 (green x-es) or 20
directions (cyan + signs), even with the DTI model.

2.5 Segmentation Based on Principal Directions

In their spectral method for thalamus segmentation, Ziyan et al. [2] use angular
differences between principal eigenvectors as an alternative to the full diffusion
tensor information. We have explored a similar strategy by extracting q-ball
maxima. An initial estimate of the maximum has been obtained from a dense
sampling on the sphere, and the result has been refined via gradient ascent.

Based on visual inspection of RGB maps (Fig. 4 (a) and (b)), the resulting
overall structure appears similar. Within the thalamus mask, the average angu-
lar difference (AAD) between both estimates is around 10◦. However, principal
directions from q-balls are less stable under the perturbation from the previous
Section (AAD 6.4◦) than those estimated from the diffusion tensor (AAD 4.9◦).

In order to average directions in the k-means algorithm, we added their outer
products and took the principal eigenvector of the result. In general, we found
segmentations that use principal directions to be less stable than those based
on the deviatoric of the diffusion tensor, in particular when the estimate was
derived from the q-ball model. Interpretation of Fig. 4 (c) is analogous to Fig. 3;
stars indicate use of the principal direction from DTI, squares from q-ball. The
stability of the deviatoric (circles) is repeated from Fig. 3 for reference.

3 Evaluating Benefits of Acquiring HARDI Data

Since our results in the previous Section did not demonstrate a clear advantage
of using the q-ball model, it is natural to ask if it is even worthwhile to acquire
60 gradient directions at b = 1000 s/mm2 when the goal is not tractography, but
segmentation of the thalamic nuclei. To investigate this question, we have re-
peated the stability analysis based on the diffusion tensor model and subsampled
sets of 40 and 20 gradient directions, respectively. In order to retain a reasonable
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(a) (b) (c)

Fig. 4. Principal directions estimated from diffusion tensors (a) and q-balls (b) largely
agree. However, (c) shows that segmentations based on principal directions from DTI
(cyan stars) and q-ball (red squares) are less stable than ones from the diffusion tensor
deviatoric (black circles).

gradient distribution, we generated sets of 40 and 20 directions based on elec-
trostatic repulsion [13], and kept the original measurements that were closest to
these directions.

Fig. 3 (b) compares the average overlap of segmentations from perturbed data
(random weights of the gradients) to a segmentation based on the same set of
gradients with unit weights. The original dataset is marked with circles (and is
identical to Fig. 3 (a)), the subsampled data is marked with x (40 directions) and
+ signs (20 directions). It is obvious that stability of the segmentation suffers
considerably when using fewer directions.

4 Conclusion

While it is widely accepted that HARDI models provide useful additional infor-
mation within the white matter [11, 14], it has not been studied systematically
what they can contribute to the segmentation of gray matter structures such
as the thalamus. We have shed light on this interesting question from differ-
ent perspectives, using a mixture of visual and statistical methods, theoretical
reasoning about the impact of parameters, and empirical stability analysis.

For the data available to us (b = 1000 s/mm2), we conclude that segmentations
of thalamic nuclei clearly benefit from acquiring data at high angular resolution,
but that this is mainly due to an improved estimate of the information present
in the standard diffusion tensor model. We found no clear benefit from switching
to more complex models, such as q-ball, where most of the useful information
seems to reside in the second-order spherical harmonics coefficients. This finding
might not carry over to much higher b-values, as they have been used in [6, 7].
The methods proposed in our work could be used to test for potential benefits
of the q-ball model when combined with such measurement setups.

We have only considered segmentations based on local diffusion properties.
A different strategy for segmenting thalamic nuclei has involved a probabilis-
tic tracking of the corticothalamic/thalamocortical connections [15, 16]. Since
significant advantages of using HARDI models have been reported when track-
ing non-dominant fibers, even at b = 1000 s/mm2 [14], the relative benefit of
tractography-based over purely local methods merits further investigation.
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Abstract. Fiber clustering is a prerequisite step towards tract-based analysis of 
white mater integrity via diffusion tensor imaging (DTI) in various clinical neu-
roscience applications. Many methods reported in the literature used geometric 
or anatomic information for fiber clustering. This paper proposes a novel me-
thod that uses functional coherence as the criterion to guide the clustering of fi-
bers derived from DTI tractography. Specifically, we represent the functional 
identity of a white matter fiber by two resting state fMRI (rsfMRI) time series 
extracted from the two gray matter voxels to which the fiber connects. Then, the 
functional coherence or similarity between two white matter fibers is defined as 
their rsfMRI time series’ correlations, and the data-driven affinity propagation 
(AP) algorithm is used to cluster fibers into bundles. At current stage, we use 
the corpus callosum (CC) fibers that are the largest fiber bundle in the brain as 
an example. Experimental results show that the proposed fiber clustering me-
thod can achieve meaningful bundles that are reasonably consistent across dif-
ferent brains, and part of the clustered bundles was validated via the benchmark 
data provided by task-based fMRI data.  

Keywords: Resting state fMRI, DTI, fiber clustering. 

1  Introduction 

Diffusion tensor imaging (DTI), as a powerful tool to image the axonal fibers in vivo, 
provides rich structural connectivity information that is believed to be closely related 
to brain function. In order to infer meaningful and comparable information from DTI 
data of different brains, the large number of fiber trajectories produced by DTI tracto-
graphy need to be grouped into appropriate fiber bundles for tract-based analysis [4]. 
Many approaches reported in the literature used geometric, anatomical or structural 
features, e.g., fiber’s Euclidean distances [3, 4], fiber shape information [11], or fi-
ber’s end point positions [10], to cluster fiber bundles. Though these methods have 
their own advantages in clustering meaningful bundles, the functional interpretation 
of the clustering results remains to be elucidated. 
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Recently, resting state fMRI (rsfMRI) has been demonstrated to be an effective mod-
ality by which to explore the functional networks in the human brain, because similar 
low-frequency oscillations in rsfMRI time series between spatially distinct brain regions 
are indicative of correlated functional activity patterns in the brain [2]. In addition, a 
variety of recent studies demonstrated that structural connectivity derived from DTI data 
is closely correlated with the functional connectivity derived from rsfMRI data [8]. In-
spired by these studies, we are motivated to apply the criterion of functional coherence to 
cluster white matter fibers. Our premise is that the clustered fibers within a bundle should 
have functional homogeneity or coherence. To achieve this goal, we represent a white 
matter fiber by two rsfMRI time series extracted from the two gray matter (GM) voxels 
that the fiber’s two end points connect, and the functional coherence between white mat-
ter fibers is measured by the similarities of their rsfMRI time series. Then, the data-
driven affinity propagation (AP) algorithm [7] is applied to cluster fibers into bundle 
tracts. We currently use the corpus callosum (CC) fibers, which are the largest fiber bun-
dle in the brain, as an example for algorithm development and validation. Our experi-
mental results in seven brains with multimodal rsfMRI and DTI datasets show that the 
proposed rsfMRI-guided fiber clustering method can achieve meaningful fiber bundles 
that are reasonably consistent across different brains, and part of the clustered bundles is 
validated by the benchmark data provided by task-based fMRI data.  

 

Fig. 1. The flowchart of our framework. (1) and (2): pre-processing steps; (3): segmentation of 
brain tissue using DTI data; (4): DTI tractography; (5): registration of rsfMRI to DTI images; 
(6): affinity propagation clustering guided by rsfMRI data; (7): WM (white matter)/GM (gray 
matter) cortical surface reconstruction from DTI data. 

2  Materials and Methods 

2.1  Overview 

As summarized in Fig.1, our algorithmic pipeline includes the following steps. First, 
we pre-processed the raw DTI data, and then performed brain tissue segmentation and 
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fiber tracking based on DTI data. The tracked fiber trajectories were projected to the 
cortical surface via a similar method in [8] to facilitate the extraction of rsfMRI sig-
nals on the gray matter volume. Also, we registered the rsfMRI signals to the DTI 
space using FSL FLIRT. Then, we clustered fibers into bundles based on fibers’ func-
tion coherences via the affinity propagation algorithm [7]. Finally, we identified con-
sistent fiber bundles from seven subjects for evaluation and validation. 

2.2  Multimodal Data Acquisition and Pre-processing 

Seven volunteers were scanned using a 3T GE Signa MRI system. We acquired the 
rsfMRI data with dimensionality 128*128*60*100, space resolution 2mm*2mm*2mm, 
TR 5s, TE 25ms, and flip angle 90 degrees. DTI data was acquired using the same 
spatial resolution as the rsfMRI data; parameters were TR 15.5s and TE 89.5ms, with 
30 DWI gradient directions and 3 B0 volumes acquired. For two out of the seven sub-
jects, the working memory OSPAN tasks [12] was used for fMRI data acquisition with 
the parameters of 64×64 matrix, 4mm slice thickness, 220mm2 FOV, 30 slices, 
TR=1.5s, TE=25ms, ASSET=2. Pre-processing of the rsfMRI data included skull re-
moval, motion correction, spatial smoothing, temporal pre-whitening, slice time cor-
rection, global drift removal, and band pass filtering (0.01Hz~0.1Hz). For the DTI 
data, pre-processing included skull removal, motion correction, and eddy current cor-
rection. After the pre-processing, fiber tracking was performed using MEDINRIA (FA 
threshold: 0.2; minimum fiber length: 20). Based on pre-processed DTI data, brain 
tissue segmentation was performed using the multi-channel fusion method akin to that 
in [5]. DTI space was used as the standard space from which to generate the tissue 
segmentation and exhibit the functional coherent fiber bundles. Since rsfMRI and DTI 
sequences are both EPI sequences, their distortions tend to be similar, and thus the 
misalignment between their images is much less than that between T1 and fMRI im-
ages [8]. DTI and fMRI images were registered via FSL FLIRT. 

2.3  Fiber Clustering Based on Functional Coherence 

Extraction of rsfMRI Signals for a Fiber’s Two Ends  
It should be noted that the blood supply to the white matter is significantly lower than 
that of the cortex (less than one fourth) [9], and the blood-oxygen-level dependence 
(BOLD) contribution of the white matter is relatively low. Hence, the investigation of 
gray matter rsfMRI signals is more reasonable. Therefore, before extracting rsfMRI 
signals from GM voxels for a fiber’s two ends, we need to project some fibers onto 
the gray matter cortex in that the DTI-derived fiber trajectories are not necessarily 
located on the cortex due to two reasons. 1) DTI fiber tractography using the stream-
line approach has difficulty in tracking inside GM since the FA (fractional anisotropy) 
values around the boundaries of gray matter and white matter are relatively low. As a 
result, there are some fibers that cannot touch the GM. 2) There is discrepancy in 
brain tissue segmentation based on DTI data and the DTI tractography [5]. In this 
case, the fiber could be either outside the cortex if the gray matter (GM) is over-
segmented, or inside the cortex if the GM is under-segmented.  

In order to make use of the fiber connection information on the cortex, we 
projected the fibers onto the cortical surface guided by the tissue segmentaion map. 
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There are four types of fiber projections here. 1) If the end point of a fiber already lies 
on a GM voxel in the brain tissue map, no search is conducted, e.g., fiber #1 shown in 
Fig. 2(a); 2) If the end point of a fiber lies inside the cortex, e.g., the fiber #2 shown in 
Fig. 2(a), we search forward along the tangent direction until reaching the gray 
matter. 3) Otherwise, e.g., the fiber #3 shown in Fig. 2(a), we search backward along 
the tangent direction until reaching the gray matter. The search process stops either 
when the fiber arrives at a GM voxel or it exceeds a search threshold. 4) In very rare 
cases when a fiber cannot reach the surface, e.g., the fiber #4 shown in Fig. 2(a), we 
treat this fiber as an outlier and remove it from the data. Fig. 2(b) shows the positions 
that the fibers arrive at after the projection. The search was conducted iteratively until 
at least one GM voxel can be found in the 1-ring surface vertex neighborhood of the 
current seed point, or the number of iteration exceeds a given threshold. When mul-
tiple GM voxels exist, the closest one is used as the projected point. Finally, for each 
projected fiber, we extract the rsfMRI signals for two ends of the fiber.  

(a) (b)  

Fig. 2. Illustration of fiber projection. Gray matter and white matter voxels are represented by 
gray and white color boxes respectively. Fibers are represented by yellow curves. (a) The four 
situations before fiber projection; (b) The results of fiber projections for three situations.  

Measurement of Functional Coherence Among fibers  
As illustrated in Fig. 3, given any pair of fibers with four end points located in the 
gray matter, the functional coherence between these two fibers is defined as follows: 

C=0.5*(max(C13,C14)+max(C23,C24))  (1) 

C13=PsCor(v1,v3), C14=PsCor(v1,v4), C23=PsCor(v2,v3), C24=PsCor(v2,v4) 

where vi indexes the end points of two fibers, the function PsCor is the Pearson 
correlation coefficient of two end points’ rsfMRI signals. Our premise here is that the 
fibers belonging to the same tract should have higher functional coherence, and those 
belonging to different tracts should have lower coherence.  

It should be noted that the crierion of functional coherence derived from rsfMRI 
data offers unique capability to cluster functionally coherent fibers into the same 
bundle and differentiate non-coherent fibers into different bundles. As an example, 
Fig. 4a shows three fibers that are functionally coherent, and thus they should be 
clustered into one bundle. However, if we use geometric or shape criteria [3, 4, 11], 
e.g., the Euclidean distances betweeen neighboring fibers, the blue fiber in Fig. 4a 
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(highlighted by a red arrow) is very likely to be separated from the bundle composed 
of the red and green ones. Another example is shown in Fig. 4b, in which the blue 
fiber (highlighted by a red arrow) has low functional coherence with the green and red 
ones and thus the blue one can be differentiated from other two fibers via rsfMRI 
data. However, geometry or shape based fiber clustering methods are likely to have 
difficulties in differentiating the blue fiber from other two fibers. Hence, the criterion 
of functional coherence is a powerful approach for fiber clustering. 

(a) (b) (c)
 

Fig. 3. The calculation of fibers’ functional coherence. (a) Two fibers overlaid on the recon-
structed cortical surface (gray mesh); (b) The zoomed-in view of the black rectangle in (a); (c) 
The rsfMRI signals of the four end points. Their correlations are measured by Eq. (1).   

(a) (b)  

Fig. 4. (a). An example showing functional coherence can cluster fibers of different shapes or 
geometries into the same bundle. (b) An example showing functional difference can differen-
tiate neighboring fibers into different bundles. 

Fiber Clustering via the Affinity Propagation Algorithm  
The affinity propagation (AP) algorithm [7] has been widely used to identify data 
clusters automatically. In the AP clustering method, each cluster is represented by a 
data point called a cluster center, or an exemplar, and the method searches for cluster 
so as to maximize a goal function called net similarity [7]. In this paper, we applied 
the AP clustering method on the functional similarity matrix of all fibers in the corpus 
callosum, and achieved the clustered fiber bundles. In particular, each fiber cluster is 
represented by the fiber exemplar discovered during the AP clustering procedure. 
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(a) (b) (c)
 

Fig. 5. The clustered fiber bundles for 7 subjects. (a) The fiber clusters with randomly set col-
ors overlaid on the DTI B0 images; (b) The fiber exemplars of all clusters (c) The 16 most 
consistent fiber exemplars. 
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3  Experimental Results 

3.1  Identification of Functionally Coherent Fiber Bundles 

The fibers passing corpus callosum (CC) were clustered into aournd 30 bundles for 7 
subjects separately, as shown in the 7 rows in Fig. 5(a). For the sake of visual 
differentiation, each fiber bundle was represented by the fiber exemplar obtained 
during the affinity propogation clustering procedure [7], as shown in Fig. 5(b). In 
order to identify the corresponding fiber bundles in different subjects, we computed 
the Hausdorff distances between the representative exemplars across subjects and 
picked out those exemplars that are closest to the representative exemplars in other 
subjects. We visually confirmed 16 most consistent and representative exemplar 
fibers in all fiber exemplars from 7 subjects and showed all of them in Fig. 5(c). Each 
corresponding fiber exemplar in Fig. 5(c) has the same color in different brains, and 
three of corresponding ones are highlighted by arrows of the same color. It is evident 
that the distributions of these 16 fiber exemplars are quite reasonable and consistent. 
As another exmple, Fig. 6(a) visualizes four corresponding bundles from 3 randomly 
selected subjects, showing that the clustered bundles are quite reasonable. 

3.2  Validation by Task-Based fMRI Data 

In addition to the qualitative visual evaluation of the clustered CC fiber bundles in Sec-
tion 3.1, we used working memory task-based fMRI data [12] to examine the functional 
correspondence of the clustered fiber bundles in Section 3.1. Specifically, the working 
memory task-based fMRI data provided 16 consistently activated brain regions, as shown 
by green boxes in Fig. 6(b). These ROIs provide the benchmark data for comparison of 
functional correspondences of fiber bundles. It is striking that one fiber bundle (blue ones 
in Figs. 5(c) and Fig. 6(b)) clustered in Section 3.1 coincidently falls into the neighbor-
hoods of two corresponding working memory ROIs of left and right paracingulate gyri 
(highlighted by yellow arrows) consistently in the testing subjects. These close vicinities 
indicate that the paracingulate gyri are consistently connected by the blue fiber bundle 
across individuals, suggesting that the rsfMRI-guided fiber clustering method grouped 
functionally coherent fibers into the same bundle. This result is considered as a validation 
of the rsfMRI-guided fiber clustering approach. 

(a) (b)
 

Fig. 6. (a) Visualization of four corresponding fiber bundles from 3 randomly chosen subjects. 
They are labeled by the four different colors of blue, green, yellow, and red, respectively. (b) 
Joint visualization of 16 activated working memory ROIs (represented by green boxes) and 
clustered fiber bundles (represented by exemplars) for two subjects. 
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4  Conclusion 

This paper presents a novel methodology of using rsfMRI data to guide fiber cluster-
ing. The underlying neuroscience basis is that axonal fibers within a bundle should 
have functional coherence, and our results have shown that functional coherence is a 
meaningful criterion for fiber clustering. In particular, part of the clustered bundles 
was validated via task-based fMRI data. Currently, only CC fibers were used for algo-
rithm development and evaluation. In the future, we plan to apply the proposed me-
thod to other major fiber bundles such as cortico-cortical and cortical-subcortical 
pathways, and apply the methods for tract-based analysis of DTI datasets of brain 
diseases such as schizophrenia and Alzheimer’s disease. 
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Abstract. The vast majority of High Angular Resolution Diffusion
Imaging (HARDI) modeling methods recover networks of neuronal fi-
bres, using a heuristic extraction of their local orientation. In this paper,
we present a method for computing the apparent intravoxel Fibre Pop-
ulation Dispersion (FPD), which conveys the manner in which distinct
fibre populations are partitioned within the same voxel. We provide a
statistical analysis, without any prior assumptions on the number or size
of these fibre populations, using an analytical formulation of the diffusion
signal autocorrelation function in the spherical harmonics basis. We also
propose to extract features of the FPD obtained in the group of rota-
tions, using several metrics based on unit quaternions. We show results
on simulated data and on physical phantoms, that demonstrate the ef-
fectiveness of the FPD to reveal regions with crossing tracts, in contrast
to the standard anisotropy measures.

1 Introduction

Diffusion magnetic resonance imaging (dMRI) allows one to examine the micro-
scopic diffusion of water molecules in biological tissue in-vivo. In practice, this
imaging modality requires the collection of successive images with magnetic field
gradients applied in different directions [1]. A reconstruction step is then used to
estimate the 3D diffusion probability density function (PDF) from the acquired
images [2]. Recently a Spherical Polar Fourier (SPF) expansion method has been
introduced in [3], which takes full advantage of the acquisition protocol. Here
the MR signal attenuation E at the diffusion wave-vector q of the q-space (a
subset of Euclidean R3) is expressed as the following series in the SPF basis:

E(q) =
∑

n,l,m∈D

anlm

√
2

ζ3/2

n!
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exp
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)
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where the triplet {n, l,m} stands for the index defined in the set D ∈ N2 × Z
so that n ∈ N is the radial index, and l ∈ N, m ∈ Z, −l ≤ m ≤ l are the
angular indexes. The symbols anlm are the series coefficients, ym

l are the real
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spherical harmonics (SH), and Rn is an orthonormal radial basis function made
of Gaussian-Laguerre (GL) functions.

Let L2(S2) denote the space of square integrable functions on S2. It has been
shown in [3] that any feature f ∈ L2(S2) of the diffusion PDF can be directly
extracted from the modeled diffusion signal in the SPF expansion [3] as

f(r̂) =
∑

n,l,m∈D

anlmbnlmym
l (r̂) =

∑
n,l,m∈D

fnlmym
l (r̂), (2)

where the symbol r̂ is a unit vector in the 2-sphere S2, bnlm stands for the
coefficients of the feature projection function expressed in the SPF expansion
and fnlm = anlmbnlm are the spherical harmonics coefficients of f . The feature
related to the second-order Orientation Density Function (ODF2) displacement
of water molecules is expressed in the SPF basis as [4]:

bnlm =
δl0δm0√

4π
− 1

8π

n∑
j=0

(−1)j

j2j

√
2

ζ3/2

n!
Γ (n + 3/2)

(
n + 1/2
n− j

)
Pl(0)(−l2 + l).

(3)

Other spherical features of the diffusion PDF are given in [3, 4]. Given a spher-
ical feature f ∈ L2(S2) such as (3), which represents the orientation features
of the diffusion PDF, this paper presents a method to compute the statistical
dispersion of fibre populations within a voxel, without any prior assumptions
on their number or shape (Section 2). We illustrate the validity of the proposed
method on synthetic and physical phantom datasets (Section 3).

Among the previous related works, Seunarine et al . proposed in [5] to compute
the anisotropy of each fibre population within the same voxel. Other relevant
methods include the labelling of crossing and fanning fibre populations [6] and
the computation of a torsion index [7], both using inter-voxel computations. To
the extent of our knowledge, the present paper describes the first statistical
method for assessing the partitioning of fibre populations within the same voxel.
As such, it may have a significant impact in applications involving the study of
neurological diseases from dMRI.

2 Theory

2.1 Fibre Population Dispersion (FPD)

Let SO(3) denote the rotation group. According to Euler’s rotation theorem,
any rotation Λ ∈ SO(3) can be described by three successive rotations by a
set of Euler angles Θ = (α, β, γ) about three axes, where 0 ≤ α, γ ≤ 2π and
0 ≤ β ≤ π. There are 24 standard Euler angle conventions depending upon which
axes are used and the order in which the rotations are applied. Throughout this
paper, we use the zyz-configuration to compose the intrinsic rotations. In this
setting, we can parametrize the general rotation Λ as a function of the set of
Euler angles Θ.
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Fig. 1. The Fibre Population Dispersion (FPD) is defined as the autocorrelation of any
spherical feature function defined on S2 of the diffusion PDF. Left: (a) Two-dimensional
projection of the ODF2 for two fibre populations crossing at 1.37 rad in the xy-plane.
(b) SO(3) rotation of (a) by the set of Euler angles Θ1. (c) The point-wise S2 mul-
tiplication of (a) and (b), from which the autocorrelation is computed as the integral
volume. Right: The same computations, but with a different set of Euler angles Θ2.
The FPD of (c) is greater than the FPD of (g), with a ratio equal to 1.14, so that
the rotation relates to the distance between intravoxel fibre populations as a function
of Euler angles Θ. Note that in this figure, the functions are scaled for visualization
purposes.

Let Λ(Θ)f(r̂) denote a rotation Λ of the function f ∈ L2(S2) such that it is
equivalent to f(Λ−1(Θ)r̂). We define the Fibre Population Dispersion (FPD) as
the normalized autocorrelation of the spherical feature function f ∈ L2(S2), so
that FPD : SO(3) → R and

FPD(Λ) =
∫
r̂∈S2

(f(r̂) − f̄)
σf

Λ(Θ)(f(r̂) − f̄)
σr

dr̂, (4)

where σf and σr denote the standard variation of f and its rotated version
Λ(Θ)f . Fig. 1 clarifies the intuition behind (4), i.e., how the correlation func-
tion between a spherical feature and a rotated version of it can recover fibre
population dispersion. The left and right parts of Fig. 1 illustrate high and low
values of the FPD, respectively.

Since the function f and its rotated version Λ(Θ)(f) have the same standard
variations, the normalizing factor is therefore the variance of f , i.e., σ2

f . Let
D∗ = D\{l = 0} be the index domain minus all the terms which nullify the
order l. Fortunately, the variance and the mean are directly expressed in the
spherical harmonics space, which yields the following simplification of (4):

FPD(Λ) = N

∫
r̂∈S2

∑
n,l,m∈D∗

fnlmym
l (r̂) Λ(Θ)

∑
i,j,k∈D∗

fijky
k
j (r̂)dr̂, (5)

where the normalization factor N is obtained by inverting the sum of square
coefficients fnlm. When subject to a rotation, real spherical harmonics ym

l can
be expressed as a linear combination of real spherical harmonics of the same
order l [8]. As a consequence, (5) can be expressed as

FPD(Λ) = N

∫
r̂∈S2

∑
n,l,m∈D∗

fnlmym
l (r̂)

∑
i,j,k∈D∗

fijk

j∑
k′=−j

R
(j)
k′k(Θ)yk′

j (r̂)dr̂, (6)
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where R
(j)
k′k(Θ) are the real Wigner-D functions. On integrating over the unit

sphere, all terms vanish except n = i, l = j and m = k′ to give an expression for
the FPD at rotation Λ:

FPD(Λ) =

⎛⎝ ∑
n,l,m∈D∗

f2
nlm

⎞⎠−1 ∑
n,l,m∈D∗

fnlm

l∑
k=−l

fnlkR
(l)
km(Θ), (7)

in which the normalization factor N has been replaced by its expression. It is
remarkable that (7) can be interpreted as a result of the Wiener-Khinchin the-
orem which states that the autocorrelation of f is the inverse SO(3)–Fourier
transform of the corresponding power spectral density function.

The expression in (7) is a closed-form solution of (4), which directly relates
the FPD to the SPF expansion coefficients of f for a single voxel. This avoids
the need for cumbersome numerical discretization schemes of f on the 2-sphere
for each voxel, by turning the FPD computation into a fast dot product between
vectors of SPF coefficients. Note that the result obtained in (7) is not only valid
for the Spherical Polar Fourier (SPF) expansion method [3] but also for any
local reconstruction method of the diffusion signal based on spherical harmonics
functions (e.g., Q-Ball Imaging (QBI) [9], the Diffusion Orientation Transform
(DOT) [10] and Diffusion Propagator Imaging (DPI) [11]).

2.2 A Distance Metric

Having meaningful statistics on the FPD function SO(3) → R given in (7)
requires the definition of a distance metric on the rotation group SO(3). Al-
though it is possible to define a metric which uses the Euler angles, such a
parametrization will degenerate at some points on the hypersphere, leading to
the problem of gimbal lock, the loss of one degree of rotational freedom. We
avoid this by using the quaternion representation h ∈ H ⊂ R4, i.e., a set of four
Euclidean coordinates h = {(a, b, c, d) | a, b, c, d ∈ R} using the basis elements
1, i, j, k which satisfy the relationship i2 = j2 = k2 = ijk = −1. Quaternions
can parametrize rotations in SO(3) by constraining their norm to unity, i.e.,
‖h‖ = a2 + b2 + c2 + d2 = 1. In this setting, the four scalar numbers have only
three degrees of freedom and the unit quaternions form a subset S3 ⊂ R4. If we
regard the quaternions as elements of R4, any usual Lp norm ρs can be used to
define a metric on SO(3) between h1 and h2:

ρ(h1,h2) = min
{
ρs(h1,h2), ρs(h1,−h2)

}
, (8)

Throughout this paper, ρs stands for the L2 norm. It follows that (H, ρ) is a
metric space. We define the p-th moment of the FPD about a given quaternion
h0 ∈ H as

Mp(ho) =
∫
h∈H

ρ(h,h0)p dFPD(h), (9)
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Fig. 2. The Fibre Population Dispersion (FPD) function reveals the autocorrelation
of a spherical feature of the diffusion PDF. The FPD is computed on the ODF2 com-
posed of two fibre populations crossing at 0.5 rad in the xy-plane. Slices of the three-
dimensional FPD are are plotted in this figure on a Cartesian grid by selecting a
uniform sampling in Euler angles sets (α, β, γ), with dα = dβ = dγ = 0.1 rad (see text
for a discussion).

with p ∈ N. The p-th moments of the FPD defined in (9) give a quantitative
measure of the shape of the FPD, and yield different values depending on the sep-
aration, size and numbers of fibre populations (as discussed further in Section 3).
The moment Mp can be computed about any unit quaternion h0 ∈ H, but the
identity quaternion hI = k represents a zero rotation and is consequently the
most “natural” choice in the sense that it leads to the central moments Mp(hI).

3 Results

3.1 Synthetic Data

Fig. 2 illustrates a simulated diffusion PDF for two fibre populations crossing
in the same voxel (left of Fig. 2) and its related Fibre Population Dispersion
(FPD) function computed using the closed-form we provide in (7). We chose the
Euler zyz-convention, therefore the symbol α denotes the Euler angle around
the z-axis, β the angle around the rotated y-axis and γ around the twice-rotated
z-axis (right of Fig. 2). Note that although apparent proximity or distance may
appear in the FPD image of Fig. 2, this may be misleading because the Euler
angles do not form an Euclidean metric. This results in a distorted mapping of
the neighbourhood compared to a proper metric such as the quaternion distance
ρ(h1,h2) (8). Nonetheless, it is relatively easy to identify the periodicity of the
FPD values of fibre populations which are conveniently oriented according to
the Euler axis of rotations. In Fig. 2, the variations of the FPD function along
β values on the line defined by γ = 1.1 rad and α = 0 rad reveals the presence
of two fibre populations at β = {1.1, 2.6} rad.

The computation of the closed-form FPD expression given in (7) requires
one to convert unit quaternions to Euler angles. A very efficient and generic
conversion is given in [12].
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Table 1. MICCAI 2009 Fibre Cup Phantom: parameters of the diffusion acquisition
sequence [13]. The diffusion sensitization was applied along a set of 64 orientations.

Scanner Siemens TrioTim (12 channel) Sequence=SSTR Magnetic field=3T
Voxel size= 3× 3× 3mm3 Image size=64× 64× 3 TR=5000ms

b-value= {650, 1500, 2000}smm−2 ‖g‖max=40mTm−1 TE={77, 94, 102}ms

(a)GroundTruth (left) (b) GFA [14]. (c) FPD (our result).

Fig. 3. The Fibre Cup phantom consists of fibre bundles crossing at specific locations
across the slice. We show a comparison of the generalized fractional anisotropy (GFA)
measure and our fibre population dispersion (FPD) measure. The GFA image does
not explicitly reveal crossings, while in the FPD image the brightness of a voxel is
proportional to the crossing angle.

3.2 MICCAI 2009: Fibre Cup Phantom

For evaluating our proposed analytical computation of the fibre population dis-
persion (FPD), we present results on the MICCAI 2009 Fibre Cup phantom. It
is composed of large bundles made of hydrophobic acrylic fibres whose diameter
is of the same order of that of myelinated axons, with a density close to 1900
fibres/mm2. The parameters of the acquisition are described in Table 1 and the
phantom is shown in Fig. 3a. The sampling uses three spheres in the q-space,
each having a q radius proportional to the b value, so that b = (2π)2(Δ− δ/3)q2.
The SPF reconstruction technique [3] is able to naturally take advantage of the
full set of samples provided, unlike HARDI reconstruction techniques which are
restricted to a subset of samples (i.e., a single sphere in the q-space). It was also
recently demonstrated to lead to more accurate and robust reconstruction of the
diffusion signal [4].

Fig. 3 illustrates the computation of the FPD on this phantom. As can be
seen in the ground truth image (c.f ., Fig. 3a), there are a limited number of
crossings located at specific regions of interest (ROIs) named (a-f). This con-
trolled environment is ideal to assess the potential of the FPD. Furthermore, the
ROIs can be sorted by the angle of the crossing, from nearly π rad at ROI (a) to



Apparent Intravoxel Fibre Population Dispersion 163

Table 2. Rat spinal cord phantom: parameters of the diffusion acquisition sequence [15].
The diffusion sensitization was applied along a set of 90 orientations.

Scanner Siemens Sonata Sequence=SSTR Magnetic field=1.5T
Voxel size= 2.5× 2.5× 2.5mm3 Image size=128× 96× 40 TR=8000ms

b-value= {3000}smm−2 Acquisition time=15min TE={110}ms

fanning fibres at ROIs (e,f). Fig. 3b shows the widely used generalized fractional
anisotropy (GFA) measure [14], which reflects the degree of angular coherency
but does not immediately reveal ROIs corresponding to crossings. In contrast,
our FPD technique, with the moment M8 measure proposed in (9), brings to
light these ROIs with brightness levels that depend on the angle of crossing, as
illustrated in Fig. 3c. In our experiments, the moment p-th order is based on
heuristics with a balance between good contrast for high moment order p and
robustness to low signal-to-noise ratio for low order p. Our results indicates that
p = 2 offers a good balance.

3.3 Rat Spinal Cord Phantom

For further evaluation of our FPD technique with HARDI data, Fig. 4 shows
results computed on a biological phantom constructed from excised rat spinal
cords with known connectivity [15]. Fig. 4a demonstrates that this biological
phantom possesses a single region of crossing tracts. As before, we compare the
GFA measure and our FPD technique using the moment M6.

The central voxel of the phantom interestingly exhibits a three dimensional
crossing, as a result of one fibre curving over the other. We hypothesize that this
diffusion profile results from the averaging of both tracts in a single voxel. Conse-

(a) T1-Weighted image (left) and the iso-
probability feature [3] (right).

(b) GFA [14]. (c) FPD (our result).

Fig. 4. Rat spinal cord phantom: it is constructed from excised rat spinal cords em-
bedded in 2% agar [15]. (a): an image of the phantom, and a zoom-in on the crossing.
(b-c): comparison of the generalized fractional anisotropy (GFA) measure and our fi-
bre population dispersion (FPD) measure. The latter clearly displays a single crossing
region, in correspondance with the ground truth.
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quently, this yields the highest FPD value in the slice, as shown in Fig. 4, whereas
the GFA does not identify this region. The remaining parts of the rat spinal cords
have a relatively constant brightness, which is consistent with the fact that their
diffusion profiles are very similar, except for the preferred direction of diffusivity.

4 Conclusion

In this paper we have presented a novel method which uses images acquired
with dMRI to statistically assess the intravoxel angular dispersion of fibre popu-
lations (FPD). We have demonstrated a closed-form expression for any spherical
function based on the diffusion Probability Function (PDF), and expressed in
the spherical harmonics basis. We have provided a proper metric on the rotation
group for analyzing the FPD to obtain the relative distance between intravoxel
fibre populations. This naturally leads to the introduction of scalar indices such
as the moments of the FPD, which summarizes the intra-voxel dispersion of fi-
bres. The proposed approach is based on a local per-voxel statistical analysis,
and is thus fundamentally different from non-local techniques such as tractogra-
phy. We have illustrated the potential of the FPD technique on both synthetic
data and physical phantoms. Our experiments reveal features of the underlying
microstructure, and in particular, reveal crossing regions that are not discernible
in the widely used GFA images. As such, the FPD may yield interesting new
possibilities for the detection and monitoring of neurological disease from dMRI.
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Abstract. In the field of diffusion weighted imaging (DWI), it is com-
mon to fit one of many available models to the acquired data. A hybrid
diffusion imaging (HYDI) approach even allows to reconstruct differ-
ent models and measures from a single dataset. Methods for DWI atlas
construction (and registration) are as plenty as the number of available
models. Therefore, it would be nice if we were able to perform atlas
building before model reconstruction.

In this work, we present a method for atlas construction of DWI data
in q-space: we developed a new multi-subject multi-channel diffeomor-
phic matching algorithm, which is combined with a recently proposed
DWI retransformation method in q-space.

We applied our method to HYDI data of 10 healthy subjects. From
the resulting atlas, we also reconstructed some advanced models. We
hereby demonstrate the feasibility of q-space atlas building, as well as
the quality, advantages and possibilities of such an atlas.

1 Introduction

Diffusion weighted imaging (DWI), a magnetic resonance imaging (MRI) tech-
nique, is able to provide us with valuable information about tissue microstruc-
ture, for instance in the white matter of the brain, by measuring and imaging
the self-diffusion of water within this tissue in vivo. Over the years, many models
have been proposed to get a grip on the complex information acquired using a
DWI protocol. Different models usually have different requirements on the qual-
ity and specifications of the acquired data. The recent strategy of hybrid diffusion
imaging (HYDI) [1] accounts for this by proposing to acquire data from multiple
shells of constant diffusion weighting in q-space. The resulting data (or the ap-
propriate parts of it) can then easily be used for the reconstruction of different
models and the calculation of different measures.

Methods for image registration and atlas building are plenty in number, and
many have been devised for different (but not all) possible DWI models. The
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unique challenge involved in handling the information in DWI datasets is its
orientational dependency. This particular fact renders spatial transformation of
these data a difficult challenge of its own: apart from a standard interpolation,
an additional reorientation or retransformation step has to be performed in every
voxel. This is necessary to keep the information in all voxels in correspondence
with the underlying orientational structure of the tissue. Different reorientation
and retransformation strategies have already been proposed for some, but again
not all, possible models. With the use of all these different models and their own
unique registration and atlas building methods, the question also raises to what
extent these choices might cause a bias on the results.

All of these problems could potentially be evaded and solved at the same time
by being able to perform registration or atlas building before the reconstruction
of any particular model. The result of such a strategy would have the advantage
of still allowing any model to be reconstructed from the same transformed data in
q-space. Recently, a method has been proposed to correctly transform raw data
(sampled from different shells) in q-space [4]. This effectively opens up the path
to registration and atlas building in the raw q-space. In this work, we combine
this method with a newly developed multi-subject multi-channel diffeomorphic
matching algorithm. The result is a true q-space atlas building method. We then
apply this method to HYDI data of 10 healthy subjects. From the resulting atlas,
we also reconstruct a selection of some more advanced models.

This work should illustrate the feasibility of q-space atlas construction (or
registration) and at the same time highlight the advantages of a resulting q-
space atlas by presenting some of its possibilities.

2 Methods

2.1 Acquisition

Data were acquired from 10 healthy subjects. This was done using a Siemens 3T
scanner, with a 2.5mm isotropic voxel size. A HYDI approach was taken. For
each subject, in addition to 10 non-DWI (B0) volumes (which were averaged), 3
different shells of q-space were sampled: 25 gradient directions at b = 700 s/mm2

(q = 24.98mm−1), 40 gradient directions at b = 1000 s/mm2 (q = 29.85mm−1)
and 75 gradient directions at b = 2800 s/mm2 (q = 49.96mm−1).

2.2 Matching

A new multi-subject multi-channel diffeomorphic matching algorithm was devel-
oped in order to match all subjects simultaneously in the average subject (atlas)
space. The matching process was guided by 7 “channels”, which were calculated
straight from the raw data. The 1st channel is simply the average B0 of each sub-
ject. The other channels are based on the apparent diffusion coefficient (ADC).
The ADC of each acquired DWI volume is defined as ADC = − ln(S)/b, where
S is its signal intensity normalized by the average B0. The 2nd, 3rd and 4th

channel consist of the average ADC over each of the 3 shells. The 5th, 6th and
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7th channel contain a generalized fractional anisotropy (GFA) measure for each
shell, which is calculated as GFA = std(ADC)/ rms(ADC).

The algorithm itself is a combination of diffeomorphic demons [2] and the
idea of SyN [3] (no target image, both images deform), extended towards any
number of subjects (N) and channels (M). At each iteration, given the cur-
rently deformed subjects I, an unconstrained correspondence update field �U is
calculated for every subject Ii:

�U(Ii) =
∑

1≤k≤M
1≤j≤N

j 
=i

�V (Ii,k, Ij,k)
(N − 1)M

(1)

This is an average, over all N − 1 other subjects and M channels, of a force �V
acting between this subject’s channel Ii,k and the corresponding channel Ij,k of
another subject. In our case, this results in 9×7 = 63 force fields acting on each
subject at each iteration! The force �V between 2 images I and J is defined as:

�V (I, J) = −
(I − J)

(
�∇I + �∇J

)
/2∥∥∥(�∇I + �∇J

)
/2
∥∥∥2 + (I − J)2 / (2ε)2

(2)

This symmetric (�V (I, J) = −�V (J, I)) force incorporates the gradients of both
images and has theoretical as well as practical advantages [2]. The parameter ε
can be set as the maximum step size.

The algorithm proceeds as diffeomorphic demons, but with every subject
treated as a moving entity. In short: a fluid regularization (Gaussian filter) is
applied to each �U(Ii); the diffeomorphic update step (composition of the de-
formation fields with the fast vector field exponentials of the correspondence
update fields) is performed; an elastic/diffusion regularization (Gaussian filter)
is applied to each resulting new deformation field. All subject’s channels are fi-
nally deformed according to the new total deformation fields. The whole process
iterates, starting again from calculating (1).

The only parameters are ε and the standard deviations of the regularization
kernels. We have them initially all set at 2 (voxels). When convergence is reached,
they are all switched to 1, and finally to 0.5.

2.3 Deformation and Averaging

Using the final 10 deformation fields obtained from the matching algorithm,
the raw acquired volumes are resampled. However, for DWI data, a retransfor-
mation step is also needed in each sampled voxel. In [4], it is shown that just
reorienting the gradient directions using the forward affine matrix in each voxel
produces wrong results, and a correct new method that also preserves isotropic
and anisotropic volume fractions is proposed. We apply this method for each
of the 3 shells, based on the Jacobian of the deformation fields in each voxel,
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Fig. 1. 5x5 voxel detail of the actual atlas (3 analytic shells representing normalized
signals in q-space: b700, b1000, b2800). Reconstructed tensors from b1000 as well as
fODF’s from b2800 are also shown. The region is indicated on an axial slice.

Fig. 2. Non-DWI (B0) (left) and CFA (right) of some axial, sagittal and coronal slices

using an order 6 spherical harmonics (SH) representation of the normalized sig-
nal, 1 isotropic and 300 anisotropic volume fractions, shaped by eigenvalues
0.0018mm2/s and 0.0003mm2/s. The resulting SH coefficients of the 3 shells
are averaged over all subjects, producing the final atlas: every voxel contains
3 × 28 SH coefficients, analytically representing 3 normalized signal shells in
q-space. We will further refer to these as b700, b1000 and b2800.

2.4 Reconstructions

Apart from a simple tensor fit from diffusion tensor imaging (DTI) and a fiber
orientation distribution function (fODF) reconstruction using spherical decon-
volution (SD) [5], we will also demonstrate some more advanced reconstructions
on the atlas to explore its possibilities to a larger extent. First we will perform a
full brain fiber tractography on the fODF’s resulting from constrained spherical
deconvolution (CSD) [6]. This puts the angular quality of b2800 to the test.
Next, we present different parameter maps resulting from a diffusion kurtosis
imaging (DKI) model fit on the full atlas [7,8]. This is more of a test for the
quality of the radial information, i.e. the relation between the different shells. Fi-
nally, we reconstruct the ensemble average propagator (EAP) using the recently
proposed multiple q-shell diffusion propagator imaging (mq-DPI) strategy [9].
This technique exploits the full angular and radial information of the atlas.
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Fig. 3. Fiber tracking: fODF’s from CSD (top left); 10 mm thick axial slab (top middle)
and 3mm thick coronal slab (top right) through the tract volume; sagittal view of the
full tract volume (bottom left) and cut in half by the mid-sagittal plane (bottom right)

3 Results

In this section, we mainly focus on presenting visualisations of the atlas and its
reconstructions, allowing for easy assessment and interpretation of the results.

3.1 The Atlas

The atlas itself consists of 3 analytic shells of normalized signals in q-space. For
all purposes, these can be sampled along any set of gradient directions, but the
SH representations themselves can also prove to be useful (in addition to being a
compact representation of the atlas). A small detail (an area where the cingulum
and the corpus callosum pass close to each other) of the actual atlas contents
is shown in Fig. 1. Already easily exploiting the hybrid nature of the atlas, we
also show reconstructed tensors from b1000 and fODF’s from b2800 (using SD
[5]), as well as some color-encoded fraction anisotropy (CFA) maps in Fig. 2. For
the atlas to be complete, we should add the non-DWI volume to it (Fig. 2). If
required, it can for instance be used to “de-normalize” samples from the shells,
resulting in DWI images as they would be produced by a scanner.

3.2 Full Brain Fiber Tractography on fODF’s Resulting from CSD

The MRtrix package (http://www.brain.org.au/software/) was used to perform
CSD [6] and fiber tracking. To this end, we sampled b2800 in the original 75
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Fig. 4. DKI maps: FA, MD, AD, RD (top row) and KA, MK, AK, RK (bottom row)

directions, and provided this (just as if it were a normal dataset) to MRtrix.
We performed CSD using an order 8 SH basis. Even though the atlas itself has
only information “up to order 6”, this is still useful because CSD is a nonlinear
operation: the higher order can be used to fulfill the non-negativity constraint
while preserving the quality of the resulting fODF. Fiber tracking was seeded in
a white matter mask and constrained to a full brain mask. The fODF amplitude
cutoff was 0.25 to initiate tracks and 0.15 to terminate tracks. A stepsize of
0.2mm and minimum radius of curvature of 1mm were used. Minimum and
maximum track length were set to 15mm and 300mm. Using these settings,
50000 deterministic and 50000 probabilistic tracks were generated, resulting in
a dense 100000 tract volume. Results are shown in Fig. 3.

3.3 Parametermaps from DKI

The full atlas was sampled for the original 140 directions and the DKI [7]
model was fit to the resulting dataset. DKI accounts for non-Gaussian diffusion
(whereas DTI assumes Gaussian diffusion). This allows for an improved and b-
value-independent estimation of the classical tensor parameters and at the same
time produces some new parameters that quantify the non-Gaussianity [8]. We
calculated the classical fractional anisotropy (FA), mean diffusivity (MD), axial
diffusivity (AD) and radial diffusivity (RD), as well as the kurtosis anisotropy
(KA), mean kurtosis (MK), axial kurtosis (AK) and radial kurtosis (RK). Re-
sults are shown in Fig. 4.

3.4 Full 3D Signal Fit and the EAP from mq-DPI

Recently, mq-DPI [9] has been proposed as a means of reconstructing the 3D
EAP. The idea is to model data of several shells in q-space with solid harmonics
(solutions of the Laplace equation in spherical polar coordinates). Using this
representation, an analytical solution exists for the Fourier integral that relates
the measured signals to the EAP. This time we will use the SH representation
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Fig. 5. mq-DPI in a single voxel: b2800 shell, fODF, axial plane through the shell (top
left); solid harmonic fit in the axial plane for q = 25, 30, 35, 40, 45, 50, 55mm−1 (from
outside to inside) and with addition of the original b700, b1000, b2800 (green) (top
right); EAP at radii ranging from 12 μm to 21 μm (bottom row, left to right)

of the 3 shells to fit the new model (solid harmonics) to. The implementation
described in [9] can easily be adapted for this purpose, as it also implicitly
performs a SH fit (but combined with the radial solid harmonic matrices). The
final fit describes the signal in function of angle and radius (expressed by the
q-value instead of b-value). We used an order 6 fit, modelling our previous 3×28
with 2×28 new coefficients. In Fig. 5, we try to give an impression of what such
a fit looks like. We picked out a voxel containing a very general setting: 2 fiber
populations with a different volume fraction and crossing at a certain angle. A
view on the fit inside an axial plane is presented. Using the analytical solution
of [9], we also reconstructed the EAP at different radii.

4 Discussion and Conclusion

In this work, we presented a method for atlas building of DWI data in the raw q-
space. To this end, we combined a newly developed multi-subject multi-channel
diffeomorphic matching algorithm with a recently proposed retransformation
method [4]. We pursued methods that stay as close as possible to the original
data: the channels used in the matching process were all calculated straight from
the raw data and the retransformation also operates on the shells in q-space. We
should note that the resulting method can just as well be used as a groupwise
registration algorithm in different group studies. For the case of 2 subjects, it
simply reduces to a (bias/template-free) registration algorithm.

We applied our method to HYDI data of 10 healthy subjects. The result is
a DWI atlas, containing analytic representations of 3 shells of q-space data in
each voxel. These shells can be sampled for any set of gradient directions, but
the analytic SH representations themselves can also be used. We inspected the
atlas for its quality and possibilities by performing a simple DTI fit and fODF
(from SD [5]) reconstruction, as well as a full brain fiber tractography using
fODF’s from CSD [6], parametermaps from a DKI model fit [7,8] and a 3D
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signal fit and EAP reconstruction from mq-DPI [9]. The outcomes of all these
reconstructions are realistic and of good quality. This indicates that the full
atlas building method must have brought all subjects in good correspondence,
as well spatially as in orientational and radial structure in each voxel. Especially
the latter parts are not evident. Because the retransformation is performed as a
separate step after the matching and it is very sensitive to the deformation field,
a sufficiently smooth deformation field is an absolute requirement. On the other
hand, a good matching is of course also necessary. A good balance between both
is the key to success. We believe that the fluid and elastic/diffusion regularization
both play an invaluable part in achieving this.

To conclude, we have shown that DWI atlas construction in q-space is feasible,
has advantages and can produce a qualitatively good result.
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Abstract. In this paper, we propose a novel method for correcting the
geometric distortions in diffusion weighted images (DWI) obtained with
echo planar imaging (EPI) protocol. Our EPI distortion correction ap-
proach employs a deformable registration framework with the B-splines
transformation, where the control point distributions are non-uniform
and functions of the expected norm of the spatial distortions. In our
framework, the amount of distortions are first computed by estimat-
ing the B0 fieldmap from an initial segmentation of a distortion–free
structural image and tissue susceptibility models. Fieldmap estimates
are propagated to obtain expected spatial distortion maps, which are
used in the sampling of active B-spline control points. This transforma-
tion is flexible in locations with large distortion expectations, yet with
relatively few degrees-of-freedom and does not suffer from local optima
convergence and hence does not distort anatomically salient locations.
Results indicate that with the proposed correction scheme, tensor derived
scalar maps and fiber tracts of the same subject computed from data ac-
quired with different phase encoding directions provide better coherency
and consistency compared traditional registration based approaches.

1 Introduction

Diffusion tensor images (DTI) are typically acquired using echo planar imaging
(EPI) [1] acquisitions, which are vulnerable to static magnetic field inhomo-
geneities subsequently leading to image distortions. The amount of distortion in
an EPI image is proportional to the static field inhomogeneity. Additionally, im-
ages obtained at higher field strengths suffer more from EPI distortion artifacts.
The geometric distortions in areas with large magnetic susceptibility gradients,
such as the sphenoid sinus, temporal lobe and brain stem can lead to incorrect
tensor derived scalar maps and can also result in incorrect fiber tracking.
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EPI distortions and their effects on scalar images is a well investigated problem
and several schools of correction algorithms have been proposed. In their pio-
neering work, Jezzard et al. [2] employed a B0 inhomogeneity map (fieldmap),
which was computed from two gradient–echo scans with differing echo times.
They showed that distortions are significant along the phase-encoding direction
and are directly related to the inhomogeneity maps. Several other works followed,
which employ the fieldmapping strategy [3]. Another approach to the problem
involves a non-linear registration of the distorted B0 EPI image to a structural
anatomically correct MR image [4,5]

Fieldmapping based methods, in spite of their physical intuitiveness, suffer
from the difficulty of calculating the phase maps near edges or in regions of
high-field inhomogeneity. They also require additional scans and precise mea-
surements, such as dwell time. Additionally [6,7] show that elastic registration
based correction schemes usually outperform fieldmapping approaches. How-
ever, elastic registration based approaches usually suffer from the ”curse of di-
mensionality” due to their large parametric space and result in distortion of
salient anatomical locations. If the parametric space is reduced to deal with this
problem, large distortions at high and ultra–high fields can not be corrected.

In this work, we propose a novel fast and robust algorithm for EPI distortion
correction, which combines the strengths of fieldmap approaches and elastic reg-
istration. A non-uniform B-spline control grid is constructed, where the image
is densely sampled with grid knots at locations with large expected distortions
and sparsely sampled at locations where the distortions are homogenous. The
expected distortions are obtained by synthesizing an artificial fieldmap based
on tissue segmentation maps and tissue susceptibility models. Our methods are
physically based due to their relationship to fieldmaps; however, they overcome
the shortcomings of fieldmap based techniques given the increased adaptivity.
Section 2 describes the main steps of the proposed pipeline, where our fieldmap
estimation process is briefly reviewed in Section 2.1 and B-Spline knot sampling
is described in Section 2.2. Our experimental setup and validation procedures
are described in Section 3 and Section 3.1. The results are presented in Section
4 and the paper is concluded with future directions of Section 5.

2 Methodology

The proposed EPI distortion correction framework is demonstrated in Figure
1. After motion and distortion correction of the DWI data [8], the distortion-
free structural (T2) image is rigidly registered to the specific b = 0 s/mm2

image. It is then segmented into four classes, white matter, gray matter, cerebro–
spinal fluid (CSF) and air in the b = 0 s/mm2 image’s native space. The tissue
label image is subsequently fed into a fieldmap estimation routine first proposed
in [9], later employed in [10]. The estimated fieldmaps are transformed into
deformation fields and these deformation fields are used to determine the non-
uniform sampling regimen of B-spline knot points. The resulting transformation
is used during elastic registration and the final deformation field is applied to
each diffusion weighted volume.
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Fig. 1. The flow of the proposed EPI distortion correction framework

2.1 Fieldmap Estimation

Our fieldmap estimation process is based on the work of Jenkinson et al. [9],
which models the first order perturbations in the main magnetic field B0

z . Let
the susceptibility, χ, be expanded as : χ = χ0+δχ1, where χ0 is the susceptibility
of air (4×10−7) , δ is the susceptibility difference between tissue and air and χ1

is a binary variable describing the tissue type. The first order perturbations in
the magnetic field B

(1)
z can be written in terms of the main magnetic field B

(0)
z :

B(1)
z =

χ1

3 + χ0
B(0)

z − 1
1 + χ0

((
∂2G

∂z2
) ∗ (χ1B

(0)
z ))

where G is the Green’s function with G(x) = (4πr)−1 with (r =
√

x2 + y2 + z2).
The solution to the convolution operation for a single voxel of resolution (a, b, c):

H(x) = (
∂2G

∂z2
) ∗ (χ1B

(0)
z ) =

∑
i,j,k∈{−1,1}

(ijk)F (x + ia/2, y + jb/2, z + kc/2)

where F (x) = 1
4πatan(xy

zr ) . For a set of voxels, due to the linearity of convolution
operation, the perturbation field becomes: B(1)

z (x) =
∑

x′ χ1(x′)H(x− x′)
Assuming the phase encoding direction along the y axis, the deformation due

to this fieldmap can be obtained with:

Δy =
γB

(1)
z (x)Nytdwell

2π

where γ is the gyromagnetic ratio, Δy is the pixel shift, Ny is the number
of voxels along the phase encoding direction and tdwell is the dwell time. As
described in [10], this model does not account for shimming applied around the
edges and might not be adequate for direct use in distortion correction. Figure
2 (a) displays a slice from a structural image and (b) the estimated fieldmap.
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a) Structural image b)Unmasked fieldmap c) Knot point distribution.

Fig. 2. Examples slices for fieldmap estimation from a structural image and the sam-
pling of a B-spline grid points

2.2 Adaptive B-spline Sampling Using Fieldmaps

The power of the proposed approach is its ability to model the complex defor-
mations estimated with fieldmaps in a robust manner through a sophisticated
physically-based transformation model. This is achieved by nonuniform sampling
of B-spline grid locations as a function of the estimated displacements. The sam-
pling of the knot points is performed algorithmically in a multi–resolution fashion
as follows: Let Df be the deformation field estimated using the fieldmaps.

1. Place a B-spline grid of m×m×m onto Df . This partitions the image onto
(m− 1)3 cubes. Typically, we set m = 7.

2. Generate De by only using values of Df on grid locations and interpolating
the other voxel displacements using cubic B-Spline kernels.

3. For each cube Ω:
– Temporarily place a control point p at the center of Ω.
– Recompute De(Ω) for the given cube within the cube Ω.
– If ||Df (Ω) −De(Ω)|| > ε ( a user–defined threshold),

• Set p as a new control point.
• Replace Ω with eight new cubes within itself.
• Activate the new cubes.

– Else deactivate Ω.
4. Repeat until no active cubes are present.

This strategy generates a multi-resolution pyramid of B-spline grids, with the
initial level containing fully active 7 × 7 × 7 control points (if m = 7), the
second level containing partially active 15 × 15 × 15 control points, and so on.
Figure 2 (c) displays the knot sampling obtained with this procedure with the
displacements computed from the fieldmap in (b). This image is brain masked
for clarity purposes.
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3 Experimental Setup

Five healthy volunteers were scanned on a 3T scanner using an eight channel
coil. DWI data were acquired with FOV = 24× 24 cm, slice thickness=2.5 mm,
matrix size=128 × 128, 66 axial slices, parallel imaging factor of 2. The DWI
data set consisted of ten images with b = 0 s/mm2, ten images with b = 300
s/mm2 and 60 images with b = 1100 s/mm2. For all subjects, two DTI scans
were acquired with different phase encode direction (AP and RL) for validation
purposes. Structural T2 weighted anatomical images (T2W ) were also acquired.

During the elastic registration, the deformation field obtained in the previous
level of the pyramid is used to initialize the coefficients of the B-spline at the
current level. The optimizer used in the registration is a variant of limited mem-
ory Broyden-Fletcher-Goldfarb-Shanno (BFGS) method, which lets the user to
set lower and upper bounds for the coefficients. At current level of the pyramid,
the active grid points are allowed to move freely, whereas the inactive nodes
were constrained to move only within 10% of the value obtained from the pre-
vious level. Additionally, control points were only allowed to move along the
phase encoding direction. Up to four levels of the B-spline coefficient pyramid
was employed in registration in practice.

3.1 Validation

For comparison purposes, another elastic registration algorithm with B-spline
transformation of uniform grid sampling (e.g., 10 × 10 × 10) was implemented
as reference. The performance of such a registration scheme has been previously
shown to outperform that of a fieldmap based approach in most cases [6].

The validation of the proposed correction framework was two-folds: First,
the overlap of the structural image, the distorted image, image corrected with
the reference algorithm and the image corrected with the proposed algorithm
were visually assessed. Second, to quantify the overall improvements in diffusion
tensor image quality, probabilistic tractography was carried out on cingulum
bundle. The tensor images for every subject, for each phase encode direction
and correction scheme, were then fed into a tensor field-based elastic registration
routine to compute a population average tensor image and the transformations
that mapped each data onto this average brain space. The transformations were
subsequently applied to the corresponding tract images in such a way that every
single tract image resided in the same coordinate framework. These population
connectivity images were first visually analyzed. For these tract images, voxel
values were subsequently statistically compared with Wilcoxon Rank test to
check for the equality of the medians of number of visitations and to deduce
consistency differences between AP and RL; and reference v.s proposed method.

4 Results

Figure 3 displays the results for the scalar images. The first column of the fig-
ure depicts the original undistorted T2W structural image, the second column
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a) Structural image b) Distorted image c) Reference d) Proposed

Fig. 3. Results of the proposed correction algorithm and the reference elastic registra-
tion algorithm on the b = 0 s/mm2 images. Phase encoding direction is RL.

displays slices from the distorted b = 0 s/mm2 image, third column shows the
output of the proposed correction scheme and the last column is for the reference
algorithm. The distortion is along the RL direction. In the lower brain, where
the distortion is significant, the proposed algorithm performs significantly bet-
ter than the reference method in the right temporal lobe and left limbic lobe.
Both approaches can correct for global displacements but the proposed approach
can cope with large local displacements due to its transformation model. For
mid-level slices (bottom row), both approaches perform well, with the proposed
method showing a slightly better performance around middle frontal gyrus (top
left portion of images).

4.1 Tractography Results

The average population tracts for the cingulum bundle over 5 subjects, for data
acquired with RL and AP distortion are displayed in Figure 4. In this figure,
brightness of tracts indicate the probability of reaching the voxel from the seed
ROI. Following conclusions can be drawn from the figure:

– Both correction schemes improve the continuity of the tracts indicated by
brighter shades along the tracts. Therefore, one can conclude that EPI dis-
tortion correction is an often neglected but crucial step in DTI processing.

– Continuities are also improved with the proposed method.
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AP RL

Dist.

Ref.

Prop.

Fig. 4. Population tract averages. Left column displays the results for data acquired
with AP distortion and the right column RL distortion. Top row tracts are computed
with distorted data, and the bottom row with the proposed correction scheme.

– The proposed method also increases the consistency between data acquired
with different distortion directions as the similarity of tracts increases with
the reference method compared to the distorted data and with the proposed
method compared to the reference approach.

Table 1 displays the results of the statistical tests. These statistics indicate that
the proposed correction algorithm results in improved continuity along the tracts.
Even though tracts obtained from RL distorted data and AP distorted data are
still not statistically significantly similar, a considerable improvement can be
observed in their consistency behavior.

Table 1. Statistics on equality of the median of cingulum visitation distributions. The
mean values indicate the average number of visitations per voxels along the tracts.
10,000 tracts were initially casted per seed voxel.

H0 p–value μ

μRLref = μAPref 1.19 10−6 APref 4275
μRLprop = μAPprop 8.37 10−3 RLref 3415
μRLprop = μRLref 1.81 10−7 APprop 4776
μAPprop = μAPref 0 RLprop 3854
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5 Conclusions and Future Work

In this work, we proposed a novel EPI distortion correction approach that com-
bines the strengths of fieldmap based and elastic registration based correction
approaches and minimizes their pitfalls. The algorithm has been shown to per-
form better than a typical elastic registration based approach both in terms of
overlaps of single images and tracts computed from a set of diffusion weighted
images of a population. As a future direction, the deformation maps generated
by this approach will be used in a point spread function scheme and the effects
of EPI signal washout at ultra-high fields will be investigated.
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Abstract. High Angular Resolution Diffusion Imaging (HARDI) de-
mands a higher amount of data measurements compared to Diffusion
Tensor Imaging (DTI), restricting its use in practice. We propose to rep-
resent the probabilistic Orientation Distribution Function (ODF) in the
frame of Spherical Wavelets (SW), where it is highly sparse. From a re-
duced subset of measurements (nearly four times less than the standard
for HARDI), we pose the estimation as an inverse problem with sparsity
regularization. This allows the fast computation of a positive, unit-mass,
probabilistic ODF from 14-16 samples, as we show with both synthetic
diffusion signals and real HARDI data with typical parameters.

1 Introduction

Diffusion Magnetic Resonance Imaging (MRI) provides an unparalleled tool to
probe the connectivity of the nerve fibers within the white matter of the brain
in vivo. At the core of this technique is the relationship between the signal
E(q), acquired by the MRI scanner when a pulsed gradient encoded by the
wave-vector q is applied, and the random process P (R) driving the restricted
diffusion of water molecules. Such relationship is modeled as the following Fourier
transform [1]:

P (R) =
∫∫∫

R3
|E(q)| exp (−j2πq · R) dq. (1)

The obvious way to recover P (R) is to sample E(q) and approximate eq. (1) as
a discrete Fourier transform, what is known as Diffusion Spectrum Imaging [2].
The main drawback of this technique is the need to sample the entire space
of wave-vectors q, since each of them implies the acquisition of a whole MRI
volume. Though it has been recently shown [3] how this amount of data can
be drastically reduced using Compressed Sensing (CS, [4]), this approach still
requires several hundreds of samples to attain a reliable reconstruction.

High Angular Resolution Diffusion Imaging (HARDI, [5]) permits reduction of
the measurements to a sampling of the space of orientations with constant ‖q‖.
This is achieved at the expense of losing the radial information in P (R), com-
puting some sort of projection or Orientation Distribution Function (ODF) [2]:

Φ(r) =
∫ ∞

−∞
P (Rr)R2dR =

−1
8π2

∫∫
⊥r

ΔE(q)dq. (2)

There are some other alternative definitions for the orientation function (see [6]
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for an excellent review on this topic), but eq. (2) has the advantage of being a
true probability law [7]. HARDI typically requires 60-100 wave-vectors q, but
considerations similar to those in [3] allow relaxation of this requirement to a few
tens (16-30) [8, 9], whenever a sparse representation of E(q) may be achieved.
This condition is met by representing E(q) in a suitable vector frame, namely
Spherical Ridgelets (SR), whose components closely resemble the shape of E(q)
at different scales. This frame is adequate in [8] since the object of interest is
the diffusion signal. Unfortunately, these plate-like functions do not fit the cigar-
shaped appearance of the probabilistic ODF, Φ(r), and cannot be expected to
provide a sparse representation of it.

In section 2, we postulate Spherical Wavelets [10] as a suitable frame to
sparsely represent the Φ(r) in eq. (2), as depicted in Fig. 1. In section 3 we
formulate the estimation of the ODF as an inverse problem, by relating the
SW functions to their counterparts in the q-space. We propose two alternative
solutions based on either �1 or �2 regularization, justifying that non-negative �2
provides sparse representations analogous to �1. Finally, the results in section 4
illustrate how positive, unit-mass, probabilistic ODFs can be recovered from as
few as 14 gradient directions. With �2 regularization, the minimization problem
can be solved with Newton-like methods, becoming computationally efficient.

2 Spherical Wavelets to Sparsely Represent Φ(r)

The shape of the ODF in Fig. 1 implies that a combination of a few Spheri-
cal Wavelets (SW, [10]) with different widths and orientations may accurately
represent Φ(r) for an arbitrary ensemble of diffusion compartments, i.e. the co-
efficients of Φ(r) in its SW expansion are sparse. The domain of definition of SW
is the set Ω ≡ {r ∈ R

3 : ‖r‖ = 1} of unit directions (i.e. diffusion gradients).
Their definition is founded on the basis of Spherical Harmonics (SH), for which
the following summation formula holds:∑l

m=−lY
m
l (u)Y m

l (v) =
2l + 1

4π
Pl(u · v), (3)

where Y m
l is the real SH basis function of degree l ≥ 0 and order −l ≤ m ≤ l, and

Pl is the Legendre polynomial of degree l. Note Pl(u ·v) is a rotation of Y 0
l (u) to

an auxiliary system for which the ‘z’ axis is aligned with v. Any symmetric (i.e.
f(u) = f(−u)), square-integrable function f ∈ L

2
sym(Ω), can be written as [10]:

f(u) =
∫ ∫

Ω

f(v)
∞∑

l=0,2,...

2l + 1
4π

Pl(u · v)dv =
∫ ∫

Ω

f(v)Θv(u)dv, (4)

where Θv(u) is a spherical convolution kernel. To achieve a scale-space repre-
sentation of f(u), the following scaling kernel Kv,j(u) and semi-discrete frame⋃∞

j=−1

⋃
v∈Ω Ψv,j(u), that spans L

2
sym(Ω), are introduced in [10]:

Kv,j(u) =
∞∑

l=0,2,...

2l + 1
4π

κρ

(
2−jl

)
Pl(u · v), (5)
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Ψv,j(u) =
{

Kv,0(u), j = −1;
Kv,j+1(u) −Kv,j(u), j ≥ 0, (6)

where we choose κρ(x) = e−ρx(x+1). When the resolution j → ∞, κρ

(
2−j l

)→ 1
for each l, and we have the exact recovery in eq. (4). When j → −∞, κρ

(
2−jl

)→
0 for l �= 0, and we have the DC component of f(u). This reasoning clarifies the
multiscale nature of Kv,j, from coarse (j → −∞) to fine details (j → ∞).

3 ODF Reconstruction from Sparse Representations

From the representation provided by SW as described in the previous section, we
aim to estimate the ODF, Φ(r), as the sparsest combination of SW that can ex-
plain the data acquired in the q-space, E(q). Therefore, we need to compute the
q-space response of each SW defined in r ∈ Ω (section 3.1), and then discretize
the problem to account for the discrete nature of the measurements (section 3.2).

3.1 Response of SW Ψv,j(r) in the Space of Wave-Vectors q

We are interested in probabilistic ODF estimators [7], so that the response pur-
sued obeys the following form:

Φ(r) =
1
4π

+
1

16π2
G {Δbζ (E(q))} (r), (7)

Among the chances provided in [7], we choose ζ(·) = −Ei(− log(·)) as it seems
to be a trade-off between angular resolution and noise sensitivity. Also, the unit-
mass constraint comes for free with this model, since the Beltrami operator Δb

eliminates all DC components so that we keep only the 1/4π factor. We denote
by G the Funk-Radon Transform (FRT, [5]).

Since SH are eigenfunctions for both G and Δb, it is straightforward to prove
this property holds also for the rotated versions of Y 0

l (u), i.e. Pl(u · v). If we
insert eqs. (5) and (6) into (7), we get the following duality between the SW,
Ψv,j(r), and their counterparts in the q-space, Ξv,j(q) (see Fig. 1):

Ψv,j(r) =
∞∑

l=2,4,...

2l+1
4π

νρ,j(l)Pl(r · v) ⇔ Ξv,j(q) =
∞∑

l=2,4,...

4π(2l+1)
−l(l+1)

νρ,j(l)
λl

Pl(q · v),

νρ,j (l) =
{

κρ (l) , j = −1;
κρ

(
2−j−1l

)− κρ

(
2−jl

)
, j ≥ 0, (8)

where λl and −l(l + 1) are respectively the eigenvalues for G and Δb.
Note we drop the DC term l = 0 from the sums, according to our previous
statement.
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Fig. 1. Examples of: a) the true Φ(r) when P (R) is Gaussian; b) its corresponding
diffusion signal E(q); c) a SW, Ψv,j(r). These wavelets aim to sparely represent signals
of the type a), which seems quite reasonable; d) the response Ξ(q) to Ψv,j(r) in the
space of measurements; e) a SR, which in [8] aims to sparsely represent signals of the
type b). Note this shape prevents the use of SR to represent ODFs like a).

3.2 Optimization Problem with 
p Regularization

Like in [8], we need a fully discrete version of the frame we use for sparse rep-
resentation: let {qn}N

n=1 be the set of wave-vectors in the HARDI data-set; let
{rm}M

m=1 be the set of directions for which the ODF is computed; let {vj(k),k}K
k=1

be a collection of discretizations of Ω for each resolution level −1 ≤ j ≤ J . The
estimation of x ≡ Φ(r) is arranged as the �p inverse problem:

mina ‖a‖p , s.t. ‖Aa − y‖2
2 < η

with: x = Ba + 1
4π

∣∣∣∣ An,k = Ξvj(k),k,j(k)(qn); yn = E(qn);
Bm,k = Ψvj(k),k ,j(k)(rm); xm = Φ(rm). (9)

In brief, we discretize the responses Ξv,j(q) into a N ×K sampling matrix A to
find that a best describing the N×1 vector y ≡ E(q). These coefficients are used
to recover x from the discretized M ×K sparsifying matrix B. We deliberately
choose the same names used in [4], given the formal similarity of eq. (9) with CS
for p = 1. Typically, N � K, so that Aa = y is highly underdetermined. This
is the reason why a has to be assumed sparse a priori. Though sparsity is only
enforced in case p ≤ 1 [4], we also consider here the case p = 2 for the reasons
detailed below. Note the �2 problem has a closed-form solution for eq. (9):

a = AT
(
AAT + τ(η) · IN

)−1
y, (10)

3.3 Positivity Constraints on the Probabilistic ODF

Since Φ(r) is a probability law, it has to be positive for all r. Given a set of
directions {r′m′}M ′

m′=1, we add M ′ additional linear constraints to eq. (9):

B′a + 1
4π ≥ 0, Bm′,k = Ψvj(k),k ,j(k)(r′m′). (11)

Two important remarks arise here regarding the �2 problem: 1) the solution
in eq. (10) no longer holds, but eq. (9) becomes a quadratic program which is
still very efficient to solve compared to �1. 2) Non-negative least squares in fact
provide sparse solutions [11], so that we may reasonably hypothesize (see [9])
that the solution of the constrained �2 will approach that of the constrained �1.
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4 Results

Synthetic Experiments. We generate a two-tensor model simulating two fibers
crossing in angles 45o, 60o, or 90o. The results are the average for 300 trials with
random rotations of the tensor ensemble, with the diffusion signal generated as:

S(u) =

√(
1
2

exp (−buTD1u) +
1
2

exp (−buTD2u) + σ · nc

)2

+ (σ · ns)
2
,

(12)
for eigenvalues of Dn: [1.7, 0.3, 0.3] · 10−3 mm2/s, b = 2, 000 s/mm2, nc,s ∼
N (0, 1), and Signal to Noise Ratios (SNR): 1/σ =100, 40.

All the methods are coded in MatLab R©, using the �1-magic library
(http://www.acm.caltech.edu/l1magic/) to solve �1 and quadprog to solve
�2.

The parameters are fixed following the guidelines in [8]: a width ρ = 0.75
of the kernel in eq. (5) is chosen by trial and error for best performance, and
so it is the error threshold η in eq. (9) (its value depends on the scenario).
For the directions r, r′, and q, we choose regular samplings of Ω in all cases,
with respective set sizes M = 214, M ′ = 50, and N (the number of HARDI
measurements) ranging from 12 to 28. For the discretization of the SW frame,
we uniformly sample Ω at each level −1 ≤ j ≤ J , taking (2j+1m0 + 1)2 evenly
spaced samples, with m0 = 4 and J = 1.

For the sake of comparison, we have adapted the approach in [8] (namely, SR)
to interpolate ζ(E), and used eq. (7) to evaluate the probabilistic ODF. We have
also adapted the method described in section 3 by alternatively representing the
ODF in the basis of SH with l ≤ 4, where Φ(r) is not sparse1. The comparison is
based on the relative Mean Squared Error (rMSE) between the recovered ODF
and the ground-truth, computed using eq. (7) over a SH fitting (l ≤ 8) of 214
noise-free q-space samples, see [7, Table 2] for details.

Discussion. Numerical results are shown in Fig. 2, using the optimal parameters
in each case. It is worth to stress the following remarks:

1) With �1 regularization, our approach (SW) provides the lowest reconstruc-
tion errors (see Fig. 2.a, top). Though this numeric difference may seem subtle,
the ODFs reconstructed in Fig. 2.c suggest it might be critical to correctly resolve
the fiber crossings in poor SNR scenarios.

2) As the number of gradients acquired increases, the rMSE with SW and SR
rapidly decreases, but not with SH. Since the ODFs are not actually sparse in
the SH basis (see Fig. 2.b), the a priori sparse behavior does not hold.

3) From Fig. 2.a, bottom, our SW approach provides very similar rMSE (and
visually identical ODFs, see Fig. 2.c) with either �1 or �2 regularization. As
stated before, non-negative �2 yield sparse solutions [11], close to those with �1
in the space of coefficients. We show in Appendix A that SW, as used here,

1 We cannot reproduce the respective derivations due to space limits, but they are
straightforward by updating eq. (8) using that SH are eigenfunctions of G, Δb.

http://www.acm.caltech.edu/l1magic/
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Fig. 2. Results obtained with our approach (SW), our adaptation of [8] to estimate
ODFs (SR), and an implementation of our method based on SH. a) Mean and variance
of the rMSE for �1 (top row) and �2 (bottom row). b) Sparsity of the solutions for a
60o crossing. c) Examples of the ODFs reconstructed for SNR=40 and a 60o crossing.

nearly meet the Parseval property: if the �1 and �2 solutions are alike, the Eu-
clidean distance between the corresponding ODFs will also be small. The SR
in [8] do not exhibit this feature. Moreover, according to eq (7), a differen-
tial operator Δb is applied to compute Φ from ζ(E), so the difference in the
reconstruction of ζ(E) (which is not bounded by the distance between the �1 and
�2 solutions) is amplified when computing the ODF. Accordingly, the correspond-
ing errors in Fig. 2.a, bottom (�2) for [8] are far larger compared to the �1 case.

4) The minimum number of gradients to attain a reliable ODF reconstruction
seems to be 14-16 (Fig. 2.a, top and bottom), and below this threshold the
rMSE blows. With SW, this range coincides with the minimum number of non-
zero coefficients of the solution (see remark 5), so we may hypothesize that a
minimum of 3% of the SW coefficients are required to properly describe ODFs.

5) Our method, SW, provides also the sparsest solution (Fig. 2.b). As the
number of measurements grows, we have more information on the ODF, so the
solution may be refined with more SW coefficients and it becomes less sparse.

In vivo Experiments. A HARDI data set with 8 unweighted T2 baseline
images and 16 evenly spaced gradients (b = 3, 000 s/mm2) is used in this section.

Fig. 3 shows an axial slice intersecting the corpus callosum (red lobes aligned
with the ‘x’ axis) and the uppermost part of the cingulum (green lobes, ‘y’ axis).

We are able to correctly resolve the crossings between these structures in the
top row, or even the complex three-compartment crossings in the bottom row
(blue lobes along the ‘z’ axis correspond to the corona radiata).

While for �1 the improvement with our method over [8] is not dramatic, the
reconstructed ODFs are still sharper (see blue square), according to remark 1.
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Fig. 3. Axial slice of a real data set with 16 gradients. The ODFs field has been
recovered with our method. The highlighted regions have been further analyzed with
both our method (SW) and the method in [8] (SR), with either �1 or �2 regularization.
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l=2 l=4 l=6 l=12 Fig. 4. Partial sums
∑j

k=−1 νρ,k(l)2 for different
degrees of l (for l = 0, the curve is a line with con-
stant value 1). We use ρ = 0.75 as in all the experi-
ments throughout the results section (this behavior
does not hold for all ρ).

With �2 regularization, the method in [8] completely fails, while our method
outputs accurate ODFs, and even the three-compartment crossings are better
resolved than with �1 (see green square).

This is in agreement with remark 3. Our final remark is that:
6) �1-based reconstruction takes ∼200 s, while �2-based takes ∼1.5 s, for Fig. 3

(the speedup is ∼130), which is an additional argument supporting �2.

5 Conclusion

We have shown that as few as 14-16 diffusion directions suffice to obtain accurate
probabilistic ODFs estimates. Positivity constraints, which are not considered
in [7], can be easily incorporated into our model. Although sparse regulariza-
tion has been previously used in [8] to fit the diffusion signal, our approach is,
to our knowledge, the very first to use this technique to reconstruct the ODF
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from HARDI data with reduced measurements. Though we have discussed in the
results section a work-around to compute the ODF from the diffusion signal pro-
vided by [8], the results with our own approach are clearly better with �1, and the
only usable at all with �2. This is specially important, since �2 reconstruction is
two orders of magnitude faster than �1: for this latter approach, the overwhelm-
ing duration of the estimation for an entire volume (in the order of 100 days with
our Matlab implementation) makes the overall acquisition/reconstruction time
unattractive. Our �2 approach provides virtually identical results as �1 with
reasonable reconstruction times, while allowing an acquisition speedup in the
order of 4.

Acknowledgments. Work funded by grant numbers: R01 MH074794, R01
R01MH092862, P41 RR013218 (NIH); TEC2010- 17982, FMECD-2010/
71131616E (Ministry of Education, Spain/Fulbright Committee).

A Parseval Property in the Semi-Discrete SW Frame

A frame is said to be tight or Parseval if the projections of a vector f in each
frame element conserve the energy of f . If C is the frame bound, cm

l the coefficient
of f(u) for the SH basis function Y m

l (u), and fl(u) the orthogonal projection of
f(u) in the subspace of SH of degree l, this condition reads:

∞∑
j=−1

∫∫
Ω

|〈f(u), Ψv,j(u)〉|2 dv ?= C ‖f(u)‖2
2 (13)

for the semi-discrete frame of SW. From its definition in eq. (6), eq. (13) reads:

∞∑
j=−1

∫∫
Ω

dv

∣∣∣∣∣∣
〈
f(u),

∞∑
l=0,2,...

νρ,j(l)
l∑

m=−l

Y m
l (u)Y m

l (v)

〉∣∣∣∣∣∣
2

=
∞∑

j=−1

∫∫
Ω

dv

∣∣∣∣∣∣
∞∑

l=0,2,...

νρ,j(l)
l∑

m=−l

cm
l Y m

l (v)

∣∣∣∣∣∣
2

=
∞∑

j=−1

∞∑
l,l′=0,2,...

νρ,j(l)νρ,j(l′)

l∑
m,m′=−l

cm
l cm′

l′

〈
Y m

l , Y m′
l′

〉
=

∞∑
j=−1

∞∑
l=0,2,...

νρ,j(l)2
l∑

m=−l

(cm
l )2 =

∞∑
l=0,2,...

sl‖fl‖2
2 .(14)

The condition (13) is equivalent to sl =
∑∞

j=−1 νρ,j(l)2 (see eq. (8)) being con-
stant for all l. Fig. 4 shows the partial sums for the first few l. SW are near
Parseval (i.e. the curves approach the same value when j → ∞) if l = 0 is
ignored, but this is the DC component, unnecessary for our derivations.
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Abstract. We introduce an automated and probabilistic method for subject-
specific segmentation of sheet-like fiber tracts. In addition to clustering of tra-
jectories into anatomically meaningful bundles, the method provides statistics of
diffusion measures by establishing point correspondences on the estimated me-
dial representation of each bundle. We also introduce a new approach for medial
surface generation of sheet-like fiber bundles in order too initialize the proposed
clustering algorithm. Applying the new method to a population study of brain
aging on 24 subjects demonstrates the capabilities and strengths of the algorithm
in identifying and visualizing spatial patterns of group differences.

1 Introduction

Analysis of diffusion-weighted MR imaging enables in vivo study of human brain in-
tegrity to assess the neurodegeneration and de-myelination of white matter fiber tracts.
Developing computational tools to extract quantitative information from diffusion MRI
is, therefore, of great interest to the clinical community. Early methods for quantitative
DTI analysis were based on the analysis of scalar diffusion measures, either within a
region of interest (ROI) or at each acquired voxel. More recent variants incorporate trac-
tography models to increase specificity. In [4], ROIs are constructed based on identified
tracts, whereas TBSS [11] aligns subjects based on tract skeletons onto which scalar
measures are then projected. However, these methods still suffer from some limitations.
The former does not preserve the local variations and the latter ignores tract orientation
and thus cannot always distinguish between adjacent tracts.

To overcome these limitations, recent tract-based quantitative methods analyze dif-
fusion measures for a group of trajectories that belong to the same fiber tract and report
the statistics along a descriptive model (e.g., tract skeleton) [7, 9, 15]. These methods
have two main components: clustering and model construction. Within a single sub-
ject, clustering of fiber trajectories into groups that correspond to macroscopic fiber
tracts (bundles), greatly improves the quality of tract-based analysis as it eliminates
outlier trajectories [7, 13]. Across subjects, clustering ensures that the measurements
are performed on the same tract in all subjects. By building a representative geometric
model for each bundle (e.g., a medial curve), these methods provide a reference system
for quantitative analysis of diffusion measures along the clustered trajectories. Statis-
tics of these measures projected onto the medial model typically have lower variance

G. Fichtinger, A. Martel, and T. Peters (Eds.): MICCAI 2011, Part II, LNCS 6892, pp. 191–199, 2011.
© Springer-Verlag Berlin Heidelberg 2011
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across subjects and result in higher statistical power compared with voxel-wise analysis.
On the other hand, unlike ROI-based methods, tract-oriented analysis allows studying
of local variation along the bundle, as dimensionality reduction is constrained to the
directions perpendicular to the model.

Most tract-based methods proposed so far are limited to tubular-shaped tracts, such
as the cingulum bundle (CB), which can be represented by medial curves [1, 7, 9].
Although this one-dimensional model has been successfully used for population stud-
ies [8, 9], important tracts such as the body of the corpus callosum (CC) and the rostral
part of corticospinal tract (CST) are not tubular and two-dimensional models are more
appropriate for these sheet-like bundles. A medial representation for sheet-like fiber
bundles has previously been proposed in [15] but that method used manual cluster-
ing of fiber trajectories in the group-averaged tensor data. Our method, by contrast,
incorporates automatic clustering of the trajectories extracted in the subject space.

In this paper, we address problems of probabilistic clustering, geometric modeling,
and quantitative analysis of sheet-like fiber bundles. Clustering is achieved by solving
a mixture model on the distances between fiber trajectories and bundle medial surfaces.
A novel composite distance measure incorporates spatial distance and orientation dif-
ference between trajectories. To our knowledge, this paper is the first to address the
probabilistic clustering of sheet-like bundles. We also present a novel method for gen-
erating the medial surface models of such bundles. Statistics of diffusion measures for
a bundle of interest are achieved by establishing point correspondences between trajec-
tories and medial surface model. We demonstrate the proposed method by identifying
spatial patterns of group differences between 12 young and 12 elderly subjects in a
brain aging study for the right CST (rCST) and CC as examples of sheet-like tracts.

2 Method

Our method has three main steps: initial medial surface generation, clustering with
surface evolution, and quantitative analysis, as detailed in the next subsections.

2.1 Orientational Medial Surface Generation

For each sheet-like fiber tract, a medial surface model is constructed as a triangular
mesh. For each vertex in the mesh, we store the orientation of fiber trajectories at that
location. Each vertex is thus described by a tuple (μ, ε), where μ ∈ R

3 is its location
and ε ∈ R

3 is the local fiber orientation. This orientational medial surface is generated
from a binary tract segmentation in an atlas or in a reference subject and serves as the
initial tract model, which is then evolved by the clustering algorithm.

Yushkevich et al. [14] used a Voronoi skeleton as an initial parametric medial model,
which was then fitted to the binary segmentation of the structure using a deformable
model. Here, we leverage the fact that sheet-like fiber tracts are thin-walled shapes and
propose an alternative approach. The method is based on the chordal axis transform
(CAT) [10], wherein the chordal (i.e., medial) surface of a thin-wall-ed shell structure
is estimated by connecting the mid-planes of its tetrahedral mesh elements [5].

Figure 1 illustrates the steps to estimate the medial surface of CC. Starting with the
binary segmentation (Fig. 1a), which can be supplied by an atlas of fiber tracts [12],
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a b c d

Fig. 1. Steps to estimate the medial surface of a fiber tract. (a) Binary segmentation of the tract
from an atlas [12], (b) surface mesh generation using marching cubes algorithm, (c) single-layer
volumetric hexahedral mesh generation, and (d) the CAT-based medial surface estimation.

we first extract the surface mesh (Fig. 1b) using the marching cubes algorithm [6]. We
then construct a single-layer volumetric hexahedral mesh (Fig. 1c), using the publicly
available IA-FEMesh [3]. From the single-layer hexahedral mesh, we generate the
chordal surface mesh by connecting the patches of each hexahedron mid-plane. This
requires the cut direction to be determined. For each hexahedron, we first identify the
two facing facets that are not shared with other hexahedrons. The cut is the mid plane
between these two facets. This leads to a quadrilateral surface mesh, represented as
a QuadEdgeMesh structure [2], which is then triangulated (Fig. 1d) to facilitate the
use of InsightToolkit (ITK) libraries. Optionally, mesh smoothing and decimation are
performed to increase the quality of the chordal mesh. Finally, we add orientation infor-
mation at each point on the surface by storing the principal eigenvector of the diffusion
tensor at that point, computed from the atlas or reference subject tensor volume.

2.2 Trajectory-Surface Distance Measure

Each trajectory (i.e., every streamline produced by tractography) is treated as a uniformly-
sampled 3-D curve, which is mapped from the subject space into the template space, for
example via an affine transformation computed by image registration. Each sample on
a trajectory is represented by its coordinate, r ∈ R

3, and its unit-length local orientation
e ∈ R

3. A trajectory is a collection of these samples, i.e., (ri, ei) = [(rij , eij)]j=1,...,J(i)

where J(i) is the number of samples on the ith trajectory. We calculate the trajectory’s
local orientation at each point from its 3-D representation. Alternatively, the principal
diffusion eigenvector can be used as eij , but explicit vector re-orientation is then needed
when the trajectories are mapped into the reference space.

Each cluster (i.e., each fiber bundle) is represented by a medial surface, initially gen-
erated as described in the previous subsection and evolved throughout the algorithm.
For each trajectory, distances to all cluster medial surfaces are calculated. We define the
distance measure between the ith trajectory and the kth cluster medial surface repre-
sentation as a combination of Euclidean distance and orientation dissimilarity. The Eu-
clidean distance can be calculated efficiently by constructing a distance map from each
cluster medial surface. For each trajectory-surface pair, the spatial distance measure
is dE(ri,μk) = 1

J(i)

∑
j Dk(rij), where Dk(x) is the value of the Euclidean distance

map for cluster k at point x.
Orientation dissimilarity is calculated from the angle between the local orientation of

the trajectory points and the orientation stored for their corresponding points on the me-
dial surface. The point correspondences are obtained by generating a Voronoi diagram,
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a b c

Fig. 2. The importance of orientation information for successful clustering. Clustering of the
trajectories seeded from the ROI in Fig. 1a: (a) When orientation information is not used, some
CB trajectories are falsely assigned to CC. (b) These trajectories are removed as outliers when
orientation information is used. (c) Orientation information enables successful clustering of CB
trajectories that are spatially close to CC but differ in shape.

Lk(x), for each cluster medial representation, which provides the index of the closest
sample on the kth cluster medial surface for a given point x in the space. In an ideal
point correspondence, the local orientation of a trajectory point and its closest point on
the medial surface should match. The orientation dissimilarity between trajectory i and
cluster medial representation k is defined as

dO(ei, εk) =
1

J(i)

∑
j

(1 − u(|〈eij , εk,Lk(rij)〉| − τ)), (1)

where εk,Lk(rij) is the orientation at the corresponding sample on the kth cluster medial
representation to the point rij , u(·) is the unit step function, and τ is the threshold
of acceptable misorientation, i.e., a user-defined minimum bound on the cosine of the
angle between each closest-point pair. We define the combined dissimilarity measure,
dik, between trajectory i and cluster k as

dik = dE(ri,μk) + λikdO(ei, εk), (2)

where λik is a weight factor to correct for the scale difference between the orientation
dissimilarity and the distance. Here, we simply set λik = dE(ri,μk).

2.3 Probabilistic Clustering

The trajectories in a subject can be clustered based on their calculated distances to
each cluster medial representation. To this end, we follow the gamma mixture model
approach proposed in [7]1. Assuming that each dik is drawn from a gamma distri-
bution, we estimate the unknown parametersand the expected value of the hidden data,
which indicates the membership probabilities. Specifically, pik denotes the membership
probability of trajectory i to cluster k.

1 http://www.nitrc.org/projects/quantitativedti/

http://www.nitrc.org/projects/quantitativedti/
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a b c

Fig. 3. Projection of scalar measures onto the cluster medial surface enables reduction in the
dimensionality without loss of spatial information. Shown here is FA distribution in the rCST
of a single subject. The clustered trajectories and the medial surface are shown together in (a) to
aid the visual comparison, and separately in (b) and (c) to reveal more details. Note that we used
the corticospinal ROI defined in [12] which specifies a region substantially smaller than what is
spanned by the trajectories. Portions of the medial surface that do not have any contribution from
the trajectories are shown in gray.

An Expectation Maximization formulation has been described in detail in [7] for both
maximum-likelihood and maximum-posterior estimation of the mixture-model param-
eters given the observed data (i.e., dik). The clustering algorithm is an iterative process
that alternates between parameter estimation and medial surface evolution. At each iter-
ation, once the EM part has converged, the cluster medial surfaces are updated based on
the new membership probabilities assigned to the trajectories by the EM formulation.
Each point on the medial surface is updated as the weighted average of the correspond-
ing points on the trajectories that belong to that cluster. Note that due to partial overlap
and fiber tractography errors, it is possible to have trajectories that belong to a given
cluster but contain portions that do not resemble the shape of the tract. To exclude these
portions, we use a threshold on the mis-orientation between the trajectory points and
the corresponding points on the medial surface, i.e.,

μkj =
∑

i pikwikjri,nik(j)∑
i pikwikj

, (3)

where wikj = 1−u(〈ei,nik(j), εkj〉− τ). Here, nik(·) is the reverse lookup function on
Lk(x), which returns the closest corresponding sample on the ith trajectory to a given
index on the medial representation of kth cluster, and τ is the same mis-orientation
threshold as in Eq. (1). After each vertex on the mesh has been updated, the mesh is
regularized by a Laplacian smoothing filter, available in ITK.

The output of the clustering algorithm is the probabilistic assignment of the tra-
jectories to each cluster and medial representations of all clusters. Outliers are identi-
fied as those trajectories that receive membership likelihood lower than a user-specified
threshold from all clusters, and these are removed from further processing.

To demonstrate the importance of using orientation information in the clustering,
Fig. 2 shows the clustering of CC trajectories seeded from the ROI shown in Fig. 1a
and the initial medial surface shown in Fig. 1d. When orientation information is not
used (Fig. 2a) some of the CB trajectories are falsely assigned to the CC cluster. These
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a b c d

Fig. 4. Group clustering of sheet-like bundles (a) Body of CC and rCST as defined in the ICBM
atlas, (b) trajectories of 24 subjects transformed to the ICBM space, (c) successful clustering of
CC and rCST; trajectories that belong to other fiber tracts such as CB and pons have been correctly
excluded. (d) Portions of the clustered trajectories which meet the maximum mis-orientation
threshold of 30◦, and therefore contribute to the final statistics on the estimated medial surfaces.

trajectories are removed as outliers when orientation information is used (Fig. 2b). In
Fig. 2c clustering of the same input trajectories is performed with three initial centers,
adding initial medial curves for the left and the right CBs. Note that the same EM
formulation works for clustering of tubular bundles given 3D curves as the initial medial
representations. Figure 3 shows the clustered trajectories of rCST in a single subject and
compares visually the match between the variation of FA along the clustered trajectories
with the computed average value over the estimated medial surface.

3 Experiments and Results

To demonstrate the capabilities of the proposed approach, we performed a prelimi-
nary population study to quantify how the integrity of white matter fiber tracts is af-
fected in normal aging. Data were acquired from 12 young (age=25.5±4.34) and 12 el-
derly (age=77.67±4.94)healthy subjects. Echo-planar DWI data was acquired with slice
thickness of 2.5 mm, fifteen unique diffusion directions with b=860 s/mm2, along with
5 baseline scans with b=0. Images were corrected for eddy-current and B0 distortions,
and tensors were estimated using the Teem library.

The labeled tracts in the ICBM atlas2 were mapped to each subject space to seed the
tractography by applying the transformation computed from pairwise affine registration
on the FA volumes of the subject and the atlas using CMTK’s registration tool.3 Stream-
line tractography was performed using 3D Slicer, seeded from the mapped labeled re-
gions of CC and rCST (Fig. 4a), and terminated when an FA value less than 0.15, or
maximum curvature of 0.8 was reached. The quantitative parameters of interest, such as
FA, were computed at each point on the trajectories and stored for subsequent analysis.
Subject-specific trajectories were then back-transformed into the atlas space as shown
in Fig. 4b. Given the orientational medial surfaces of CC and rCST as initial surfaces,
trajectories were successfully clustered by the proposed EM algorithm (Fig. 4c) with

2 http://www.loni.ucla.edu/ICBM/
3 http://nitrc.org/projects/cmtk/

http://www.loni.ucla.edu/ICBM/
http://nitrc.org/projects/cmtk/
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b
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c d

Fig. 5. Example of group-difference statistics. Each point on the medial representation of CC is
colored with the weighted average FA over all corresponding points on the clustered trajectories
for (a) young and (b) elderly group. The results clearly show the spatial variation of FA along the
cluster and lower FA in the elderly population. The corresponding p-value for the group difference
in FA is shown in (c) for CC and (d) right CST. Red corresponds to regions with high statistical
significance (p ≤ 0.001).

minimum-likelihood threshold of 0.02 for outlier rejection and the orientation thresh-
old of τ = 0.85 (allowing approximately 30◦ mis-orientation). Once the trajectories of
all 24 subjects were clustered, for each subject diffusion measure means were calcu-
lated for each vertex on the estimated medial surface of the bundle. For subject s, let Is

be the set of trajectory indices i that originate from that subject. The weighted mean of
the feature of interest for subject s at the jth point on the kth cluster medial surface was
calculated as f̄s

kj =
∑

i∈Is
pikwikjfi,nik(j)

/∑
i∈Is

pikwikj , where fi,nik(j) is the fea-
ture sample at the closest corresponding point on trajectory i. At each point j on every
cluster k we performed group comparisons using the per-subject feature values f̄s

kj . For
each vertex on the medial surface, we performed a two-sample Welch’s t-test, assum-
ing unequal variances, to calculate the statistical significance of the group differences.
Since we perform tractography in subject image space, as opposed to group-average
tractography (e.g., [15]), our method can identify the regions in which a given subject
does not contribute to the statistics as shown in Fig. 3 (regions in gray), adding to the
reliability of the quantitative analysis. The proposed framework also enables the user
to control the extent of coherence in the bundle of interest through probabilistic label
assignments from the clustering. Moreover, in the quantitative analysis step, the user
has control over inclusion of contributing points in the final statistics by adjusting a
threshold of acceptable local orientation difference between the corresponding points.
Threshold adjustment capability is important for reliable statistical analysis, because
definition of tracts can be indefinite and subjective. Through visual inspection as shown
in Fig. 4d, the user can be confident of the region on which the derived statistics are
based. Fig. 5 illustrates the final medial representations of body of CC, colored by the
average FA of 12 young subjects (Fig. 5a) and 12 elderly subjects (Fig. 5b). In these
visualizations, one easily observes the local variation of the diffusion measure over the
medial surface and differences between the group means. Figs. 5c and 5d demonstrate
the results of our statistical analysis of FA for CC and CST. In general, we observed
lower FA and higher diffusivity in the elderly group than the young group, which is
consistent with findings in earlier diffusion MRI studies on aging.
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4 Conclusion

This work is the extension and generalization of [7] and enables probabilistic clustering
and quantitative analysis of sheet-like tracts, either in a single subject or in a population,
while still supporting tubular bundles. We also propose a novel method for estimating
the orientational medial surface of bundles, which then serve as initial tract models
in the proposed clustering scheme. Here, we start from segmentation provided in the
ICBM atlas but the method is general and could instead have been started from a manu-
ally segmented region in a reference subject. Our experiments demonstrate the strengths
of the presented method in computing the spatial summary statistics of diffusion mea-
sures on the medial representations of white matter fiber tracts.
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structive feedback. This work was supported by AA005965, AA012388, AA017347,
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Abstract. Registration of diffusion tensor (DT) images is indispensible, especially 
in white-matter studies involving a significant amount of data. This task is however 
faced with challenging issues such as the generally low SNR of diffusion-weighted 
images and the relatively high complexity of tensor representation. To improve the 
accuracy of DT image registration, we design an attribute vector that encapsulates 
both tract and tensor information to serve as a voxel morphological signature for 
effective correspondence matching. The attribute vector captures complementary 
information from both the global connectivity structure given by the fiber tracts and 
the local anatomical architecture given by the tensor regional descriptors. We 
incorporate this attribute vector into a multi-scale registration framework where the 
moving image is warped to the space of the fixed image under the guidance of tract 
information at a more global level (coarse scales), followed by alignment 
refinement using regional tensor distribution features at a more local level (fine 
scales). Experimental results indicate that this framework yields marked 
improvement over DT image registration using volumetric information alone. 

1  Introduction 

Diffusion tensor imaging (DTI) plays a vital role in the understanding of water 
diffusion patterns of brain tissues, providing an effective means for mapping brain 
structural circuitry in vivo. Water molecules are more likely to diffuse along 
directions tangential to the axons than directions orthogonal to the myelin sheaths. 
Harnessing this unique diffusion pattern allows tracing of the neuronal trajectories, 
and hence mapping of brain connectivity. 

To make possible the comparison between individual DT images, proper spatial 
normalization of these images to a common space is often required. The task of DTI 
registration, however, is more challenging than scalar image registration. Tensors, unlike 
scalars, live in a space with higher dimensions that requires more complicated metrics for 
their effective quantification. Moreover, normalizing the DT images to a common space 
involves an additional step of tensor reorientation for preserving the consistency of local 
diffusivity pattern. Several DTI registration methods have been reported in the literature. 
Since scalar image registration (e.g., T1 weighted MR image) has been relatively well 
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studied, a straightforward approach is to directly port state-of-the-art scalar registration 
algorithms for use of DT images. For example, Park et. al. [1] propose a multi-channel 
strategy for DTI registration by leveraging complementary information from several 
scalar images. In [2], tensor reorientation is explicitly incorporated in the registration 
optimization function. Yeo et. al. [3] utilize the Finite Strain (FS) differential for 
constructing a fast diffeomorphic DTI registration algorithm. For the purpose of DTI 
registration, various tensor similarity/dissimilarity measures have been explored [4]. 
Examples include mutual information [5], symmetrized Kullback-Leibler (sKL) 
divergence [6], and Geodesic-Loxodromes [7].  

An image voxel can be represented by its attribute vector, which is essentially a 
vector grouping together a set of features giving descriptive and possibly distinctive 
information about the voxel. The effectiveness of attribute vector has been 
demonstrated in the registration of both scalar images and DT images. Yang et. al. 
[8], for instance, use prolateness, oblateness, and sphericity as the tensor attributes. In 
[9], a more sophisticated form of attribute vector, composing of statistical features 
(local mean and variance), geometrical features (edge information, and tensor 
principal diffusivity), is used.  

Tractography, another important topic in DTI studies, streamlines fibers in the 
white matter (WM) and reveals neural pathways communicating individual brain 
regions [10]. These fibers can be grouped into bundles or tracts, each of which 
contains fibers with similar structural and functional characteristics. Bundles are more 
reproducible and consistent across subjects [11], hence suggesting their usages to 
guide registration of DT images. An early approach can be found in [12], where a 
carefully designed linear operator is iterated over the FA maps to detect bundles 
occurring as tubular or sheet-like structures, generating feature maps that can be used 
for registration using a scalar image registration method. In [13], correspondences 
between images are identified via tractography clustering using a polyaffine 
transformation to describe the deformation field. 

In this paper, we design a multi-scale DTI registration framework that leverages 
attribute vectors for capturing both tract and tensor information. Registration is 
formulated as minimizing the overall difference between the attribute vectors of a pair 
of images. We further decompose the registration framework into two consecutive 
stages, each of which utilizes a different scale of features. In the first (coarse) stage, 
the moving image will be deformed to the fixed image under the guidance of tract 
derived features. Then the deformation field is transferred to the next (fine) stage and 
refined by using tensor related features. Details of the algorithm are provided in 
Section 2. Experimental results in Section 3 show that the proposed method yields 
improved performance in terms of registration accuracy. 

2  Method 

In the following, we will firstly brief the complete registration framework for DT 
images proposed in this paper (Section 2.1). Then, we will give details on the two 
registration stages in Section 2.2 and Section 2.3, respectively. 
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2.1  Algorithm Framework 

In tractography, fibers are streamlined by sequentially tracing the principal diffusion 
directions of neighboring tensors. The generated fibers can be grouped into bundles 
according to their topologies and anatomical properties. To register a pair of DT 
images, two criteria are enforced: (1) tensors with similar local features and (2) fiber 
tracts with identical anatomical properties should both be matched across the images. 
We denote the attribute vector of voxel  as aሬԦሺxሻൌሾaሬԦBሺxሻ, aሬԦTሺxሻሿ, where aሬԦBሺxሻ and aሬԦTሺxሻ  incorporate features derived from the tracts and tensors, respectively. The 
elements in aሬԦBሺxሻ describe the relationship between a specific bundle and voxel . In 
particular, each element of aሬԦBሺxሻ corresponds to a bundle and can be set if the voxel 
is incorporated by the bundle; otherwise it is left unset. More details about aሬԦBሺxሻ are 
provided in Section 2.2. Elements of aሬԦTሺxሻ represent the tensor features computed 
from  and its local neighborhood [9]. The registration of a fixed image ܨ  and a 
moving image ܯ is cast as a problem of minimizing the overall distances, ܦBሺܨ, ܯ ,ܨTሺܦ ሻ for tract derived features andݏל ܯ ל  ሻ for the tensor derived features, with aݏ
certain smooth constraint imposed on the deformation field ݏ. 

Multi-scale strategy is commonly used in image registration, owing to its 
effectiveness in avoiding local minima that often result in suboptimal solutions in 
high-dimensional optimization problems. Different anatomical structures are best 
represented at their appropriate scales. For instance, fiber bundles reflect brain 
connectivity and give structural information at a more global scale than an individual 
voxel or its adjacent neighborhood. Based on this observation, we minimize the two 
distances ܦBሺܨ, ܯ ל ,ܨTሺܦ ሻ andݏ ܯ ל  ሻ separately at different scales, decomposingݏ
the registration problem into two consecutive stages – the tract-guided stage and the 
tensor-guided stage. The tract-guided stage provides a coarse estimation of 
deformation field for further refinement in the tensor-guided stage. A flow chart of 
the proposed algorithm is shown in Fig. 1. More details on the tract-guided stage and 
tensor-guided stage are given in Section 2.2 and Section 2.3, respectively. 

 

Fig. 1. The proposed DTI registration method consists of two consecutive stages: (1) tract-
guided registration, and (2) tensor-guided registration  
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2.2  Tract-Guided Registration 

For tract-guided registration of a pair of DT images, tractography is first applied to 
the images independently to yield two separate sets of fibers. After bundles are 
detected, the goal of registration is then to align the corresponding bundles of 
different images. As in Ziyan et. al. [13], bundle correspondence resulting from 
tractography clustering is utilized to guide DTI registration. However, spatial 
variation of fibers can be large, due to (1) the intrinsic complexity of brain anatomy; 
(2) the limited SNR in DTI scans; and (3) additional errors introduced by tractography 
algorithms. Especially in the case of DTI where fiber crossings cannot be modeled 
correctly, many fibers might be prematurely terminated. Correspondence between 
bundles in these situations is hence unreliable. 

We take a different approach and use representations of a subset of easily 
identifiable tracts to help guide registration. Specifically, we have selected the corpus 
callosum (CC), the left/right thalamus radiata (TR), and the left/right corticospinal 
tracts (CST) as the driving bundles, since they traverse a large portion of the brain and 
represent the major WM pathways. The high reproducibility of these bundles [11] 
allows us to estimate their correspondences between images more reliably. 

To identify the bundles, we warp the JHU WMPM [14] atlas (referred to as the 
“atlas” for simplicity) to the spaces of the fixed and the moving DT images by 
registration of the FA maps. ROIs corresponding to the selected bundles are used to 
determine the fiber bundles. Specifically, within the ROI for each bundle, we identify 
the core of the bundle by locating the voxels with fiber traversing density greater than 
a specified threshold. The qualified voxels form the set of bundle seeds, which we 
will use to generate the bundle pattern by allowing the seeds to diffuse along the 
underlying fibers. The bundle diffusion mechanism is explained with more details in 
the following. The elements of the attribute vector aሬԦBሺxሻ derived from the diffused 
bundle patterns are corresponding to individual bundles and used for registration. 

Bundle Diffusion 
Bundle diffusion is initiated at the seed voxels and proceeds along the underlying 
fibers. For this purpose, we have adopted the fast marching (FM) method [15]. In Fig. 
2, for instance, the fibers traversing this region (in the horizontal direction) are 
represented by the light blue strips. The seed region is represented by the dark red 
area, which is circled by the green dashed curve. In the diffusion process, the interface 
of the seed region propagates outward to generate the pattern ܲ  after a certain 
amount of time, as shown in Fig. 2. For each voxel location , ܲሺxሻ records the time 
when the voxel is traversed by the evolving interface. At each point on the interface, 
the diffusion always proceeds along the surface normal. The diffusion velocity ܸሺxሻ 
at location  is calculated by integrating the total contributions of fibers passing 
through . The contribution of each fiber is equal to the cosine of the angle between 
the tangential direction of the fiber and the normal direction of the evolving interface. 
By iteratively solving the Eikonal equation ܸԡ୶ܲԡ=1 in FM, the propagation of the 
region interface can be simulated numerically and the bundle pattern ܲ can thus be 
acquired. For corresponding tracts in both the fixed and the moving images, we allow 
the diffusion to last for an equal amount of time. We then reverse the sign of the 
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traversing times and scale all values to the range of [0, 1]. Hence, seed voxels have a 
value of 1, which gradually decreases to zero at the stopping interface of  ܲ. Two real 
examples of the diffused bundles patterns are also shown in Fig. 1. 

 

Fig. 2. Starting from the seed points within the green dashed circle, the interface propagates 
outward to generate the bundle pattern . Each point in the space is colored according to the 
interface traversing time (sign-inverted and linearly scaled to [0, 1]).  

Bundle-Derived Attribute Vector and Registration 
To register the fixed image ܨ and the moving image ܯ, we attempt to match the 
attribute vector aሬԦBሺxሻ of both images. We define that the i-th entry of the attribute 
vector aሬԦBሺxሻ records the value from the diffused pattern of the i-th bundle. Thus the 
length of the attribute vector aሬԦሺxሻ is equal to the number of bundles used to guide 
registration. The term ܦBሺܨ, ܯ ל  ሻ captures the overall Euclidean distance betweenݏ
tract-derived attribute vectors of both images, and can be minimized iteratively. In 
each iteration, the increment ݑ of the deformation ݏ is estimated as [16]: ݑ ൌ ሺ ୶࣮ ௧ · ୶࣮  ሻିଵܫߪ ቀaሬԦBF ሺxሻ െ aሬԦBM൫ݏሺxሻ൯ቁ ୶࣮௧  (1)

where ߪ enforces the constraint that ݑ should be infinitesimal with respect to ݏ, and 
the term ୶࣮ (with its transpose ୶࣮ ௧ ሻ is: 

୶࣮ ൌ 12 ቀ୶aሬԦBF ሺxሻ  ሺxሻ൯ቁ. (2)ݏ୶aሬԦBM൫

Based on (1) and (2), the deformation increment ݑ  is estimated to refine the 
deformation ݏ iteratively. The deformation ݏ is updated based on the composition 
rule ݏ ՚ ݏ ל expሺݑሻ in order to keep the generated deformation diffeomorphic. Upon 
estimating the deformation field, we reorient the tensors using the method described 
in [17]. The deformation ݏ output by the tract-guided stage here will be transferred to 
the following tensor-guided stage for more refinement. 

2.3  Tensor-Guided Registration 

Using tract-guided registration as initialization, further refinement to the estimated 
deformation ݏ is performed using tensor features. To this end, we have adopted the 
approach described in [9]. Specifically, tensor features, including regional features 
(means and variances), edge features (tensor edges and FA map edges), and 
geometrical features (FA values and principal diffusivities), are extracted for each 
voxel and incorporated into the attribute vector component aሬԦTሺxሻ. A subset of voxels 
with distinctive attribute vectors is detected to drive the correspondence matching. 
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Thin-Plate Splines (TPS) is then used to generate a dense deformation field based on 
the estimated displacements of the driving voxels. Unlike [9], however, only fine-
level (or the highest level) registration is employed in the tensor-guided stage, since 
the coarse deformation is already estimated from the tract-guided stage. 

3  Experimental Results 

To demonstrate the performance of the proposed method, we performed the proposed 
method on both real and simulated data, and compared with DT-ITK [2] as well as  
F-TIMER [9] in the following. 

In-Vivo Dataset 
Totally, 15 DT images were acquired for our validation (Siemens Allegra scanner, 
b=1000s/mm2, flip angle 90◦, TR/TE=13,640/82ms, matrix 128×128, FoV 
256×256mm2, slice thickness 2mm, 80 contiguous slices). One image is randomly 
selected to be fixed, to which other 14 moving images are normalized by affine 
registration. We then apply all three registration methods – DT-ITK [2], F-TIMER [9], 
and our method – to deform the 14 images to the fixed space. For quantitative 
evaluation, we use the Frobenius norm to measure the distance between a pair of 
tensors. Specifically, we compute the tensor distance for each corresponding voxel 
after the moving image has been deformed to the fixed space, where tissue 
segmentation is available. In Table 1, the average tensor distances, as well as the 
respective standard deviations, of both white and grey matter voxels are listed. For 
white matter, our method reduces the average tensor distance by 40% over DT-ITK 
and 19% over F-TIMER, as p<0.01 in t-tests for both. The significantly lower tensor 
distance values suggest that our method is capable of DTI registration at a higher 
accuracy. 

Table 1. The average voxelwise tensor distances 

DT-ITK F-TIMER Our Method 
White Matter 0.375±0.021 0.247±0.025 0.199±0.030 
Grey Matter 0.267±0.010 0.219±0.031 0.178±0.029 

Fig. 3 shows a specific moving image in the different stages of registration to the 
fixed space, via both the proposed method (top) and F-TIMER (bottom). All slices are 
extracted from the same position and show part of cingulums. After the tract-guided 
registration stage in our method, the left and the right structures are apart and thus 
more similar to the fixed image. The output of the tract-guided stage is further refined 
using tensor features in our method. On the contrary, the middle level registration in 
F-TIMER fails to provide a good initialization as indicated by the still-connected left 
and right cingulums. 
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Fig. 3. The moving image is registered by both our method and F-TIMER to the fixed image. 
The tract-guided stage of our method yields better initialization than the middle level of F-
TIMER. This can be observed from the fact that the left and the right cingulums are apart using 
our method. 

Simulated Dataset 
We further evaluate the performance of the proposed method by gauging the accuracy 
of the estimated deformation fields. To generate a set of realistic deformation fields, 
we register the FA map of a randomly selected fixed image to FA maps of the other 
10 images using the Demons algorithm. The estimated deformation fields are then 
applied to the fixed DT image to generate 10 simulated moving images. The inverse 
of the deformation field can hence be used as ground truth for evaluation. Across 10 
simulated images, our method achieves an average deformation error of 0.637mm, 
much lower than 1.929mm of DT-ITK and 0.905mm of F-TIMER. The average 
deformation errors for the individual bundles are shown in Fig. 4, as the 
improvements on all bundles achieved by our method are significant statistically 
compared with the other two methods. It is worth noting that the deformation model 
in simulating data is different with any of the three methods. 

 

Fig. 4. The proposed method produces the lowest deformation errors in average among all three 
registration methods under comparison. 

4  Conclusion 

We have proposed a novel DTI registration framework by combining complementary 
information from both tracts and tensors. Since tract and tensor features represent  
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information of different structural scales, we decompose the registration task into two 
consecutive stages: (1) tract-guided registration and (2) tensor-guided registration. In 
the tract-guided stage, attributes extracted from bundle patterns are used to give a 
coarse estimation of the deformation field. This aligns the major bundles and provides 
a good initialization for the following tensor-guided stage, where tensor features are 
used to refine the registration. Evaluations with both in-vivo and simulated datasets 
indicate that the proposed method gives superior performance when compared with 
DTI registration using volumetric information alone. 
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Probabilistic Tractography Using Q-Ball Modeling and
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Abstract. By assuming that orientation information of brain white matter fibers
can be inferred from Diffusion Weighted Magnetic Resonance Imaging (DWMRI)
measurements, tractography algorithms provide an estimation of the brain con-
nectivity in-vivo. The two key ingredients of tractography are the diffusion model
(tensor, high-order tensor, Q-ball, etc.) and the way to deal with uncertainty dur-
ing the tracking process (deterministic vs probabilistic). In this paper, we in-
vestigate the use of an analytical Q-ball model for the diffusion data within a
well-formalized particle filtering framework. The proposed method is validated
and compared to other tracking algorithms on the MICCAI’09 contest Fiber Cup
phantom and on in-vivo brain DWMRI data.

1 Introduction

In the last decade, Magnetic Resonance Imaging (MRI) has become a popular and
powerful tool for medical imaging and brain understanding. In particular, Diffusion
Weighted MRI (DWMRI) is a non-invasive imaging system, which gives information on
water diffusion in human brain. These indirect observations of the white matter geom-
etry in-vivo [3] allow nerve fiber reconstruction by using tractography algorithms. The
two keypoints of a tractography algorithm are the diffusion model and the mathematical
framework describing the tracking process.

Water diffusion is historically modeled by tensors [3], which has been quite success-
ful in brain region with homogeneous intra-voxel fiber orientation. However, Berhens
et al. have detected complex fiber architecture in approximately a third of voxels of
the brain [4]. The standard tensor model does not handle such fiber bundle geometry
well. A way to deal with this issue is to use High Angular Resolution Diffusion Imag-
ing (HARDI) with appropriate diffusion models such as Q-ball or high-order tensors
(HOT).

The second keypoint of tractography concerns the tracking process modeling.
Tractography methods can be mainly categorized into two classes: deterministic and
probabilistic. Deterministic solutions are subdivided into two groups: streamline and
optimization based. In the first one, at each voxel, next direction(s) of fiber paths is(are)
locally determined by mean direction(s) indicated by the diffusion model [14,2]. Such
algorithms consist in a step-by-step construction of the solution. As only local mean
directions are followed, there is a possible accumulation of errors during the tracking
process. Optimization-based methods treat the tractography as an energy minimization
problem [16,18]. The purpose of these algorithms is to find the global solution, i.e. the
solution that minimizes errors according to the diffusion model.

G. Fichtinger, A. Martel, and T. Peters (Eds.): MICCAI 2011, Part II, LNCS 6892, pp. 209–216, 2011.
© Springer-Verlag Berlin Heidelberg 2011
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Nevertheless, noise in MRI [11], partial volume effect [1] and possible ambigu-
ity induced by the diffusion model can lead to uncertainty in the tracking process.
Since this uncertainty may be represented in the form of probability density func-
tions (PDF), probabilistic framework represents an attractive option for brain tractog-
raphy [15,13,9,4]. A way to produce probabilistic maps of fibers consists in applying
a streamline propagation process with directions randomly sampled from the PDF. The
fraction of these sampled paths passing through each voxel provides a stochastic mea-
sure of the strength of connectivity between that voxel and the seed points. In such
framework, a keypoint is the effectiveness of the sampling stage [15,20]. In particular,
as fiber paths can be modeled as Markov chains, sequential Monte Carlo and Markov
Chain (MCMC) methods can be efficiently used for the sampling stage [20].

Extending previous work of Zhang et al. [20], we investigate the use of Q-ball based
modeling within a particle filtering framework. The reliability of Q-Ball models allows
us to extract more information from data, such as the orientation distribution function
(ODF) which provides a precise idea of the underlying fiber architecture at every voxel.
Then, a non-linear state-model is used for the tracking modeling and the probabilistic
maps of fibers are estimated using a particle filtering algorithm.

2 Proposed Method

2.1 Diffusion Model

Let consider an image domain Ω ⊂ R
3 and diffusion weighted measurement in N di-

rections. The diffusion signal is decomposed into spherical harmonics by linear regres-
sion [6]. Then, applying Funk-Radon transform to the signal decomposition, the diffu-
sion ODF can be analytically computed at point x ∈ Ω and in direction u = (θ,φ) [6]. In
order to get a sharper ODF, the fiber orientation distribution function (fODF) ψx(θ,φ)
is computed from diffusion ODF by a spherical deconvolution [7]. Let the estimated
diffusion signal Sx and the fODF ψx be the diffusion observations at x ∈ Ω.

2.2 Fiber Tracking Model

In space state model, a fiber path v0:k can be modeled as a sequence of vectors in a vol-
ume Ω and can be built iteratively. Fiber paths are assumed to have Markovian nature.
From a given starting point x0 ∈ Ω, points of path v0:k are defined as xk+1 = xk + λvk,
where λ ∈ R is the step size which is assumed to be constant and vk is a unit vector.

The principle of particle filtering is to sample sequentially a set of M paths from the
starting point x0 ∈ Ω, given observations zk = {Sxk ,ψxk}. This means that M particles
are placed at point x0 at step k = 0 and are propagated as time progresses. Given the set

of particles {v(m)
0:k ,w

(m)
k }M

m=1 at step k, the propagation to the next step k+1 is performed
following three stages: prediction, weighting and selection.

In prediction stage, since the posterior p(v0:k|z1:k) cannot be evaluated, the impor-
tance density π(v0:k|z1:k) (which is an approximation of the posterior density) is be
used to simulate each of paths’ vectors. At step k and considering Markovian nature of
fiber paths, the vector vk of a path v0:k−1 is sampled according to the recursive form of
importance density [8]: π(vk|v0:k−1,z1:k).
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After prediction stage, a weighting stage giving a measurement of reliability of the
approximation of the posterior density is performed. A particle’s weight is written
recursively as [8]

w̃(m)
k ∝ w̃(m)

k−1

p(zk|v(m)
k )p(v(m)

k |v(m)
k−1)

π(v(m)
k |v(m)

0:k−1,z1:k)
, (1)

where w̃(m)
t are normalized weights, k is the current state, p(zk|v(m)

k ) and p(v(m)
k |v(m)

k−1)
are respectively likelihood and prior densities.

Choosing recursive importance distribution leads to an increasing variance of the
weights as the time progresses [12]. The purpose of the final stage selection is to avoid
this degeneracy. We first measure degeneracy of the cloud of paths using the effective
sample size (ESS): NESS = 1/∑M

m=1 w̃2
(m). When NESS decreases below a fixed threshold

εESS, a resampling procedure is used in order to eliminate particles with low weight [8].

2.3 Densities

The Prior Distribution. As in [20], the von Mises-Fisher (vMF) distribution has been
selected as prior because it is a parametric distribution for directional data. This distri-
bution is parametrized by µ and κ, respectively called mean direction and concentration.
The greater the value of κ, the stronger is the concentration of the distribution around
mean direction µ. Considering the tractography problem and the tracking model, the
value of concentration parameter κ is a smoothness constraint of fiber path.

The Importance Density. The iterative solution estimation relies on the approximation
of the posterior, i.e. on the importance density. At each step, knowing a path’s vector
sequence and its observation information, next direction added to path is sampled ac-
cording to the importance density. The optimal importance density is p(vk|vk−1,z1:k),
because conditionally upon vk and z1:k, the variance of the importance weights wk is
then minimal [8]. Since it is difficult to sample from p(vk|vk−1,z1:k), a usual choice
is to use for importance the same distribution as prior. Nevertheless, since no obser-
vation information is used, generated particles using the prior are often outliers of the
true posterior distribution. As importance function, we choose a local linearization us-
ing observations. The ODF functions model water diffusion in the brain and give an
estimation of the underlying fiber architecture. Each ODF’s maxima should indicate
fibers’ directions. Let Λk be a set of directions where ψxk is locally maximum. Then,
importance density is defined in dimension 3 as vMF mixture:

π(vk|v0:k−1,z1:k) =

⎧⎨⎩ ∑
µ∈Λk

ωµ f3(uk| µ,κµ) if Λk �= /0

f3(uk| uk−1,κ) else
, (2)

where f3 is the vMF on the 2-sphere in R
3, uk is the unit vector in spherical coordinates

corresponding to the unit vector vk in Cartesian coordinates, κµ is the concentration
depending on observations, κ is the concentration parameter and ωµ are mixture pro-
portions such that 0 ≤ ωµ ≤ 1 and ∑µ∈Λk

ωµ = 1. Each ωµ is proportional to the ODF
value in direction µ.
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In [20], the concentration parameter of importance is computed as an exponential
function of fractional anisotropy (FA). For ODF functions, FA in one direction can be
measured as the mean curvature of the function in that direction [5]. Thus, the concen-
tration parameter κµ is proportional to ODF curvature in direction µ: κµ ∝ H(µ) where
H(µ) is the mean curvature of ψxk in direction µ. The use of a vMF mixture allows us
an efficient sampling procedure of the importance distribution [19].

This definition of importance distribution approximate likelihood distribution [20].
The paths cloud is then weighted by importance weights proportionally to prior distribu-
tion. This means that each particle is projected backward in order to know its probability
to have a predecessor among paths cloud at previous step.

The Likelihood. Partially due to noise, there is uncertainty in MRI diffusion informa-
tion. The observation density is supposed to be a measure of this uncertainty. In term
of probabilities, likelihood defines a measure of how observations match the current
model. Therefore, we model likelihood density as a distance error between measured
observations and observations matching perfectly the current state model. At step k,
uk is the direction sampled according to the importance and µ is assumed to be the
mean vector of the sampled vMF distribution (in order to get a direction uk). Accord-
ing to section 2.1, the diffusion signal at position xk is described by Sxk . Let S̄xk be
the diffusion signal at position xk if the sampled direction uk was exactly the mean di-
rection µ, i.e. µ = uk. Then, S̄xk is determined from Sxk by a rotation of angle µ̂uk in
three dimensional space: S̄xk = rot(µ̂uk,Sxk), where µ̂uk denotes the angle between µ
and uk.

Similary to [20], let consider S̄xk as the diffusion signal and the MRI intensities
Uxk , a noisy measure of it, i.e. Uxk = S̄xk + ε. Noise in MRI images can be described
closely approximated for moderate-large SNR by a normal distribution [11] with a
zero-mean and standard deviation of noise in MRI diffusion weighted image, i.e. ε =
Uxk − S̄xk ∼ N (0,Σ2). The standard deviation of diffusion MRI image in each gradient
directions σi is estimated by least square estimation and pseudo-residuals [10]. Thus,
likelihood is written as a multiplication of error distribution in each gradient direction
gi:

p(zk|vk) =
N

∏
i=1

N (Uxk (gi)− S̄xk(gi)| 0,σ2
i ) . (3)

3 Results

The tractography method has been evaluated on the MICCAI’09 Fiber Cup phantom
and on in-vivo brain DWMRI data. Since the sampled particles evolve in a continuous
domain and data is acquired in a discrete manner, a third-order B-Spline interpolation
is applied to dataset when required. Each tractography is performed by sampling 1000
particles. The result of the algorithm is an estimation of the posterior density which
corresponds to a connectivity map. Fiber bundles can be obtained by estimating the
maximum a posteriori (MAP) of the posterior density.
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3.1 Fiber Cup

The Fiber Cup is a tractography contest proposed at the MICCAI conference help in
London in 20091. By containing several crossing, kissing, splitting and bending fiber
configurations, this phantom is a very convenient way to compare the proposed method
with other existing approaches. The Fiber Cup phantom size is 64×64×3 voxels with
a resolution of 3× 3× 3 mm. It contains 2 repetitions of 65 gradient directions each,
including 1 baseline direction for each repetition. The b-value is 1500 for each direction.
The seeds’ locations of the contest are exposed in Fig. 1.

Fig. 1. Fibers estimations of our algorithm on the Fiber Cup
phantom. Seeds are marked with red cross.

Table 1. Quantitative results of
the proposed algorithm on the
Fiber Cup phantom. When the
proposed algorithm reaches the
first three places of the con-
test, the corresponding results are
marked in bold.

L2 tan curv

F1 1.68952 14.8774 0.155911
F2 2.93385 25.9358 2.81907
F3 1.64951 13.8554 0.165466
F4 2.12385 16.8663 0.157994
F5 2.72598 16.3259 0.160928
F6 3.51537 23.713 1.02897
F7 3.58313 21.245 2.54886
F8 2.34624 21.7216 3.82264
F9 3.03358 17.6071 0.150982
F10 8.96364 31.2289 0.147886
F11 3.53476 17.6234 0.136861
F12 3.87773 20.7672 0.183536
F13 2.60168 16.2984 0.17025
F14 2.47026 16.2079 0.133395
F15 2.24925 18.6442 0.157172
F16 4.26736 17.4609 0.136369

The quantitative results of our algorithm are summarized in the Tab. 1 and estimated
fibers from the particles cloud are shown in Fig 1. The algorithm gets 35 points accord-
ing to the Fiber Cup contest and would be at the 3rd position in the ranking. Considering
only the spatial metric, our algorithm places itself to the first position with 31 points,
before [17] which gets 22 points. As shown in Table 1, although the method has pleas-
ing results with the spatial metric (L2 norm), it suffers from a lack of precision in both
tangent and curvature metric. This might be due to the quality of the estimation of the
MAP of the posterior density and not to the particle filtering algorithm itself. Never-
theless, satisfactory results are generated in a short computation time. For instance, the

1 The website http://www.lnao.fr/spip.php?rubrique79 provides details and results
about this competition. The phantom used to compare tractographies and the comparison pro-
gram are also available on this website.

http://www.lnao.fr/spip.php?rubrique79


214 J. Pontabry and F. Rousseau

(a) Particles cloud

(b) MAP estimate of the posterior density

(c) fODF-STR result [7]

(d) Connectivity map

(e) fODF-PROBA result [7]

Fig. 2. Results of tractographies of adult human brain starting from a seed point in the corpus
callosum indicated by a yellow arrow. Each result is displayed on a FA image slice. Tractogra-
phies were performed using fODF-STR (Fig. 2(c)), fODF-PROBA (Fig. 2(e)) and the proposed
algorithm (Fig. 2(a), 2(b) and 2(d)).

winner of this contest [17] uses a global algorithm which performed the tractography
in one day of computation time whereas ours implementation did run in 8 minutes on
a computer with 8 processor Intel Xeon 2.4GHz (including the preprocessing, i.e. the
model estimation, the noise estimation, the maxima extraction, etc.).

3.2 In-vivo Data

In-vivo brain dataset comes from the community MIDAS / National Alliance for Med-
ical Image Community (NAMIC)2 and was acquired from a healthy adult volunteer

2 http://insight-journal.org/midas/collection/view/190

http://insight-journal.org/midas/collection/view/190
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using a 3 Tesla GE system. It contains a 144× 144× 85 volume image with 1.7×
1.7×1.7 mm voxel resolution. The diffusion signal was measured in 51 directions with
b = 900 s.mm−2 and there are 8 baseline images (b = 0 s.mm−2). During the model
estimation, the 8 baseline images have been used by averaging them. The model order
for the spherical harmonics is l = 4. The proposed algorithm was applied to this vol-
ume image with a step length of 0.85 mm, a resampling threshold εESS = 60% and 1000
particles. The tractography has been performed on a brain mask defined by voxels with
a fractional anisotropy (FA) value greater than 0.2. In order to show the contribution of
the particle filtering framework into the tractography results, the proposed algorithm is
compared with two other tractography frameworks (using the same diffusion model):
fODF streamline (fODF-STR) and fODF "probabilistic" (or random walk, named later
fODF-PROBA) [7].

Figure 2 shows the results of a tractography starting from a seed point in the cor-
pus callosum. An axial slice of FA map is shown as a reference background image.
The particle cloud is shown in Fig. 2(a). From this cloud, both fiber path and pos-
terior density map (projected on the axial slice) have been generated (respectively
Fig. 2(b) and 2(d)). Using the same experimental parameters, our implementations
of fODF based algorithms, were applied to the dataset (results are displayed respec-
tively in Fig. 2(c) and 2(e)). The propagation of fODF-STR is early stopped because it
reaches the boundary of the brain mask, resulting in a partial tractography (Fig. 2(c)).
The fODF-PROBA algorithm leads to a very smooth posterior density approximation
(Fig. 2(e)) due to the diffusion-based random walk strategy used in this algorithm.

4 Discussion

In this article, a probabilistic tractography method has been presented based on the
well-formalized particle filtering framework and using an analytical Q-ball model for
diffusion data. The output of the algorithm is an estimate of the posterior density of the
white matter fibers. The keypoints of the method are the three densities: prior, likeli-
hood, importance. First, the prior density constrains the solution. Then, the likelihood
density ensures the reasonableness of the estimation with a noise model of DWMRI
data. Finally, fast and efficient sampling is realized by a vMF mixture.

As shown by the experiments performed on the Fiber Cup phantom, the use of a Q-
ball data modeling within the particle filtering framework leads to accurate estimations
of complex fiber configurations. Experiments on in-vivo data have shown the contri-
bution of the particle filtering framework compared to streamline approach or random
walk like techniques. Further work could study the whole diffusion information avail-
able, without any diffusion model constraint. Indeed, techniques for estimating models
induce approximations that can exaggerate uncertainty in the data.
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Abstract. The estimation of the ensemble average propagator (EAP)
directly from q-space DWI signals is an open problem in diffusion MRI.
Diffusion spectrum imaging (DSI) is one common technique to compute
the EAP directly from the diffusion signal, but it is burdened by the
large sampling required. Recently, several analytical EAP reconstruction
schemes for multiple q-shell acquisitions have been proposed. One, in
particular, is Diffusion Propagator Imaging (DPI) which is based on the
Laplace’s equation estimation of diffusion signal for each shell acquisi-
tion. Viewed intuitively in terms of the heat equation, the DPI solution
is obtained when the heat distribution between temperatuere measure-
ments at each shell is at steady state.

We propose a generalized extension of DPI, Bessel Fourier Orientation
Reconstruction (BFOR), whose solution is based on heat equation esti-
mation of the diffusion signal for each shell acquisition. That is, the heat
distribution between shell measurements is no longer at steady state.
In addition to being analytical, the BFOR solution also includes an in-
trinsic exponential smootheing term. We illustrate the effectiveness of
the proposed method by showing results on both synthetic and real MR
datasets.

1 Introduction

The main aim of diffusion-weighted imaging (DWI) is to non-invasively recover
information about the diffusion of water molecules in biological tissues, in par-
ticular white matter (WM). The EAP contains the full information about the
diffusion process, which reflects the complex tissue micro-structure, and its es-
timation lies at the heart of diffusion MRI. When the narrow pulse condition
is met, the EAP is related to the q-space diffusion signal E by the Fourier
transform:

P (p) =
∫

E(q)e−2πq·pd3q, (1)

� Corresponding author.

G. Fichtinger, A. Martel, and T. Peters (Eds.): MICCAI 2011, Part II, LNCS 6892, pp. 217–225, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



218 A.P. Hosseinbor et al.

where p is the displacement vector in propagator-space and q is the diffusion
wave-vector in signal-space. We denote q = qu and p = pr, where u and r are
3D unit vectors.

In DTI [2], the diffusion signal is modeled with a Gaussian function. Con-
sequently, DTI can only map a single fiber orientation within a voxel, and
fails in voxels with orientational heterogeneity [11]. Diffusion Spectrum Imaging
(DSI) [12] is a well known model-free method that uses the Fourier transform to
numerically estimate the EAP. It is burdened, however, by the dense sampling
required on a Cartesian grid in q-space, which results in long acquisition times.

As a result of the constraints of DSI, several analytical technqiues have arisen
that derive an expression for the EAP based on a particular assumption of
the diffusion signal. Spherical Polar Fourier Imaging (SPFI) [1, 3] models the
signal in terms of an orthonormal basis comprising spherical harmonics (SH) and
Gaussian-Laguerre polynomials, and was proposed to sparsely represent E(q).
The authors in [10] expanded the diffusion signal in terms of another orthonormal
basis that appears in the 3D quantum mechanical harmonic oscillator problem.
Their basis is closely related to the SPFI basis. A technique that does not model
signal in terms of an orthonormal basis is Diffusion Propagator Imaging (DPI)
[7], where the diffusion signal is assumed to be a solution to the 3D Laplace’s
equation �2E = 0. It seems to work well with only a small number samples.
However, according to DPI, E(0) does not exist, which makes the assumption
of Laplacian equation modeling unrealistic for E(q). Thus, DPI may work well
within a range of q values, but not for the entire q-space.

In this paper, we develop Bessel Fourier Orientation Reconstruction (BFOR),
which is a generalized extension of DPI. Rather than assuming the signal satis-
fies Laplace’s equation, we reformulate the problem into a Cauchy problem and
assume the signal satisfies the heat equation. The heat equation is a generaliza-
tion of Laplace’s equation, which the latter approaches in the steady state (i.e.
t → ∞). It provides an analytical reconstruction of the EAP profile from diffu-
sion signal and models the diffusion signal in terms of an orthonormal basis. In
addition, BFOR contains an intrinsic exponential smoothening term that allows
one to control the amount of smoothening in the EAP estimation. The last point
is significant because, although the Laplacian modeling intrinsically smoothens
the diffusion signal, the amount of smoothening can not be controlled, and hence
it may oversmooth the signal. We test our method on both synthetic and in vivo
datasets.

2 Bessel Fourier Orientation Reconstruction

2.1 Estimation of EAP

Consider the eigenvalue/boundary condition problem

�xψi(x) = −λiψi(x), ψi(x = τ) = 0 (2)

which we use to solve the Cauchy problem
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∂

∂t
g(x, t) −�xg(x, t) = 0, g(x, 0) = f(x), (3)

where f(x) is simply the acquired signal and � is some self-adjoint linear oper-
ator. Chung et al. in [4] derived a unique solution for (3):

g(x, t) =
∞∑

i=0

aie
−λitψi(x), (4)

where e−λit is a smoothening term controlled by parameter t ≥ 0 and the co-
efficients are given by ai = 〈f, ψi〉. The implication of (4) is that the solution
decreases exponentially as t increases and smoothes out high spatial frequency
noise much faster than low-frequency noise. In DPI, however, the steady state
assumption permanently removes any temporal term, which governs the extent
of smoothening, so there is no smoothening control mechanism. Note that t = 0
corresponds to unsmoothened solution.

Within the context of our problem, g(x, t) is q-space diffusion signal. The
assumption of a 3D Laplacian operator in spherical coordinates allows us to
solve (2) via separation of variables, and hence obtain the orthonormal basis
ψnj(q) = jl(j)(

αnl(j)q

τ )Yj(u),1 where αnl(j) is nth root of lth order spherical Bessel
function of first kind jl and τ is the radial distance in q-space at which the Bessel
function (and hence signal) goes to zero. Yj are a modified real and symmetric
SH basis proposed in [7] to reflect the symmetry and realness of the diffusion

signal. The eigenvalues are λnl(j) =
α2

nl(j)

τ2 .
The assumption of a Laplacian operator results in (3) becoming the heat

equation: �2E = ∂E
∂t . From (4) then, the q-space signal can be expanded in

terms of the spherical orthonormal basis ψnlm:

E(q, t) =
N∑

n=1

R∑
j=1

Cnje
−α2

nl(j)t

τ2 jl(j)(
αnl(j)q

τ
)Yj(u), (5)

where Cnj are the expansion coefficients, R = (L+1)(L+2)
2 is the number of terms

in the modified SH basis of truncation order L, and N is the truncation order
of radial basis. Thus, the total number of coefficients in the expansion is W =
N(L+1)(L+2)

2 . Note that the actual acquired signal from scanner is given at t = 0.
To derive the EAP, we express the Fourier kernel in (1) as a plane wave

expansion in spherical coordinates

e−2πiq·p = 4π
∞∑

j=1

(−i)l(j)jl(j)(2πqp)Yj(u)Yj(r) (6)

Then substituting (5) and (6) into (1), we obtain

1 For detailed derivations, visit
http://brainimaging.waisman.wisc.edu/∼ameer/Derivations.pdf
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P (p, t) = 4π
∫ N∑

n=1

R∑
j=1

Cnje
−α2

nl(j)t

τ2 jl(j)(
αnl(j)q

τ
)Yj(u)

∞∑
j′=1

(−i)l(j′)jl(j′)(2πqp)Yj′ (u)Yj′ (r) d3q

= 4π
N∑

n=1

R∑
j=1

(−1)l(j)/2Cnje
−α2

nl(j)t

τ2 Yj(r)Inl(j)(p), (7)

where we use the orthonormal property of SH, i.e.
∫
Yj(u)Yj′ (u)d2u = δjj′ and

define

Inl(j)(p) =
∫ ∞

0

q2jl(j)(
αnl(j)q

τ
)jl(j)(2πqp)dq ≈

∫ τ

0

q2jl(j)(
αnl(j)q

τ
)jl(j)(2πqp)dq

(8)
After some algebra and exploiting properties of the spherical Bessel function, we
can write the EAP, for p > 0, as

P (p, t) =

√
2π3τ

p

N∑
n=1

R∑
j=1

(−1)
l(j)
2 Cnje

−α2
nl(j)t

τ2

Yj(r)
√
αnl(j)Jl(j)−1/2(αnl(j))Jl(j)+1/2(2πτp)(

4π2p2 − α2
nl(j)

τ2

) (9)

2.2 Implementation of Methods

The task is to estimate coefficients Cnj from the observed signal E(q,u, t = 0).
We achieve this by carrying out a linear least square (LS) fitting with regular-
ization in the radial and angular parts. For the LS estimation, denote signal
vector by E = [E(qk, t = 0]S×1, the coefficient vector by C = [Cnj ]W×1, and
the basis matrix by M = [jl(j)(

αnl(j)qk

τ )Yj(uk)]S×W , where k = 1, ..., S. The
angular regularization matrix, denoted by L̃, is the Laplace-Beltrami diagonal
matrix with l2(l + 1)2 entries on the diagonal and the radial regularization ma-
trix, denoted by Ñ , is a diagonal matrix with entries n2(n + 1)2 along its di-
agonal. The angular and radial regularization matrices penalize, respectively,
high degrees of the angular and radial parts of (5) in the estimation under the
assumption that they are likely to capture noise [1]. Then the coefficients are
C = (MTM +λlL̃+λnÑ)−1MTE, where λl and λn are the regularization terms
for angular and radial bases, respectively.

Lastly, once we extract the coefficents, the EAP profile at some radius and
some instant of smoothening is computed by interpolating Z points along the
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equator of a sphere of the same radius (i.e. the polar angle is π/2 and the
azimuthal angle is varied from 0 to 2π). Denoting the EAP vector at given
radius po and at a given instant to of smoothening by P = [P (po, ro, to)]Z×1

and the Z × W EAP basis matrix evaluated at po and to by F , we have P =
FC = F (MTM + λlL̃ + λnÑ)−1MTE. It is important to note that we apply
smoothening on the EAP, itself, and not on the diffusion signal.

3 Results on Synthetic and Real Data

Synthetic Data. The monoexponential mixture model is frequently used to
generate synthetic data to validate a given EAP reconstruction, such as in [1,3],
where the maximum b-value used exceeded 3000 s/mm2. However, diffusion MR
imaging experiments using high b-values (> 2000 s/mm2) have shown that the
diffusion signal decay is no longer monoexponential. Studies in normal human
brain, with b-values over an extended range of up to 6000 s/mm2, have shown
that the signal decay is better described with a biexponetial curve [9,5]. Thus, we
apply BFOR and DPI to simulations of crossing fiber configurations generated
via a biexponential mixture model.

In biexponential mixture, E(q) =
∑Nb

k=1[fkf e
−buT Dkfu + fkse

−buT Dksu], as-
suming no exchange between compartments [5, 13]. We look at two equally
weighed fibers and set eigenvalues of each diffusion tensor to be [1.6,0.4,0.4]e-3.
Diffusion measurements in the corpus callosum were used to simulate fast and
slow Gaussian diffusion functions [8]. A hybrid sampling scheme [13] was used
and consisted of one baseling image acquired at b=0 s/mm2 and 6 shells, with
(Ne, b) = {(6, 690), (21, 2780), (24, 6250), (24, 1.11e4), (100, 1.74e4) (100, 2.5e4)},
where Ne denotes number of encoding directions, and qmax/Δq=76/15.2 mm−1.
Since EAP reconstruction is sensitive to angular resolution, the number of encod-
ing directions is increased with each shell to increase the angular resolution with
the level of diffusion weighting. We then add Rician noise the same way as in [6],
with SNR = 1/σ, which is defined as the ratio of maximum signal intensity
S(0) = 1 to the standard deviation σ of complex Gaussian noise. At SNR = 10,
200 trials were simulated. The BFOR parameters are {N = 8, L = 6, τ = 106.4
mm−1, λl = 10−6, λn = 10−6} and the DPI parameters {L = 6, λ = 0}.

Fig. 1 shows that the BFOR basis fits the diffusion signal nearly perfectly,
while Figs. 2 and 4 demonstrate that BFOR successfully captures the geome-
try and orientation of the EAP profile. The corresponding DPI estimated EAP
profiles, shown in Figs. 3 and 5, are not as accurate as BFOR. Fig. 6 shows the
Euclidean squared error, averaged over all noise simulations, at various radii for
DPI and BFOR, and indicates both methods have a similar robustness to noise.
As the smoothening parameter t is increased, the squared error is gradually
reduced.

Real Data. We tested our method using healthy, adult human data, with
qmax/Δq=76/15.2 mm−1 and TE/TR/matrix=122ms/11700ms/128 × 128 ×
30. The sampling scheme consisted of two baseline images acquired at b = 0
s/mm2 and 5 shells, with (Ne, b)={(6,375),(21,1500),(24,3375),(24,6000),
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(a) b=690 (b) b=2780 (c) b=6250 (d) b=1.11e4(e) b=1.74e4 (f) b=2.50e4

Fig. 1. The ground truth diffusion signal (green) and BFOR estimated signal (red)
when noise was absent are compared using all 6 available shells. Two equally weighted
fibers were simulated at t = 0 crossing at 60◦.

(a) p = 5 (b) p = 15 (c) p = 25 (d) p = 30

Fig. 2. The EAP estimated by BFOR (red) and actual EAP (green) in absence of noise
for two equally weighed fibers crossing at 60◦ at t = 0 for radii p = 5, 15, 25, and 30
μm.

(a) p = 5 (b) p = 15 (c) p = 25 (d) p = 30

Fig. 3. The EAP estimated by DPI (blue) and actual EAP (green) in absence of noise
for two equally weighed fibers crossing at 60◦ for radii p = 5, 15, 25, and 30 μm

(a) p = 5 (b) p = 15 (c) p = 25 (d) p = 30

Fig. 4. The EAP estimated by BFOR (red) and actual EAP (green) in absence of noise
for two equally weighed fibers crossing at 90◦ at t = 0 for radii p = 5, 15, 25, and 30
μm

(a) p = 5 (b) p = 15 (c) p = 25 (d) p = 30

Fig. 5. The EAP estimated by DPI (blue) and actual EAP (green) in absence of noise
for two equally weighed fibers crossing at 90◦ for radii p = 5, 15, 25, and 30 μm
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Fig. 6. Plotted is the point-wise mean
Euclidean squared error of BFOR and
DPI as a function of propagator ra-
dius for two fibers crossing at 60◦ when
SNR = 10. The squared error is nor-
malized by maximum squared error from
BFOR.

A

B

Fig. 7. Axial slice of FA map (b=1500)
of adult human brain. ROI A on the cor-
pus callosum is a region where we expect
single fibers, while ROI B is one where we
expect crossing fibers (i.e. dark streaks).

(a) BFOR at t = 0 (b) BFOR at t = 400 (c) DPI

Fig. 8. Plotted is the EAP profile at p = 10 μm overlaid on FA map in ROI A using
BFOR at (a) t = 0, (b) t = 400, and (c) DPI

(a) BFOR at t = 0 (b) BFOR at t = 60 (c) DPI

Fig. 9. Plotted is the EAP profile at p = 10 μm overlaid on FA map in ROI B using
BFOR at (a) t = 0, (b) t = 60, and (c) DPI. Note how DPI falsely indicates certain
WM voxels exhibiting near isotropic diffusion.



224 A.P. Hosseinbor et al.

(50,9375)} [13]. The number of directions in the outer shells were increased to
better characterize complex tissue organization. We set L = 4, N = 4, τ = 91.2
mm−1, λl = 10−6, λn = 10−6. As shown in Fig. 7, two 4 × 4 ROIs were drawn
on the same slice from a FA map: one on corpus callosum where we expect single
fibers, and another on area with black streaks where we expect crossing fibers.
The EAP profile was estimated at p = 10 μm for each ROI. Based on results
shown in Figs. 8 and 9, we see that BFOR performs well in corpus callosum and
can successively resolve multiple fiber orientations in voxels with orientational
heterogenity. The DPI reconstruction in Fig. 9c, however, erroneously indicates
certain WM voxels exhibiting near isotropic diffusion.

4 Discussion

In BFOR, we derive a general solution for the heat equation that is a function
of the amount of smoothening t, while DPI solves the heat equation at steady
state (t → ∞). This is the first study to include biexponential diffusion model
for EAP reconstruction, and the results from the numerical phantom show that
BFOR basis models the diffusion signal very well and can successfully reproduce
the ground truth EAP. However, the sampling scheme used in the numerical
simulations may not be clinically feasible because of the extremely low SNR
at bmax=2.5e4. The application of BFOR to real data revealed that it can suc-
cessfully retrieve multiple fiber orientations. Comparison with DPI depicts our
model in a favorable light. Future work includes applying compressed sensing to
BFOR to find a sparser sampling scheme, and computing quantitative properties
of the EAP using BFOR basis.
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Abstract. Parallel MRI leads to magnitude data corrupted by noise
described in most cases as following a Rician or a non central χ dis-
tribution. And yet, very few correction methods perform a non central
χ noise removal. However, this correction step, adapted to the correct
noise model, is of very much importance, especially when working with
Diffusion Weighted MR data yielding a low SNR. We propose an ex-
tended Linear Minimum Mean Square Error estimator (LMMSE), which
is adapted to deal with non central χ distributions. We demonstrate
on simulated and real data that the extended LMMSE outperforms the
original LMMSE on images corrupted by a non central χ noise.

1 Introduction

As many other imaging techniques, Magnetic Resonance Imaging (MRI) is very
sensitive to noise in the data. Noise decreases image quality in MRI and par-
ticularly in diffusion weighted MRI (dMRI) where the diffusion indicator in the
tissues is the measured signal loss. Moreover, noise has higher corrupting effects
when using high b-values.

The MR signal is complex with two real and imaginary channels each cor-
rupted by a zero-mean uncorrelated Gaussian noise [1]. It is most common to
work on the magnitude of the measured signal in order to avoid the artefacts
due to the phase. Because of the non linear square root function used to get
it, the measured magnitude will not follow a Gaussian, but a more complex
distribution. In case of a multiple-channel acquisition, with a Sum-of-squares
(SoS) reconstruction, the noisy magnitude follows a non-central χ (nc-χ) distri-
bution [2]. In the case of Generalized Autocalibrating Partially Parallel Acqui-
sition (GRAPPA) reconstruction, [3] reminds that the noise is non-stationnary,
so in this case, the nc-χ hypothesis becomes a good approximation. A partic-
ular case of the nc-χ distribution, namely the Rician distribution, appears in
case of a single-channel acquisition, or when using the Sensitivity Encoding for
Fast MRI (SENSE) algorithm [4]. For high signal to noise ratios (SNRs), a nc-χ
distribution can be approximated by a Gaussian distribution, and least square
estimators can be used efficiently. At high b-values however, the SNR drops and
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the signal depicts a systematic bias. Least square estimators cannot be used any-
more because the mean operator does not converge to the noise-free magnitude.
This makes the nc-χ process more difficult to correct than a Gaussian one. High
Angular Resolution Diffusion Imaging (HARDI) or HYbrid Diffusion Imaging
(HYDI) are usually performed at those high b-values yielding low SNR data on
clinical systems. That is why a correction taking into account the nc-χ process
is essential to improve the data quality and analysis.

Numerous techniques, adapted to a Rician noise, were proposed to correct
MR data. A review of many of them can be found in [5]. But, most of these
methods are not adapted to correct a nc-χ noise. To our knowledge, only two
techniques deal with this more complex process. The first one, the analytically
exact correction scheme developed in [6] relies on a fixed point formula of SNR
and a correction factor to extract the noise-free signal. The second one is based
on a framework which transforms the magnitude signals so that they follow
Gaussian distributions, in order to use the least square approach on them [7].

In this paper, we propose to extend the method proposed by Aja-Fernández
et al in [5] to the correction of nc-χ noise. The original technique relies on a
Linear Minimum Mean Square Error estimator (LMMSE) that calculates the
noise-corrected signals thanks to local estimations of mean and variance. As
the LMMSE corrects the magnitude signals directly, any diffusion model can
be applied on the corrected diffusion weighted (DW) data, making the method
generic. Moreover, the algorithm is easy and fast to compute. Because of all
these reasons, the LMMSE was used in many studies ([8], [9], [10], [11]). That
is why an adaptation of the LMMSE to the nc-χ noise model might be of great
interest for all works dealing with Parallel MRI data corrupted by a nc-χ noise
and where the LMMSE is involved. This implies that the noise estimation must
also be adapted, as done in [12]. First, we explain the extension of the LMMSE to
the nc-χ distribution. Then, we describe the methods to infer the noise standard
deviation. Finally, we validate the technique on simulated and real data, applying
it to the popular Diffusion Tensor (DTI) and analytical Q-ball models.

2 Methods

2.1 Extended LMMSE Model

The LMMSE of [5] relies on a simple expression of the squared noise-free mag-
nitude:

Ŝ2 = E(S2) + Cov(S2,M2)Var(M2)
−1 × (M2 − E(M2)

)
, (1)

with S2 being the squared noise-free magnitude, Ŝ2 being its estimation and M
being the measured magnitude. This expression is true for any voxel and any
diffusion orientation, and to simplify we do not add their corresponding values.
Cov(S2,M2) is the covariance of S2 and M2 and Var(M2) is the variance of
M2. (1) allows to estimate the noise-free magnitude and relies on the knowledge
of E(S2), Cov(S2,M2) and Var(M2). Their expressions for a Rician noise are
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given in [5]. We propose to follow the same process with the assumption of a
multiple-coil acquisition yielding a nc-χ noise. The nc-χ distribution is given by:

P (M ;S, σ, n) =
M

σ2

(
M

S

)n−1

exp
(
−M2 + S2

2σ2

)
· In−1

(
SM

σ2

)
, (2)

with σ being the noise standard deviation of the Gaussian noises present on
the complex acquisition channels, n being the number of channels used in the
acquisition and In−1 being the (n − 1)th order modified Bessel function of the
first kind. In such multiple-channel acquisitions, the measure of the magnitude
of the magnetization is generally performed using an n element phased array
antenna. First, we consider the commonly used ”Sum-of-Squares” (SoS) recon-
struction method to get M =

(∑n
k=1 (Srk

+ Brk
)2 + (Sik

+ Bik
)2
)1/2

, where

S =
(∑n

k=1 S
2
rk

+ S2
ik

)1/2 =
(∑n

k=1 S
2
k

)1/2. Srk
and Sik

are the real and imagi-
nary parts of the noise-free signal Sk received by the coil k; Brk

and Bik
are the

real and imaginary parts of the noise corrupting the signal Sk. They are sup-
posed to be zero-mean, uncorrelated and independant Gaussian noises. Thanks
to these assumptions, the variance and covariance terms can be written:{

Var(M2) = E(M4) − E(M2)2,
Cov(S2,M2) = E

(
S4
)

+ 2nσ2E(S2) − E(S2)E(M2). (3)

Injecting both variance and covariance expressions in the equation (1), we obtain:

Ŝ2 = E(S2) +

(
E
(
S4
)

+ 2nσ2E[S2] − E(S2)E(M2)
)

(E(M4) − E(M2)2)
× (M2 − E(M2)

)
(4)

Now, if we use the 2nd and 4th order moments of the nc-χ distribution, we have:{
E(S2) = E(M2) − 2nσ2

E(S4) = E(M4) − 4(n + 1)σ2E(M2) + 4n(n + 1)σ4,
(5)

and the LMMSE equation (4) for a nc-χ noise can finally be expressed as:

Ŝ2 = 〈M2〉 − 2nσ2 +

(
1 − 4σ2

[〈M2〉 − nσ2
]

〈M4〉 − 〈M2〉2
)

× (M2 − 〈M2〉) (6)

As done in [5], under the assumption of local ergodicity, we replaced the expecta-
tion E(·) by 〈·〉, a local spatial mean calculated on a neighborhood. For a single
channel acquisition (i.e. n = 1), (6) simplifies into its Rician form, as expected.

Practically, employing equation (6) only requires a good estimate of the noise
standard deviation σ. Obtaining such a good estimate is challenging and we
propose to address this point in the following subsection.

2.2 Noise Standard Deviation Estimation

In this subsection, 2 methods are introduced to infer σ; a first one relying on the
analysis of the signal present in the background of the data; and a second one
that does not depend on the presence of a background in the data.
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With the Necessity of a Background. σ can easily be estimated using the
information provided by the background of the image. The method proposed by
Aja-Fernández et al [12], which does not necessarily need a background segmen-
tation, produces the estimate σ̂AF of σ such that:

σ̂AF =
(√

2(n) 1
2

)−1

mode (〈Mbg(v)〉) , (7)

where Mbg(v) is the measured magnitude at the voxel v in the background
region; mode (〈Mbg〉) is the distribution mode of the mean of Mbg(v); (x)n is the
Pochhammer symbol defined as (x)n = Γ (x+1)

Γ (x−n+1) with Γ the Gamma function.

Without the Necessity of a Background. An interesting method to esti-
mate σ without background knowledge was developed by Rajan et al [13], but
for Rician noise only. We have extended it to nc-χ noise. The technique requires
to estimate the variance σ2

M and the skewness γ, at each voxel of the image,
using:

σ2
M = E(M2) − E(M)2 (8)

γ =
(
2E(M)3 − 3E(M)E(M2) + E(M3)

)
/σ3

M , (9)

where the expectations E(·) can also be replaced by a local spatial mean 〈·〉. The
method relies on the computation of a local correction factor ϕ which tunes the
proximity of the nc-χ distribution toward the central χ distribution for very low
SNRs, or toward the Gaussian distribution for very high SNRs. First, a lookup
table ϕ(γ) is created between the local correction factor ϕ and the local skewness
γ for a nc-χ distribution with a given n, by varying the value of S and keeping
σ constant. In order to build this lookup table, the 3 first nc-χ moments have
been calculated from the range of values of S and σ:

E(M) =
√

2σ(n) 1
2
× 1F1

(
− 1

2 , n,− S2

2σ2

)
E(M2) = 2nσ2 + S2

E(M3) = 2
3

√
2σ3(n) 1

2
× 1F1

(
− 3

2 , n,− S2

2σ2

)
,

with 1F1 (a, b, c) being the confluent hypergeometric function. Then, γ is ob-
tained by injecting the 3 expressions above in (9). In the same manner, the local
variance σM is computed using (8). Finally, ϕ is calculated from ϕ = σ2/σ2

M .
Once the ϕ(γ) lookup table is computed and starting from the local estimates
σ2

M (8) and γ (9), the final noise standard deviation can be estimated from:

σ̂R =
√

mode (ϕ× σ2
M ), (10)

where mode
(
ϕ× σ2

M

)
is the distribution mode of ϕ × σ2

M calculated on the
image.
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3 Results and Discussion

We used our extended LMMSE method on both simulated and real DW data
perturbed by a nc-χ noise, and we compared it to the original LMMSE method
adapted to a Rician noise.

3.1 Standard Deviation Estimations

First, we tested the estimation methods described in section 2.2 on a simulated
T1 data taken from the BrainWeb database [14]. The original image is consid-
ered as the ground truth. We added a high nc-χ noise using n = 4 channels
that correspond to the standard case of the 12 channel head coil antenna avail-
able on TimTrio systems in which the 12 channels are coupled in 4 associations
of 3 channels, and we used a standard deviation σ = 70.0 leading to a very
unfavorable situation. We made the same experiment on a synthetic DW field
depicting crossing fiber bundles simulated using a Gaussian mixture model with
nc-χ noise addition (n = 4, σ = 30.0). Table 1 shows that very good estima-
tions can be found by the first and second methods, with the knowledge of the
background-signal. Without it, the second method still gives good results.

Table 1. Different σ estimations. σ̂AF is obtained with the method of [12] using the

background (bg) of the image. σ̂
w/bg
R and σ̂

wo/bg
R are obtained with the method using

equation (10), performed respectively with and without the bg.

Simulated data Ground truth σ w/bg necessity wo/bg necessity

T1 image 70.0 σ̂AF = 70.0 σ̂
w/bg
R = 70.1 and σ̂

wo/bg
R = 73.4

DW field 30.0 σ̂AF = 29.5 σ̂
w/bg
R = 30.0 and σ̂

wo/bg
R = 30.9

3.2 Simulated Data

We used both simulated data already mentioned in section 3.1. Using a 5×5×5
neighborhood, we tested both versions of the LMMSE: the LMMSE correction
introduced in [5], adapted for a Rician noise (Rice LMMSE) and the extended
LMMSE correction introduced in this work following equation (6), adapted for
a nc-χ noise (nc-χ LMMSE). Before the computation of the LMMSEs, σ was
estimated using (7), with n = 1 for the Rice LMMSE and with n = 4 for the
nc-χ LMMSE. Concerning the DW field, the Orientation Distribution Func-
tions (ODFs) were processed using the analytical Q-ball model [15], with the
maximum spherical harmonic (SH) order N = 8 and the Laplace-Beltrami reg-
ularization factor λ = 0.006. In comparison to the Rice LMMSE, Fig. 1 shows
that the nc-χ LMMSE presents much better performance: good noise cleaning
and low smoothing effects. This reveals the importance of taking the correct
noise model into account in the LMMSE tool. To quantitatively validate this
result, we measured the quadratic errors:

ε =
M∑

v=1

⎛⎝ N∑
j=1

(
CDWI

v (j) − C̃DWI
v (j)

)2

⎞⎠ , (11)
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Fig. 1. Comparison between both LMMSEs on simulations of a T1 image and of ODFs

where CDWI
v is the SH coefficient vector of the noise-free DW signal of voxel

v (M is the number of voxels in the field) and C̃DWI
v is either the noisy or

the corrected coefficient vector. Whereas ε increased after the Rice LMMSE, it
dramatically decreased after the nc-χ LMMSE.

3.3 Real DW Data

DW data were collected on a Magnetom Tim Trio 3T MRI system (Siemens
Medical Solutions, Erlangen, Germany), using a gradient sampling scheme of 60
orientations uniformly distributed over a sphere at b = 4500s.mm−2. A further
reference T2 weighted volume was acquired at b = 0s.mm−2. The acquisition
parameters were as follows: TE/TR = 116ms/14s, field of view FOV = 198mm,
matrix 128×128, resolution 1.7×1.7×1.7mm3, GRAPPA factor of 2, read band-
width RBW = 1628Hz/pixel and a number of coils of 12 in an architecture of
4 × 3 coupled coils, so n = 4 in this case. We tested our method on the DTI
model (color-encoded (RGB) map) and on the analyticall Q-ball model (Gen-
eralized Fractional Anisotropy (GFA) and ODFs) with N = 8 and λ = 0.006.
Fig. 2 shows the results obtained for the Rice LMMSE and the nc-χ LMMSE.
As for the simulated data, the GFA and RGB maps emphasize the importance
of using the nc-χ noise model, yielding a preservation of the fine details and a
limited smoothing effect. On the ODF maps, the Rice LMMSE seems to provide
better results, but this is only due to a visual perception of a better coherence
induced by an oversmoothing effect. Concerning the ODFs in the red circle, the
Rice LMMSE completely overlooks the raw information in contrary to the nc-χ
LMMSE. The latter has a better behavior since it corrects the ODFs from the
influence of noise while keeping the right information.
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Fig. 2. Comparison between both LMMSEs on GFA, RGB and ODF maps. The ODFs
are computed in the yellow ROI shown on the RGB map.

4 Conclusion

We have proposed an extension of the LMMSE to nc-χ noise correction. The
comparison between the Rice and the nc-χ LMMSEs on synthetic and real data
successfully assesses the choice of the nc-χ LMMSE in case of a multiple-coil
acquisition yielding a nc-χ noise with n > 1. Whereas the Rice LMMSE over-
smoothes the images, the nc-χ LMMSE performs a clearly visible correction with
respect to the details, even in very defavorable conditions as at b = 4500s.mm−2.
The real data we used were obtained with GRAPPA reconstruction, and yet, it
has been recently discussed in [3] that an effective number of channels, as well as
an effective variance of noise, must be calculated to get a nc-χ noise model that
better fits the data. Both effective calculated parameters are not stationnary
and should be evaluated at each voxel of the image. Future work will be done
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to apply this effective parameters’ calculations to the nc-χLMMSE correction.
Last, our method can easily be extended to its recursive form as it was done in
[5] for the Rice LMMSE, but this was beyond the scope of this work.
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Abstract. The paper presents a method for creating abnormality clas-
sifiers from high angular resolution diffusion imaging (HARDI) data. We
utilized the fiber orientation distribution (FOD) diffusion model to rep-
resent the local WM architecture of each subject. The FOD images are
then spatially normalized to a common template using a non-linear reg-
istration technique. Regions of homogeneous white matter architecture
(ROIs) are determined by applying a parcellation algorithm to the pop-
ulation average FOD image. Orientation invariant features of each ROI’s
mean FOD are determined and concatenated into a feature vector to
represent each subject. Principal component analysis (PCA) was used
for dimensionality reduction and a linear support vector machine (SVM)
classifier is trained on the PCA coefficients. The classifier assigns each
test subject a probabilistic score indicating the likelihood of belonging
to the patient group. The method was validated using a 5 fold valida-
tion scheme on a population containing autism spectrum disorder (ASD)
patients and typically developing (TD) controls. A clear distinction be-
tween ASD patients and controls was obtained with a 77% accuracy.

Keywords: Diffusion Imaging, HARDI, FOD, Classification, SVM.

1 Introduction

High dimensional pattern classification methods like support vector machines
(SVM) identify brain abnormality patterns that enhance group separability while
quantifying the degree of pathological abnormality associated with each individ-
ual. This paper proposes a HARDI based pattern classification framework that
creates abnormality classifiers using information concerning white matter (WM)
architecture derived from homogeneous WM regions. This classification frame-
work not only elucidates regions that are affected by pathology but also assigns
each individual with a score indicating the degree of abnormality. Such a score
may prove useful in conjunction with other clinical measures as a diagnostic tool
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to predict the extent of disease as well as act as a biomarker to assess disease
progression or treatment efficacy.

While the bulk of classification work concerning medical imaging analysis
has centered on structural imaging[4,5], the application of classifiers to diffusion
imaging is relatively recent [9,7,14,3] , while there is no literature using HARDI
data. Caan et al [3] performed principal component analysis (PCA) and linear
discriminant analysis (LDA) on linear and fractional anisotropy (FA) images,
derived from diffusion tensor images, to classify schizophrenia patients. Wang
et al. [14] used a k nearest neighbor (kNN) classifier trained on full brain FA
images, while Ingalhalikar et al [7] used non-linear SVM trained on regional
FA and diffusivity for classification in autism spectrum disorder (ASD) and
schizophrenia. Finally, Lange et al [9] used quadratic discriminant analysis and
SVM to perform hypothesis driven classification in an ASD population based on
a-priori regions.

While these methods have had success, they are limited by the use of the
diffusion tensor (DTI) data model which is known to be ineffective in modeling
regions of complex white matter, i.e. multiple fibers with different orientations,
different partial volume fractions. High dimensional diffusion data models, such
as the the fiber orientation distribution function (FOD) [12], have been developed
to make use of new acquisition protocols which acquire HARDI data. These new
data models are better able to model complex WM regions and thus should
prove useful for studying WM pathology. While Schnell et al [11], proposed a
tissue segmentation method based on HARDI classification, we believe this is
the first work to utilize HARDI data models to perform subject classification
between healthy controls and a disease population

We propose a classification framework that makes use of the FOD HARDI
data model to extract orientation invariant features from regions of homoge-
neous WM architecture. These regions are determined from a WM parcellation
algorithm applied to the average FOD image of the control population. Principal
component analysis (PCA) is used for dimensionality reduction and a linear sup-
port vector machine (SVM) is used to perform the classification. The linearity
of the framework allows for the examination of the SVM decision weights in the
original feature space to aid in interpretability of the classification results. The
framework is applied and cross-validated using a 5-fold cross-validation paradigm
using a dataset comprised of children diagnosed with Autism Spectrum Disorder
(N=23) and typically developing controls (N=22). The high accuracy, specificity
and sensitivity (all ∼77%) establish the applicability of classifier scores for aiding
diagnosis and prognosis.

2 Methods

The process of training and validating a classification framework like the one pro-
posed here consists of a number of steps. Namely feature extraction and dimen-
sionality reduction/feature selection, followed by training and cross-validation.
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Fig. 1. Feature Extraction: Spatial regions of homogeneous WM are determined by
parcelating the population average FOD image into regions of low variance, shown on
the left. For each region the mean FOD is computed from which 5 orientation invariant
FOD features are computed. The mean FOD and corresponding feature vectors are
shown, on the right, for regions in the corpus callosum, as well as in anterior and
posterior complex WM.

2.1 Feature Extraction

For each subject, feature extraction must be performed to extract a salient rep-
resentation of the subject that will serve as a means of comparison. We are
interested in identifying pathologies that manifest as abnormalities in the WM.
We therefore concentrate on extracting features from spatially localized regions
of homogeneous WM. This process entails modeling the diffusion process in each
voxel using the fiber orientation distribution function (FOD) followed by spa-
tially normalizing all subjects into a common template reference frame. Once all
subjects are spatially normalized an average FOD image of the control popula-
tion is computed and used to determine homogeneous WM regions of interest
(ROIs). Finally orientation invariant features from each ROI are extracted and
concatenated to build a feature vector representation of each subject.

Our process begins by using constrained spherical deconvolution[12] to com-
pute an FOD image for each subject. The FOD diffusion model represents the
voxel’s DW-MRI signal as the spherical convolution of the FOD and the DW
signal that would be measured for a single fiber bundle aligned along the z-
axis. Information concerning both the orientation and partial volume of any
constituent fiber bundles present in a voxel is represented via the FOD [12]. In
this work we use the order 8 real spherical harmonic (RSH) representation of
the FOD, thus each voxel is represented by the 45 RSH coefficients of its FOD.

Each FOD image is then spatially normalized to a template FOD image, an
individual normal subject in this case, using a diffeomorphic demons-based FOD
registration algorithm [1]. The process of spatial normalization defines a spatial
and anatomical correspondence between subjects that allows a set of ROIs to
be determined and to confidently represent corresponding areas of anatomy in
each subject.
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A population average FOD image, in the template space, is then computed
from the registered FOD images of the normal subjects of the population. From
this average FOD image we determine a set of WM ROIs with a homogeneous
WM architecture using the methods described in [2]. This method utilizes nor-
malized cuts spectral clustering to partition the WM into spatially connected
regions which have a small FOD variance. Using this method we determined 883
WM ROIs, with an FOD variance below 0.08 (Shown in Figure 1).

With spatial ROIs determined, we compute the feature vector representation
for each subject by first determining the mean FOD in each ROI. From the mean
FOD we compute the L2 norm of the RSH coefficients in each order (l level).
Because rotations of the FOD will transfer energy within an order but not from
one order to another the collection of these L2 norms provides an orientation
invariant representation [6] of the mean FOD. Thus for an order 8 FOD model,
as the one used here, each ROI is represented by the pl for l in 0, 2, 4, 6, 8. Where

pl =
√∑m=l

m=−l f̃
2 is defined in terms of the RSH coefficients of the mean FOD

(f̃) of the ROI. These 5 features are computed for each of the 883 WM ROIs
and concatenating them yields a representation of each subject’s WM by a 4415
element feature vector.

2.2 Dimensionality Reduction

When using high dimensional feature representations of subjects within a clas-
sification framework such as this, a critical task is that of feature selection or
dimensionality reduction. Particularly when using small sample sizes, such as
those commonly available to medical imaging studies, the reduction of the fea-
ture space dimensionality is essential to avoid over-fitting and for minimizing
classification error. In this work, we use principal component analysis (PCA)
to obtain a concise basis of the original feature space while still accounting for
the majority of the population variance (> 90%). The PCA features are lin-
ear combinations of the original FOD features, and the PCA basis describes an
invertible linear operator which relates the two feature spaces. This allows for
new subjects to be mapped into the PCA feature space and for vectors in the
PCA feature space, such as the decision boundaries, to be mapped back into the
original FOD feature space.

2.3 Support Vector Machine Training and Cross-Validation

Linear support vector machines (LSVMs) determine a hyperplane in the feature
space, defined by the PCA features in this case, which optimally separates the
dataset into patients and controls. Once the SVM has been trained, a new test
subject (x) can be labeled, assigned to either the control or patient group, based
on the distance between the subject and separating hyperplane. This distance
is given by the decision function: f(x) = wt x + b, where w is the SVM feature
weights, describing the contribution of each feature, and b is the bias of the
hyperplanes from the origin. The distance is used by the classifier to determine,
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Fig. 2. The classification framework was applied to an ASD dataset consisting of 23
ASD patients and 22 controls. Results from a five-fold cross-validation paradigm are
shown on the left, while the receiver operating characteristic (ROC) curve is shown on
the right.

via Platt’s method [10], the probabilistic score for the subject and the subject
is labeled, either patient or control, based on the sign of the score.

The goal of a classification method is to accurately and robustly classify un-
seen test subjects. In medical imaging studies the small sample size (N=45 in
this case) often prohibits the division of the dataset into a single training and
testing dataset, each of which accurately represent the entire dataset. For this
reason we use a stratified 5-fold cross-validation method to validate our frame-
work. This entails partitioning the original dataset into 5 pieces or folds each of
which contain roughly the same proportion of patients and controls. A fold is
chosen to serve as the test dataset while the classifier is trained on the remainder
of the dataset. This process is repeated until each fold has acted as test data,
yielding an abnormality score for each subject as well as a classification accuracy
for each fold.

The overall classification method can then be evaluated based on the average
accuracy achieved across the 5 folds, as well as by examining the receiver oper-
ating characteristic (ROC) curve. The ROC curve is a plot of the sensitivity vs
(1-specificity) of the classifier as the discrimination threshold is varied.

3 Application of Classification Framework to a Clinical
Population

In this work we apply our framework to the problem of classifying a population
of children diagnosed with Autism Spectrum Disorder (ASD). The dataset con-
sisted of 22 typically developing controls (TDC) and 23 ASD patients. Whole
brain HARDI was acquired using a Siemens 3T Verio MRI scanner using a
spin-echo, echo-planar imaging sequence (TR/TE=14.7s/110ms, 2mm isotropic
voxels, b = 3000s/mm2, number of diffusion directions=64, 2 b0 images). Total
acquisition time was 18 minutes per subject.
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Fig. 3. The SVM weights are mapped into FOD feature space yielding the contribution
of each feature to the classification score. The contribution of each RSH order (shown
on Left) is obtained by summing the individual contributions across all of the ROIS.
Similarly, by averaging the contributions across the rotation invariant features the
importance of each spatial region to the classification score (Shown on Right) can be
obtained . Higher contributions are indicative a larger group difference within that
feature.

The diffusion weighted images (DWI) were first filtered using a joint linear
minimum mean squared error filter for removal of Ricean noise[13]. Eddy current
correction was then performed using affine registration of each DWI volume to
the unweighted b0 image [8]. The feature extraction process, described in section
2.1, was then applied using a 12-year old male TDC subject as the registration
template as the age of this subject was closest to the population average, yielding
a labeled dataset of 45 subjects each represented by a 4415 element feature
vector.

The dataset was then divided into 5 folds and cross-validation was performed
using the folds as test datasets and the remainder of the dataset for training. For
each validation procedure (i.e. each fold) PCA was applied to the training dataset
using a variance threshold of 90% and a linear SVM was trained on the resulting
PCA coefficients. The SVM classifier was then applied to each subject in the test
dataset yielding a classifier score. Additionally the SVM weights, which describe
the contribution of each PCA coefficient to the classifier score, were computed
and mapped back into the original feature space. In this way a classifier score
and a predicted label for each subject in the dataset was obtained, as were 5
measures of the classifier weights mapped into the original feature space.

Figure 2 shows the classification results. The average classification accuracy
was 78% (10 subjects misclassified) with a specificity of 77% (low type I error)
and a sensitivity of 78% (low type II error). The receiver operating characteristic
(ROC) curve shows a steep balanced curve with an area under the curve of 0.81.
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These accuracy numbers are in-line with the existing DTI based classification
methods [9,7,14,3], which achieve accuracies in the 70-95% range, where 95%
mark was obtained using a hypothesis driven feature selection process designed
specific for ASD[9], as opposed to the whole brain approach taken here. However
such a comparison, based on published accuracies, is greatly hindered by the fact
that each study utilizes a different dataset, with different patient characteristics,
and in this case multiple diseases (ASD and schizophrenia).

In addition to computing accurate classifier scores our framework has the
capability of determining the degree that each of the originally extracted features
contribute to the classification score. By averaging the classifier weights in the
original feature space, we obtained the mean contribution of each feature to the
classification score. Our original feature space consisted of 5 orientation invariant
features, one for each order of the RSH expansion, derived from 883 spatial ROIs.
The relative contribution of each orientation invariant feature was determined
by summing the contributions of that feature across all of the ROIs. Similarly
the contribution of each ROI was determined by the sum across the orientation
invariant features. These are shown in figure 3.

By examining the contributions of each orientation invariant feature, figure
3-left, we see that the first 3 RSH orders (0, 2 and 4) are predominant in deter-
mining the classification score. This suggests that the higher angular frequency
information, contained in the higher RSH orders, is perhaps more variable across
the population or inherently less reliable. The regional contributions to the clas-
sification score shows large contributions from portions of internal capsule (figure
3-right) as well as from the splenium of the corpus callosum, regions that have
been previously implicated in ASD. While these results suggest that regional
contributions may be useful in localizing WM areas that are affected in ASD a
full investigation of these results is beyond the scope of this paper.

4 Conclusion

We have presented a classification methodology based on regional measures of
white matter architecture and fidelity as derived from the FOD diffusion data
model. The FOD model when coupled with an atlas-free parcellation algorithm
yields a physiologically interpretable feature representation, as it contains the
orientation and relative proportion of the underlying anatomical fibers in ho-
mogeneous WM regions. We demonstrate that this feature representation, when
coupled with PCA and a linear SVM yields robust and accurate classification
results in an ASD population. In addition to producing a classification score,
which may aid in diagnosis, this framework provides the SVM feature weight-
ings which identify the spatial regions and the FOD features contribute to the
score. The feature weights elucidate the regions that are affected in the patient
population, providing possible insight into the pathology as well as suggest-
ing future directions for the development of hypothesis based classifiers and
studies.
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While classification based on DTI features has been attempted this is the
first classification work that utilizes features derived from HARDI data models
to perform patient classification. The high specificity, sensitivity and accuracy
demonstrate the feasibility of HARDI based patient classification.
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Abstract. Spurious temporal drift is abundant in fMRI data, and its
removal is a critical preprocessing step in fMRI data assimilation due to
the sparse nature and the complexity of the data. Conventional data-
driven approaches rest upon specific assumptions of the drift structure
and signal statistics, and may lead to inaccurate results. In this paper
we present an approach to the assimilation of nonlinear hemodynamic
system, with special attention on drift. By treating the drift variation as
a random-walk process, the assimilation problem was translated into the
identification of a nonlinear system in the presence of time varying bias.
We developed two-stage unscented Kalman filter (UKF) to efficiently
handle this problem. In this framework the assimilation can implement
with original fMRI data without detrending preprocessing. The fMRI re-
sponses and drift were estimated simultaneously in an assimilation cycle.
The efficacy of this approach is demonstrated in synthetic and real fMRI
experiments. Results show that the joint estimation strategy produces
more accurate estimation of physiological states, fMRI response and drift
than separate processing due to no assumption of structure of the drift
that is not available in fMRI data.

1 Introduction

Over the past decade, the neuroimaging community has witnessed an explosive
rise in research that melds observed fMRI data with hemodynamic response
models to generate accurate forecasts on underlying physiological states and/or
parameters [4,6]. In general, a comprehensive assimilation scheme is suitable for
most nonlinear phenomena and distinct spatio-temporal scales. Even though the
modeling may differ, the approach chosen is general [9].

However, there is still something unique to fMRI data that needs additional
concern. The original fMRI measurements contain abundant slowly varying drift.
These undesirable drift may be caused by instrumental instability, spontaneous
head movement, as well as aliasing of physiological pulsations. The amount and
direction of drift is difficult to predict, whereas estimation and removal of these
components have a strong impact on assimilation performance and ensuing sta-
tistical analysis due to the inherent low signal to noise ratio (SNR) of fMRI
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data. And, from a frequency perspective, the nuisance drift is also difficult to
be discriminated from true fMRI response that often has similar low frequency
components. Detrending therefore is an important preprocessing step in fMRI
data analysis.

Although the conventional data driven methods have provided good perfor-
mance, and there have been numerous attempts on drift function design and
optimization for their improvement, it remains true that all data-driven de-
trending methods are based on specific assumptions of the drift curve and signal
statistics [1]. In practice, however, the drift has complicated structures due to
the interaction of various possible sources. Real drift is noisy, not a smooth curve
supposed by data driven methods. In this context, such assumptions may not
capture the structure of drift well. As a result, the quality of the assimilation will
be subject to degradation imposed by these assumption on drift formulation.

Since the assimilation processing always occurs in activation areas, the actual
trended fMRI signal can be explained as a linear combination of the hemody-
namic response and drift. Considering a more general case, in which both process
and observation are biased,

ẋ = f(x,θ) + Bb + v v ∼ N(0,Q) (1)

y = h(x,θ) + Cb + w w ∼ N(0,R) (2)

where f is nonlinear hemodynamic response function, h is nonlinear measure-
ment function that describes the transformation from physiologic states to the
fMRI observation at a given brain region, x represents physiological state, θ is
physiological parameters, B, C are time-variant coefficient matrices. b is biases
state and y is the measurement. The process and measurement noise v,w are
zero-mean white Gaussian noise. It is noted that the drift is low frequency, slowly
varying component, and can be treated as stochastic variation in assimilation
procedure. In this sense, the assimilation problem naturally fall into the prob-
lem of estimating the state variables of a nonlinear system in the presence of
unknown random bias.

Eq. (1) and (2) form a state-space-like representation for the fMRI data assim-
ilation problem, with (1) describing the physiological process and (2) expressing
the observation. However, the bias terms make the problem in a nonstandard
state-space formulation. A convenient approach to this problem is to concate-
nate the original state vector and the bias terms into a higher-order state vector.
The filter then implements on the augmented state space. However, it may suffer
from computational burden and numerical problems when state dimensions are
large because of solving the inverse of the covariance matrix. This method there-
fore is reasonably effective only when the number of states is relatively small. In
1969, Friedland introduced a Kalman estimation concept applicable to the case
in which state variables contain unknown, constant bias [3]. The resulting two-
stage estimator has since received considerable attention because of its inherent
computational efficiency and stability. It was also extended to handle nonlinear
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systems and more general cases (e.g. time varying bias) [5]. However, most of
them cast the standard extended Kalman filter (EKF) into a two-stage struc-
ture to deal with nonlinearity, therefore easily lead to the problem of numerical
stability due to the linearization of the nonlinear system in practical application
and their method is reliable only for near linear system on the time scale of
the updates. The unscented Kalman filter (UKF) has been developed to address
the deficiencies of EKF [8]. In this paper, we develope a two-stage unscented
Kalman estimator for the nonlinear system in the presence of unknown ran-
dom bias. In this framework, the fMRI response, system states associated with
physiological variables and the drift can be forecasted at the same assimilation
procedure, thereby realizing detrend-free assimilation approach to original fMRI
data without detrending preprocessing.

2 Unscented Kalman Estimator

Two-stage estimation separates the estimation of the bias from that of the dy-
namic state, thereby reducing the dimensionality of states involved in the com-
putations. Two separate, uncoupled filter run in parallel to generate the optimal
estimate of the bias and of the ”bias-free” state. A thorough description of the
linear two-stage estimator can be found in (not presented here for lack of space)
[3]. For a nonlinear dynamic system, the bias-free estimator can be immediately
replaced with the standard UKF formulation [8]:

Xk−1 = [x̂k−1 x̂k−1 + η
√

Pk−1 x̂k−1 − η
√

Pk−1] (3)

Xk|k−1 = F [Xk−1,uk−1] (4)

x̂−
k =

2L∑
i=0

W
(m)
i Xi,k|k−1 (5)

P−
k =

2L∑
i=0

W
(c)
i [Xi,k|k−1 − x̂−

k ][Xi,k|k−1 − x̂−
k ]T + Rv (6)

Yk|k−1 = H[Xk|k−1] (7)

ŷ−
k =

2L∑
i=0

W
(m)
i Yi,k|k−1 (8)

Pỹkỹk
=

2L∑
i=0

W
(c)
i [Yi,k|k−1 − x̂−

k ][Yi,k|k−1 − ŷ−
k ]T + Rn (9)

Pxkyk
=

2L∑
i=0

W
(c)
i [Xi,k|k−1 − x̂−

k ][Yi,k|k−1 − ŷ−
k ]T (10)
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Kk = Pxkyk
P−1

ỹkỹk
(11)

x̂k = x̂−
k + Kk(yk − ŷ−

k ) (12)

Pk = P−
k −KkPỹkỹk

KT
k (13)

having the following variable definitions: P is the covariance matrix, α = 0.01
determines the size of the sigma-point distribution, β = 2 for a Gaussian dis-
tribution, L is the states dimension, λ = L(α2 − 1) and η =

√
(L + λ) is

the scaling parameter, {Wi} is a set of scalar weights (W (m)
0 = λ/(L + λ),

W
(c)
0 = λ/(L + λ) + (1 − α2 + β), W (m)

i = W
(c)
i = 1/{2(L + λ)}, i = 1,. . . ,2L).

Rv, Rn is the process and observation noise. The recursive algorithm given by
(3-13) defines the first stage of a two-stage estimator.

The bias b is time-varying term added to nonlinear functions. It is clear that
the bias estimator have the same forms as in the original linear separate-bias
estimation. It is realized in another separate recursive procedure:

b̂−k = b̂−k−1 (14)

P−
b (k) = Pb(k − 1) (15)

Kb(k) = P−
b (k)ST

k [HkP−
k Hk + SkP

−
b (k)ST

k + Rn]−1 (16)

Pb(k) = [I −Kb(k)Sk]P−
b (k) (17)

b̂k = b̂−k + Kb(k)(rk − Sk b̂
−
k ) (18)

where b̂ is the bias estimate, Kb is the bias gain equation, Pb is the bias estimation
error covariance matrix, rk = yk − ŷ−

k is the measurement residual of the bias-
free estimation, rk and P−

k can be available from the bias-free estimator, and Sk

is available from the sensitivity functions.
Note that HkP−

k Hk is the measurement covariance, by the definitions given
by Equation (9), Equation (16) becomes

Kb(n) = P−
b (n)ST

n [
2L∑
i=0

W
(c)
i [Yi,k|k−1−x̂−

k ][Yi,k|k−1−ŷ−
k ]T +SnP

−
b (n)ST

n +Rn]−1

(19)
The recursive algorithm defined by (14–15) and (17–19) constitute the second
stage of the two-stage Kalman estimator.
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Suppose that the bias is perfectly known, the optimal estimate of b would be
the constant value, and the recursive estimate of x may be expressed as

X̂−
k = f(x̂k−1) + Bkb (20)

X̂k = X̂−
k + Kk(yk − h(X̂−

k ) − Ckb) (21)

where X̂−
k and X̂k are the priori and posteriori estimates of x when b is perfectly

known, and b is the true value of the bias vector. Its gain equation is clearly
identical to that of the bias-free estimator. Since the bias term is linear in nature,
the component of the general X estimate due to the forcing function y is identical
to the bias-free x estimate. It allows the following relationship as given [3]:

X̂−
k = x̂−

k + Ukb (22)

X̂k = x̂k + Vkb (23)

where U and V is priori and posterior sensitivity functions, respectively. The key
step for developing the bias aware nonlinear estimator is to design the sensitivity
functions, which connect two parallel filters. From Equation (22), we have

X̂−
k − x̂−

k = f(X̂k−1) − f(x̂k−1) + Bkb =

(
∂f

∂x

∣∣∣∣
x=x̂k−1

Vk−1 + Bk

)
b (24)

Therefore, a priori sensitivity function becomes

Uk =
∂f

∂x

∣∣∣∣
x=x̂k−1

Vk−1 + Bk (25)

Similarly, the posterior error is written as

X̂k − x̂k = Vkb =

[
Uk −Kk

(
∂h

∂x

∣∣∣∣
x=x̂−

k

Uk + Ck

)]
b (26)

The a posterior sensitivity becomes

Vk = Uk −KkSk (27)

where Sk is given by

Sk =
∂h

∂x

∣∣∣∣
x=x̂−

k

Uk + Ck (28)

Equations (25), (27), and (28) develop as the counterpart of the sensitivity func-
tions in the linear bias aware estimation. Taken together they provide a recursive
algorithm, which links two separate stages. Thus, it is possible to employ the
estimate of b for correcting the bias-free estimate x̂ in the nonlinear bias system.
The optimal estimate output give as (22) (23).
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Fig. 1. Estimated drift (a,b) and fMRI signal (c,d) from synthetic data with linear
drift and quadratic drift

(a) (b)

(c) (d)

3 Experimental Validation and Discussion

We consider the actual fMRI measurements in which only the observations are
biased, B = 0. The physiological processes underlying the BOLD response were
charactered using the hemodynamic Balloon model in this study [2,4]. The rest-
ing blood volume fraction V0 = 0.02 [6] and stiffness parameter α = 0.33 are
assumed known [7] in the assimilation procedure.

Synthetic Data. Since the ground truth is unavailable in real fMRI data, syn-
thetic data are chosen to examine the proposed approach. The synthetic time se-
ries contains a known activation response, a known drift term bj , and Gaussian
white noise ej, with signal-to-noise ratio (SNR) of 3dB. We implement linear drift
and quadratic drift in the experiment. The artificial BOLD response is generated
by Balloon model, where ε = 0.59, τs = 1.38, τf = 2.7, τ0 = 0.89, α = 0.33,
E0 = 0.3, and V0 = 0.02 within their typical range [4]. The experimental condi-
tion of synthetic data is consistent with real fMRI experiments below.

Figure 1 (a), (b) show the synthetic time series and the known and estimated
drift by the proposed method and the polynomial method [1]. The hemodynamic
response of detrend-free assimilation, assimilation after polynomial detrending
and true response are shown in Figure 1 (c), (d). Polynomial detrending generates
an elevated drift estimate due to the whitening assumption. The recalibration
of the baseline can only partly alleviate this effect, shown as a green line in
Figure 1. The artificial elevated drift result in underestimated fMRI response
(green line), and degrade the performance of data assimilation. In contrast, with
the constraint of the hemodynamic model, our two-stage assimilation strategy
tracks the known drift better, illustrating the advantage of introducing physio-
logically meaningful prior into detrending. As a result, the two-stage assimilation
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Fig. 2. Real fMRI signal and estimated drifts (a,b), as well as their spectra (c,d)

(a) (b)

(c) (d)

Subject
F -Statistics (F59,59)

Original Polynimal Model

1 1.4335 1.5458 1.6926
2 1.1046 1.2271 3.2548
3 1.6961 2.5561 3.1550
4 1.6701 1.7248 2.1788
5 1.2970 1.3327 1.5098
6 1.1409 1.3153 1.4276
7 1.0064 1.6961 1.8957
8 1.0083 1.7504 2.3548

Table 1. F -statistics of assimila-
tion with the original signal, assim-
ilation after polynomial detrend-
ing, and detrend-free assimilation
for the greatest activated area of
the group in superior temporal
gyrus (GTs). For a significance
level of P < 0.05, F0.95,59,59 =
1.54.

generates better estimation of physiological states and reconstructed responses
than separate processing (blue line). The statistical analysis effectively shows this
case as well. It is noted that the significant level is greater by detrend-free assim-
ilation (F59,59 = 3.22 for linear drift, F59,59 = 2.51 for quadratic drift, average
from 250 simulations), which shows better detection performance in compari-
son with assimilation after polynomial detrending (F59,59 = 3.00 for linear drift,
F59,59 = 2.48 for quadratic drift, average from 250 simulations).

Real Data. The real data was acquired from 8 healthy subjects. The condition
for successive blocks alternated between rest and auditory stimulation, starting
with additional 8 rest scans. Total 136 acquisitions were made (RT=2s), in blocks
of 8, giving 16 16-second blocks. We select the largest activated voxels of the
group in superior temporal gyrus (GTs) to implement assimilation.

Figure 2 (a), (b) show the real fMRI time series and the estimated drift by
polynomial detrending method and the proposed method from two subjects.
Intuitively, the estimated drift by detrend-free assimilation (blue line) can track
the complicated drift variation with good approximation while the polynomial
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approach (green line) does not work quite well. The estimated drift by detrend-
free strategy has more freedom in selecting the structure of the drift component
due to the introduction of physiological constraint. As a result, the detrend-
free assimilation yields greater estimates of the fMRI response than separate
processing (not presented here). Table 1 lists results of statistical analysis from
all subjects. The statistic-F is obviously higher for detrend-free method than
assimilation after polynomial detrending. In addition, in order to understand
the effect of detrending on the spectrum of the fMRI signal, the power spectrum
of the original time series is compared with detrended time series by the proposed
method and polynomial method shown in Figure 2. It is noted that under the
restriction of the hemodynamic model, detrend-free method has impact on all
frequency contexts that are responsible to drift, whereas polynomial detrending
only removes part of the low frequency component.

In this paper, we have developed a two-stage unscented estimator for nonlinear
fMRI data assimilation, which casts the nonlinear unscented transform into the
linear separate bias estimator, to account for the presence of time varying bias.
It can deal with simultaneously the fMRI responses and drift in an assimilation
cycle. It provides more accurate estimation of fMRI signal and physiological
states than separate processing, thereby produces higher F value for statistic
activation detection. On the other hand, it makes no assumption of the structure
of the drift. As proper prior hemodynamics is adopted to guide the detrending
procedure, information of the underlying physiological process is included, more
reasonable drift estimates can be obtained. It is therefore particularly suited for
fMRI imaging where the formulation of real drift remains difficult to acquire.
Moreover, other prior knowledge can also be incorporated into the estimation
procedure, such as cardiac and respiratory prior from external monitoring, and
baseline drift of MR scanner.
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Abstract. Granger causality analysis (GCA) has been well-established in the 
brain imaging field. However, the structural underpinnings and functional 
dynamics of Granger causality remain unclear. In this paper, we present fiber-
centered GCA studies on resting state fMRI and natural stimulus fMRI datasets 
in order to elucidate the structural substrates and functional dynamics of GCA. 
Specifically, we extract the fMRI BOLD signals from the two ends of a white 
matter fiber derived from diffusion tensor imaging (DTI) data, and examine their 
Granger causalities. Our experimental results showed that Granger causalities on 
white matter fibers are significantly stronger than the causalities between brain 
regions that are not fiber-connected, demonstrating the structural underpinning 
of functional causality seen in resting state fMRI data. Cross-session and  
cross-subject comparisons showed that our observations are reproducible both 
within and across subjects. Also, the fiber-centered GCA approach was applied 
on natural stimulus fMRI data and our results suggest that Granger causalities on 
DTI-derived fibers reveal significant temporal changes, offering novel insights 
into the functional dynamics of the brain.  

Keywords: Granger Causality Analysis, fMRI, DTI, Time Series, Brain State. 

1   Introduction 

Proposed by Clive Granger in 1969 (Granger 1969), Granger causality analysis (GCA) 
has been widely applied to analyze the relationships between time series. Briefly, a time 
series X is said to Granger-cause time series Y if the values of X provide statistically 
significant information about future values of Y. The GCA is very useful in functional 
MRI (fMRI) signal analysis, since different brain regions are supposed to connect 
together and have causal influence upon each other. Thus in recent years, it has been 
widely used in the brain imaging field [2-4], in order to obtain a hierarchical 
understanding of the interaction and correlation between different brain regions.  

Despite wide application of GCA in fMRI, however, the structural underpinnings of 
GCA remain unclear, e.g., how structural connectivity is related to Granger causality? In 
addition, existing approaches of GCA on brain networks [2-4] assume temporal 
stationarity, where Granger causalities are computed over the entire scan and used to 
characterize the causality across regions. However, accumulating literature [e.g., 10], 
have shown that functional brain connectivity is under dynamical changes. Other 
literature has reported decoding brain states using sliding-window approach [12]. In 
responses to the above-mentioned issues, this paper presents a fiber-centered GCA 
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developed by Anil Seth (Seth 2005) and in previous studies in applying GCA to EEG 
data (Andreas, Dean et al. 2009). Details of other methodology components are 
described in Section 2.2 and 2.3. 

2.2   Data Acquisition and Preprocessing  

A 3T GE Signa MRI system was used for data acquisition of fMRI data analyzed in this 
study: resting-state and natural-stimulus fMRI data. Resting state fMRI data were 
acquired with dimensionality 128*128(matrix)*60 (slices)*100 (volumes), in-plane 
resolution 2mm*2mm*2mm isotropic, TR 5s, TE 25ms, and flip angle 90 degrees. DTI 
data were acquired at the same spatial resolution, with a 15.5s TR, TE of 89.5ms, and 
generated 30 gradient channel DWI volumes. In the natural stimulus fMRI scan, we 
randomly selected video shots from the TRECVID 2005 database [11], which were 
presented to the subject during a two-session scan. The acquisition parameters were as 
follows: dimensionality 128*128*60*240, spatial resolution 2mm*2mm*2mm, TR 5s, 
TE 25ms, and flip angle 90.  

For preprocessing, we registered fMRI data to the DTI space by the FSL FLIRT 
tool. It should be noted that because DTI and fMRI sequences are both echo planar 
imaging (EPI) sequences, their distortions tend to be similar [7]. So the misalignment 
between DTI and fMRI images is much less than that between T1 and fMRI images 
[7]. DTI pre-processing included skull removal, motion correction and eddy current 
correction. Then fiber tracking was performed using MEDINRIA. Brain tissue 
segmentation was conducted on DTI data by a similar method in [8] and the cortical 
surface was reconstructed using the marching cubes algorithm. FMRI preprocessing 
steps included motion correction, spatial smoothing, temporal prewhitening, slice 
time correction, global drift removal, and band pass filtering. After the above 
preprocessing, we used white matter fibers to guide the fiber-centered GCA, which 
has been applied in previous studies on brain network and convincing results were 
obtained, showing the feasibility of the inter-modality data registration [13]. In our 
work, fMRI BOLD signals of the grey matter voxel pairs connected by a white matter 
fiber were extracted for the Granger causality analysis, as illustrated in Fig. 2. The 
number of voxel pairs connected by each fiber varies in different datasets. In average 
case there are tens of voxel pairs connected by one fiber. 

 

Fig. 2. Two grey matter voxels (marked in red) connected by a fiber (in purple). fMRI time 
series at these two voxels are shown in the right figure. 
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2.3   Granger Causality Analysis  

Given two stochastic processes X and Y, if they are stationary, each of the process 
can be expressed as an auto-regression of their lagged values: 

P

t i t-i t
i=1

X = a X + 1e∑                               (1) 

P

t i t-i t
i=1

Y = d Y + 2e∑                                       (2) 

where e1 and e2 are prediction errors and their variances describe the accuracy of the 
prediction. Assume they have potential causality influences upon each other, there is: 

P P

t i t-i i t-i t
i=1 i=1

X = a X + b Y + 3e∑ ∑                      (3) 

P P

t i t-i i t-i t
i=1 i=1

Y = c X + d Y + 4e∑ ∑                            (4) 

where e3 and e4 are prediction errors and a, b, c, d are linear regression coefficients. 
In order to study the dependency between X and Y, the null hypothesis H0: {b}=0
was made, which means Y will not significantly cause X. According to the null 
hypothesis, we can construct the F-statistics: 

Y X

var( 1)-var( 3)
F =

var( 3)

e e

e
→

                      (5) 

When there is no causality caused by Y to X, the value of 
Y X

F →  will approach 

zero since the additional Y terms will not influence the explanation power in Eq. (3). 
And if the value is greater than the given threshold, we will reject the null hypothesis, 
which means there is a significant causality caused by Y to X.  

The original GCA model only gives the result of whether there is causality, 
which is limited for the brain imaging research since there are reciprocal polysynaptic 
connections between brain areas (Friston 2009). Here we applied the conditional 
GCA (Seth 2005) which was able to evaluate the Causality Magnitude (CM): 

Y X

var( 3)
CM ln( )

var( 1)

e

e
→ =                       (6) 

This value is used in the following analysis to evaluate the strength of Granger 
causality; higher CM value indicates greater causal influence. 

In this study, we applied the above results obtained by performing GCA on time 
series extracted from voxel pairs to study the causal characteristic of fibers that 
connects them. Since more than one voxel pairs may be connected by each fiber, the 
causality magnitude of that fiber is defined by: 
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CMϐ୧ୠୣ୰ ୧ ൌ ൫∑ CM୴ଵ՜୴ଶ  CM୴ଶ՜୴ଵ୴ଵ,୴ଶא ൯/sizeofሺV୧ሻ             (7) 

where Vi is the set of voxel pairs connected by the ith fiber, and v1, v2 are pair of 
voxels in that set. The causality magnitude of fibers is in the range of (0, 2). 

The F-statistics was used to determine whether there is a significant (given P=0.01) 
causal connectivity between pair of voxels, thus a fiber connecting any one pair of 
voxels with significant causal connectivity at any direction is considered to be 
significantly casual-connected. Also, we defined the causality phase (CP) based on 
the F-statistics and the direction of the connectivity: 

CP୴୭୶ୣ୪ ୴ଵ,୴ଶ ൌ ቐ 1, if causality from v1 to v2 is signiϐicant െ1, if causality from v2 to v1 is signiϐicant 0, if there is no signiϐicant causality               (8) 

And CPϐ୧ୠୣ୰ ୧ ൌ ሺ∑ CP୴ଵ,୴ଶ୴ଵ,୴ଶא ሻ/sizeofሺV୧ሻ                     (9) 

where Vi is the set of voxel pairs connected by the ith fiber, and v1, v2 are a pair of 
voxels in that set. The causality phase of a fiber is in the range of (-1, 1).  

3   Results  

3.1   Results in Resting State fMRI Data 

Totally, resting state fMRI dataset of 12 imaging sessions from 9 subjects was analyzed. 
We selected significantly casual-connected fibers and visualized the causality magnitude 
of them in Fig. 3. In this study, subject #1, #2 and #3 had two scanning sessions, both 
under the same experimental circumstances. The data collected from two sessions of the 
same subject enabled us to compare the results and to see whether the inferred causalities 
were stable within subjects. As shown in Fig.3, the structures of significantly casual-
connected fibers were almost identical between two sessions of all the three subjects, 
suggesting that certain fibers that were significantly casual-connected, might had more 
importance in causality connection than other fibers. Also, it could be seen that casual-
connected fibers formed certain pattern in the brain, especially around frontal lobe and 
visual cortex in all the subjects, which indicated stronger connection and causal related 
activities (such as control and motivation) in these regions. Finally, as the statistics 
analysis of the results listed in Table 1 showed, the number of significantly causal-
connected, as well as the causality magnitude, varied very little between two sessions. 
This provided good evidence that fiber-centered GCA on a whole-brain scale was highly 
reproducible within-subject.  
 

Table 1. Similarity analyses between two sessions of each subject; 

 

Fibers

Total

Causal-connected

fibers in session 1

Causal-connected

fibers in session 2

Mean of CM in

session 1

Mean of CM in

session 2

Subject1 13073 622 589 0.48 0.48

Subject2 17671 1054 1053 0.49 0.49

Subject3 13482 1067 966 0.49 0.5
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3.3   Granger Causality Dynamics in Natural Stimulus fMRI Data 

In this study, we also applied sliding window approach on time series scanned from 
natural stimulus fMRI data, and studied temporal change of causality strength and 
phase along sliding windows. We constructed 223 consecutive sliding windows with 
the length of 13 time points and perform GCA on voxel pairs connected by fibers, 
obtained causality magnitude as well as causality phases. The temporal dynamics of 
causality magnitude on all the fibers of a subject are shown in Fig. 5. We can see that 
the causality magnitude varies through the time, and forms patterns by the majority of 
fibers. Statistically, between each sliding window, the causality magnitude of a fiber 
will change 14.76% on average, and can be as high as 172%, indicating dramatic 
temporal dynamical change. This result is reproducible in other 4 subjects analyzed.   

 

Fig. 5. Visualization of causality magnitude of all fibers in 223 sliding windows. Each row 
vector is the CM dynamics of one fiber through the whole time period, and each column vector 
is the causality magnitude state vector in that sliding window. 

 

Fig. 6. Visualization of causality phase of all fibers in 223 sliding windows. Each row vector is 
the causality phase of one fiber through the whole time period, and each column vector is the 
causality phase state vector in that sliding window.  
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In addition to the causality magnitude dynamics in Fig. 5, the dynamics of causality 
phases were also analyzed. As shown in Fig. 6, the causality phases are also changing 
dramatically along the scan period. In average, one fiber undergoes 50 times of phase 
change through the whole scan, i.e., during 22.4% of the time a fiber is changing its 
phase of causality. The frequency can be as high as 93 times, meaning that between every 
2 time points the fiber changes its causality phase. The histogram of the frequencies of 
causality phase changes is shown in Fig. 7. This result reveals the dynamics in natural 
stimulus fMRI data and is replicated in other 4 subjects studied, imposing challenges to 
the assumption of temporal stationarity in traditional GCA.      

 

Fig. 7. Histogram of the phase change frequencies of all fibers. The phase change frequency is 
defined as total number of times a fiber changes its sign of causality phase. 

4   Conclusion 

This paper presented novel fiber-centered GCA studies on resting state and natural 
stimulus fMRI datasets for the purpose of elucidating the structural underpinnings and 
functional dynamics. In this approach, we extracted fMRI BOLD signals from voxel 
pairs connected by white matter fibers derived from DTI data, and examined their 
Granger causalities. Results in resting state fMRI data showed that Granger 
causalities on white matter fibers are significantly stronger than causalities between 
brain regions not fiber-connected, suggesting the structural connectivity underpinning 
of functional causality. In addition, the proposed approach was applied on natural 
stimulus fMRI data and our results suggest that Granger causalities revealed dramatic 
temporal dynamics, in terms of both causality magnitude and phase, warranting re-
examination of the assumption of temporal stationarity of traditional GCA. 
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Abstract. We address the issue of jointly detecting brain activity and
estimating underlying brain hemodynamics from functional MRI data.
We adopt the so-called Joint Detection Estimation (JDE) framework
that takes spatial dependencies between voxels into account. We re-
cast the JDE into a missing data framework and derive a Variational
Expectation-Maximization (VEM) algorithm for its inference. It follows
a new algorithm that has interesting advantages over the previously used
intensive simulation methods (Markov Chain Monte Carlo, MCMC):
tests on artificial data show that the VEM-JDE is more robust to model
mis-specification while additional tests on real data confirm that it achie-
ves similar performance in much less computation time.

1 Introduction

Functional Magnetic Resonance Imaging (fMRI) is a powerful tool to non-
invasively study the relation between a cognitive task and an evoked neural
activity through neurovascular coupling and the BOLD effect [10]. To localize
which parts of the brain are activated by a given stimulus type, most approaches
assume a single canonical a priori model for the impulse response of the neu-
rovascular coupling also known as the hemodynamic response function (HRF) [5].
However, there has been evidence that this response can vary in space and be-
tween subjects [6, 1] so that both issues of properly detecting evoked activity
and estimating the HRF play a central role in fMRI data analysis. They are
usually dealt with independently with no possible feedback although they are
strongly connected. To account for these sources of hemodynamic variability, a
novel approach referred to as the Joint Detection Estimation (JDE) framework
has been introduced in [9] and extended in [13] to account for spatial correla-
tion between neighboring voxels in the brain volume. Since robust and accurate
HRF estimation can only be achieved in regions that elicit an evoked response
to an experimental condition [7], the JDE approach has been defined at an
intermediate spatial resolution corresponding to parcels in which a fair compro-
mise between homogeneity of the BOLD signal and reproducibility of the HRF
shape is achieved. The JDE approach mainly rests upon: i.) a non-parametric or
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FIR modelling of the HRF at this parcel-level for an unconstrained HRF shape;
ii.) prior information about the temporal smoothness of the HRF to guarantee
a physiologically plausible shape; and iii.) the modelling of spatial correlation
between neighboring voxels within each parcel using condition-specific discrete
hidden Markov fields. In [9, 13], posterior inference is carried out in a Bayesian
setting using Markov Chain Monte Carlo (MCMC) methods, which requires fine
tuning and is time consuming. Several other attempts to segregate neurologi-
cal and hemodynamic events from fMRI time series have been proposed (see
references in [13]). Among them lies an interesting bilinear dynamical system
formulation [8] that deals with unknown HRF and uses Variational Bayes (VB)
approximation for tractability. However, from a spatial viewpoint, this work
remains univariate and ignores spatial correlation between voxels.

In this paper, we reformulate the complete JDE framework [13] as a missing
data problem and propose a simplification of its estimation procedure. Akin
to [8], we resort to a variational approximation using a Variational Expectation
Maximization (VEM) algorithm in order to derive estimates of the HRF and
stimulus-related activity. Experiments on artificial and real data demonstrate
the good performance of our VEM algorithm. In particular, we provide a com-
parison with its MCMC counterpart and show the advantages of VEM both in
terms of computation time and robustness to noise model deviations. This po-
tentially increases considerably the impact of the JDE framework and makes its
application to fMRI studies in neuroscience easier and more valuable.

2 A Joint Detection-Estimation Model

Capital letters indicate random variables and lower case their realizations. Ma-
trices are denoted with bold upper case letters and the transpose witht.

Observed and Missing Variables. We first recast the parcel-based JDE
model of [9, 13] in a missing data framework. For a given parcel P , the ob-
served data is denoted by Y = {Yi, i ∈ P} where Yi ∈ �N is the fMRI time
series measured in voxel i ∈ P at times (tn)n=1:N , where tn = nTR, N being the
number of scans and TR, the time of repetition. Additional unobserved variables
are introduced: 1) The Neural Response Levels (NRLs) A = {Am,m = 1 : M}
with Am = {Ami, i ∈ P} and M the number of experimental conditions involved
in the paradigm. We will also make use of Ai = [Ami,m = 1 : M ]t. 2) The HRF
shape H = [HdΔt, d = 0 : D]t ∈ �

D+1; 3) The activation class assignments
Z = {Zm,m = 1 : M} with Zm = {Zmi, i ∈ P} represent the activation classes
for each voxel, in each of the M experimental conditions. Zmi = k means that
voxel i lies in activation class k for the mth experimental condition. The number
of classes is here K = 2 for activating and non activating voxels. An additional
deactivation class (K = 3) may actually be added depending on the experiment
and all provided formulas are general enough to cover this case. The observed
and missing variables are then linked by the following relationship involving
additional parameters to be estimated:

∀i ∈ P , Yi =
M∑

m=1

AmiXmH + P �i + εi, (1)
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where Xm = (xm
tn−dΔt)n=1:N,d=0:D denotes the N × (D + 1) binary matrix that

codes the onsets of the mth experimental condition on a Δt-sampled grid, where
Δt is the sampling period of the HRF (Δt < TR); the εi’s stand for the noise and
are independent and normally distributed in space with εi ∼ N (0,Γ−1

i ), and P
is the low frequency orthogonal N × L matrix which accounts for physiological
artifacts. Let � = {�i, i ∈ P} be the set of low frequency drifts, where �i ∈ �L

have to be estimated and let Γ = {Γ i, i ∈ P} be the set of all unknown precision
matrices (see Section 4 for its definition).

Hierarchical Model of the Complete Data Distribution. Using standard
additional assumptions and omitting the dependence on the parameters, the
distribution of both the observed and unobserved data writes: p(y, a, h, z) =
p(y | a, h) p(a | z) p(h) p(z). To fully define the model, we now specify each term.
The p(y | a, h) term. From (1), it comes that p(y | a, h) =

∏
i∈P

p(yi | ai, h) with

Yi | (Ai = ai, H = h) ∼ N
(∑M

m=1 amiXmh + P �i, Γ
−1
i

)
.

The p(a | z) term. Akin to [9,13], the NRLs Ami are assumed statistically inde-
pendent across condition types. The allocation variables Zmi are then introduced
to segregate activating voxels from non-activating ones in condition-specific mix-
ture models. Also, the Ami’s are supposed independent in space conditionally on

Zm so that putting together all conditions we get: p(a | z) =
M∏

m=1

∏
i∈P p(ami | zmi),

where we further assume that p(Ami |Zmi = k) = N (μmk, σ
2
mk). The Gaus-

sian parameters are unknown and denoted by μ = {μm,m = 1 : M} with
μm =[μm1 . . . μmK ]t and σ ={σm,m = 1 : M} with σm =[σm1 . . . σmK ]t. Also,
k=1 is assigned to non-activating voxels with μm1 =0.
The p(h) term. Akin to [9,13], we introduce constraints in the prior that favor
smooth variations in h: H ∼ N (0, σ2

hR) with R = (Δt)4 (Dt
2D2)−1 where

D2 is the second-order finite difference matrix and σ2
h is a parameter to be es-

timated or fixed. Moreover, H0 = HDΔt = 0 as in [9, 13].
The p(z) term. As in [13], we assume prior independence between experi-
mental conditions regarding the activation class assignments. It follows that

p(z) =
M∏

m=1

p(zm; βm) where we assumed in addition that p(zm;βm) is a spatial

Markov prior, namely a K-class Potts model with interaction parameter βm [13].
The unknown parameters are then β = {βm,m = 1 : M}. For the complete
model, the whole set of parameters denoted by θ ∈ Θ is θ = {Γ , �, μ, σ, σh, β}.

3 Estimation by Variational EM

We propose to use an Expectation-Maximization (EM) framework to deal with
the missing data namely, A ∈ A, H ∈ H, Z ∈ Z. At iteration (r), denoting cur-
rent parameter values by θ(r), the E-step involves the posterior p(a, h, z | y; θ(r)),
which is intractable for our model. Hence, we resort to a variational EM vari-
ant in which the intractable posterior is approximated as a product of three
pdfs on A, H and Z respectively. Previous attempts to use VB inference [2]
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in fMRI [14, 11] have been successful with this type of approximations usually
validated by assessing its fidelity to its MCMC counterpart. In Section 4, we will
also provide such a comparison. It follows then that our E-step becomes an ap-
proximate E-step, which can be further decomposed into three stages consisting
in updating the three pdfs, denoted by qH , qA and qZ , in turn. Let q

(r−1)
A , q

(r−1)
Z

and θ(r), be the current estimates at the rth iteration and Eq

[
.
]

denotes the ex-
pectation with respect to (wrt) some pdf q, the first E-H step reads:

E-H: q
(r)
H (h) ∝ exp

(
E

q
(r−1)
A

q
(r−1)
Z

[
log p(h | y, A, Z; θ(r))

])
.

The following E-A and E-Z steps have similar expressions obtained by exchan-
ging the role of H and A (resp. of H and Z) and replacing q

(r−1)
A by q

(r)
H (resp.

q
(r−1)
A q

(r−1)
Z by q

(r)
A q

(r)
H ). For the E-H and E-A steps, it follows from standard

algebra that q
(r)
H and q

(r)
A are both Gaussian pdfs: q

(r)
H ∼ N (m

(r)
H , Σ

(r)
H ) and

q
(r)
A =

∏
i∈P

N (m
(r)
Ai

, Σ
(r)
Ai

).

• E-H step. The expressions for m
(r)
H and Σ

(r)
H are similar to those derived in

the MCMC case [9, Eq. (B.1)] with expressions involving the ami’s replaced by
their expectations wrt q

(r−1)
Ai

: m
(r)
H = Σ

(r)
H

(∑
i∈P

S
(r−1)
i

t
ỹ
(r)
i

)
and

Σ
(r)−1
H = R−1/σ

2(r)
h +

∑
i∈P

( ∑
m,m′

σ
(r−1)
AmiAm′i

X t
mΓ

(r)
i Xm′ + S

(r−1)
i

t
Γ

(r)
i S

(r−1)
i

)
,

with S
(r−1)
i =

M∑
m=1

m
(r−1)
Ami

Xm and ỹ
(r)
i = Γ

(r)
i (yi−P �

(r)
i ). Here, m

(r−1)
Ami

and σ
(r−1)
AmiAm′i

denote the mth and (m, m′)th entries of the mean vector and covariance matrix
of the current q

(r−1)
Ai

, respectively.
• E-A step. Here, the relationship with the MCMC update of a is not straight-
forward. In [9,13], the ami’s are sampled independently and conditionally on the
zmi’s. This is not the case in the VEM framework while some similarity appears
if we set the probabilities qZmi(k)’s either to 0 or 1 and consider only the diagonal
part of ΣAi . The update of qA reads:

m
(r)
Ai

= Σ
(r)
Ai

( K∑
k=1

Δ
(r)
ki μ

(r)
k + X̃

(r)t

i m
(r)
H

)
and Σ

(r)
Ai

=
( K∑

k=1

Δ
(r)
ki + H̃

(r)
i

)−1

where μ
(r)
k =

[
μ

(r)
1k . . . μ

(r)
Mk

]t
, X̃

(r)
i is a D+1×M matrix whose mth column is X t

mỹ
(r)
i ,

Δ
(r)
ki is a M×M diagonal matrix whose (m, m)th entry is q

(r−1)
Zmi

(k)/σ
2(r)
mk and H̃

(r)
i

is a M×M matrix whose (m, m′)th entry is tr
((

Σ
(r)
H + m

(r)
H m

(r)t

H

)
Xm

tΓ
(r)
i Xm′

)
.

• E-Z step. From p(a|z) and p(z) in Section 2, the (Am, Zm) couples corre-
spond to independent hidden Potts models with Gaussian class distributions.

It comes an approximation that factorizes over conditions: q
(r)
Z (z)=

M∏
m=1

q
(r)
Zm

(zm)

where q
(r)
Zm

(zm) = pm(zm |Am = m
(r)
Am

; μ
(r)
m , σ

(r)
m , β

(r)
m ) is the posterior of Zm in a

modified hidden Potts model, pm, in which the observations ami’s are replaced by
their mean values m

(r)
Ami

and an external field {σ(r)
AimAim

[
1/σ

2(r)
m1 . . . 1/σ

2(r)
mK

]t
, i ∈

P} is added to the prior Potts model p(zm;β(r)
m ). The Potts expression above is

intractable but we use a mean field-like technique (see [4] for details) to approx-
imate q

(r)
Zm

(zm) by a factorized pdf q̃
(r)
Zm

(zm) =
∏

i∈P
q̃
(r)
Zmi

(zmi).
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M-step. It is also divided into four sub-steps involving separately (μ, σ), σh, β
and (�,Γ ). The first two maximizers admit closed-form expressions:
• M-(μ, σ) step: Let q̄

(r)
mk =

∑
i∈P

q
(r)
Zmi

(k), then μ
(r+1)
mk =

∑
i∈P

q
(r)
Zmi

(k) m
(r)
Ami

/q̄
(r)
mk

and σ
2(r+1)
mk =

∑
i∈P

q
(r)
Zmi

(k)
(
(m

(r)
Ami

− μ
(r+1)
mk )2 + σ

(r)
AimAim

)
/q̄

(r)
mk.

• M-σ2
h step: σ

2(r+1)
h = (D − 1)−1tr ((Σ(r)

H + m
(r)
H m

(r)
H

t
)R−1).

The two other M-steps require iterative maximization procedures. Updating β
consists in making further use of a mean field-like approximation [4]. Regarding
the pair (�,Γ ), it satisfies some fixed point equation, which simplifies in case
of white noise. For autoregressive (AR) noise models, we found some similarity
with [9, Eq. (B.2)] when replacing h and a by mH and mA, respectively.

4 Experiments

Simulation Results. We simulated data according to Eq. (1)1 and p(a | z) with
a white Gaussian noise Γ−1

i = 0.5 IN (IN is the N×N identity matrix), M = 2
experimental conditions and stimulus-varying contrast-to-noise ratios (CNR):
μ12 = 2.8, σ12 = 0.5 and μ22 = 1.8, σ22 = 0.6 so that μ12/σ12 > μ22/σ22. The
initial artificial paradigm comprised 15 stimulus events for each condition. The
simulation process finally yielded time-series lasting 152 scans. Condition-specific
activating and non-activating voxels were defined as 20×20 2D slices shown in
Fig. 1 (right) and superimposed to the estimated label probabilities in white
solid line. The parameters β1 and β2 had been set to fixed values (β1 = β2 = 0.8
for the two algorithms). Γ and � are estimated as in [9].

NRLs Labels

Ground Truth MCMC/VEM MCMC (PPM) VEM (PPM)

Lo

m = 1

m = 2

Fig. 1. Left: Ground truth and estimated Neural Response Levels (NRLs) by MCMC
and VEM (same results); Right: Posterior probability maps (PPM) given by the
approximation qZm (VEM) and by the MMSE estimator (MCMC)

In Fig. 1, the VEM is compared to the MCMC alternative developed in [13]:
both algorithms report similar NRL maps while some difference is exhibited
on the posterior activation probability map (PPM) for the low CNR condi-
tion (m = 2, bottom row). This illustrates the gain in robustness achieved using
the variational approximation under the true noise model.
1 P was defined from a cosine transform basis.
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To perform a quantitative comparison, several experiments with different
stimuli densities (from 5 to 30), noise variance and autocorrelation (Γ−1

i ) have
been conducted. Fig. 2(a) illustrates the evolution of the Mean Square Er-
ror (MSE) of NRL estimates wrt the stimulus density in the experimental para-
digm when a second order autoregressive noise (AR(2)) is considered. This figure
shows that at low stimulus density (i.e. low Signal to Noise Ratio (SNR)2), the
proposed VEM algorithm is more robust than the MCMC one to model discre-
pancy. Indeed, here the two inference algorithms were compared for a white and
Gaussian noise modelling in Eq. (1). In contrast, at high stimulus density (≥ 20),
the two methods perform similarly. Interestingly, Fig. 2(b)-(c) depict the shapes
of the ground truth and estimated HRF shapes inferred by the VEM and MCMC
schemes wrt the stimulus density: Note that the main HRF features (peak
value (PV), time-to-peak (TTP) and time-to-undershoot (TTU)) remain well
estimated by both methods. However, at low stimulus density, Fig. 2(b) shows
that the VEM algorithm is less accurate than its MCMC counterpart close to the
undershoot position. Similar experiments have been conducted while changing
the ground truth HRF properties (PV, TTP, TTU), and coherent results have
been obtained. Other comparisons performed under the true noise model did not
reveal any significant difference between VEM and MCMC.
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Fig. 2. (a): MSE evolution of estimated NRLs wrt stimuli number. (b)-(c): Ground
truth and HRF estimates inferred by the VEM and MCMC schemes for two stimulus
densities corrupted by AR(2) noise.

In Fig. 3(a)-(b) the output MSE is plotted against the input SNR when vary-
ing the noise variance and its amount of autocorrelation, respectively. In the
latter case, the two AR parameters are varied while maintaining a stable AR(2)
process. As already observed in [3], at fixed input SNR, the impact of large
autocorrelation is stronger than that of large noise variance irrespective of the
inference scheme. Moreover, the two inference methods perform very similarly
on a large scale of input SNR (SNR > 5 dB). In terms of computational time,
VEM results have been obtained 30 times faster than with MCMC on an Intel
Core 2 - 2.26 GHz - 2 Gb RAM architecture.

2 The SNR is given by: SNR = 10 log
∑
i∈P

‖
M∑

m=1

AmiXmh‖2/
∑
i∈P

‖εi‖2.
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Fig. 3. MSE evolution of NRL estimates wrt input SNR (AR(2) noise) by varying the
noise variance (a) and the amount of AR(2) noise autocorrelation (b)
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Fig. 4. Left: Estimated contrast Computation-Sentences by MCMC and VEM;
Right: HRF estimates by MCMC (green) and VEM (blue) at maximum intensity
peak (top) and in a neighboring parcel (bottom). Canonical HRF with dashed line.

Real Data Processing. fMRI data were recorded at 3 T (Siemens Trio) using
a gradient-echo EPI sequence (TE=30 ms/TR=2.4 s/FOV=192 mm2) during a
Localizer experiment [12]. The acquisition consisted of a single session of N =
128 scans, yielding 3-D volumes with a spatial resolution of 2 × 2 × 3 mm3.
The paradigm was a fast event-related design comprising sixty auditory, visual
and motor stimuli, defined in ten experimental conditions (auditory and visual
sentences, auditory and visual calculations, left/right auditory and visual clicks,
horizontal and vertical checkerboards).

We focused on the Computation-Sentences contrast differentiating the ac-
tivations induced by the calculation and sentence conditions in the left intra-
parietal sulcus, a region known to elicit hemodynamic response that departs
from the canonical HRF. As shown in Fig. 4, the contrasted NRL estimates for
the MCMC and VEM inference schemes are very similar and follow the under-
lying sulco-gyral anatomy. Note that only the most activating slice is considered
for visualization purpose. The corresponding HRF estimates in the most acti-
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vating parcel of about 200 voxels are also depicted in Fig. 4: they appear very
similar and both quite different from the canonical shape regarding the TTP
and TTU parameters. More oscillations arise in the VEM inference close to the
undershoot, however we may have less confidence in the HRF tail than in its
peak since it involves less signal strength. Moreover, the event-related nature of
the paradigm is not suited to properly study the undershoot properties. Finally,
in terms of computational efficiency, the variational approximation runs also 30
times faster than the MCMC inference in this parcel.

5 Conclusion

We proposed a Variational EM algorithm as an alternative solution to intensive
stochastic sampling for inferring upon the JDE parameters. Illustrations on si-
mulated data showed that our approach achieved similar and even better results
than the MCMC-based inference scheme at low input SNR or stimuli density
and was more robust to noise model mismatch. Also, in contrast to the hybrid
MCMC in [13], the VEM algorithm only requires a simple stopping criterion
as convergence diagnosis tool. Another advantage of the variational approach
lies in its flexibility to adapt to more complex situations such as accounting for
higher AR noise order, habituation modelling or including model selection steps
using the log-evidence as information criterion. Other future work will focus on
analyzing the impact of the VEM-JDE to group-level analysis as done in [1].
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Abstract. In an event-related functional MRI data analysis, an accu-
rate and robust extraction of the hemodynamic response function (HRF)
and its associated statistics (e.g., magnitude, width, and time to peak)
is critical to infer quantitative information about the relative timing of
the neuronal events in different brain regions. The aim of this paper is to
develop a multiscale adaptive smoothing model (MASM) to accurately
estimate HRFs pertaining to each stimulus sequence across all voxels.
MASM explicitly accounts for both spatial and temporal smoothness in-
formation, while incorporating such information to adaptively estimate
HRFs in the frequency domain. One simulation study and a real data
set are used to demonstrate the methodology and examine its finite sam-
ple performance in HRF estimation, which confirms that MASM signif-
icantly outperforms the existing methods including the smooth finite
impulse response model, the inverse logit model and the canonical HRF.

1 Introduction

The functional MRI (fMRI) study commonly uses blood oxygenation level-
dependent (BOLD) contrast to measure the hemodynamic response (HR) re-
lated to neural activity in the brain or spinal cord of humans or animals. Most
fMRI research correlates the BOLD signal elicited by a specific cognitive process
with the underlying unobserved neuronal activation. Therefore, it is critical to
accurately model the evoked HR to a neural event in the analysis of fMRI data.
See [6] for an overview of different methods to estimate HRF in fMRI. A linear
time invariant (LTI) system is commonly implemented to model the relationship
between the stimulus sequence and BOLD signal where the signal at time t and
voxel d, Y (t,d), is the convolution of a stimulus function X(t,d) and the HR
function (HRF) h(t,d) plus an error process ε(t,d). While nonlinearities in the
BOLD signal are predominant for stimuli with short separations, it has been
shown that LTI is a reasonable assumption in a wide range of situations [6].
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Almost all HRF models estimate HRF on a voxel-wise basis which ignores the
fact that fMRIs are spatially dependent in nature. Particularly, as the case in
many fMRI studies, we observe spatially contiguous effect regions with rather
sharp edges. There are several attempts to address the issue of spatial depen-
dence in fMRI. A possible approach is to apply a smoothing step before indi-
vidually estimating HRF in each voxel of fMRI data. Most smoothing methods,
however, are independent of the imaging data and apply the same amount of
smoothness throughout the whole image [7]. These smoothing methods can blur
the information near the edges of the effect regions and thus dramatically in-
crease the number of false positives and false negatives. An alternative approach
is to model spatial dependence among spatially connected voxels by using con-
ditional autoregressive (CAR), Markov random field (MRF) or other spatial
correlation priors [9,11]. However, calculating the normalizing factor of MRF
and estimating spatial correlation for a large number of voxels in the 3D volume
are computationally intensive [2]. Moreover, it can be restrictive to assume a
specific type of correlation structure for the whole 3D volume (or 2D surface).

The goal of this paper is to develop a multiscale adaptive smoothing model
(MASM) to construct an accurate nonparametric estimate of HRF across all
voxels pertaining to a specific cognitive process in the frequency domain. Com-
pared with all existing methods, we make several major contributions. (i) To
temporally smooth HRF, MASM incorporates an effective method for carrying
out locally adaptive bandwidth selection across different frequencies; (ii) To spa-
tially smooth HRFs, MASM builds hierarchically nested spheres by increasing
the radius of a spherical neighborhood around each voxel and utilizes information
in each of the nested spheres across all voxels to adaptively and simultaneously
smooth HRFs; (iii) MASM integrates both spatial and frequency smoothing
methods together; (iv) MASM uses a backfitting method [3] to adaptively es-
timate HRFs for multiple stimulus sequences across all voxels. The group-level
inference like testing the significant regions based on estimated HRFs will be
further studied in the future.

2 Model Formulation

2.1 Multiscale Adaptive Smoothing Model

Suppose that we acquire a fMRI data set in a three dimensional (3D) volume,
denoted by D ⊂ R3, from a single subject. In real fMRI studies, it is common
that multiple stimuli are present [11]. Under the assumption of the LTI system,
the BOLD signal is the individual response to the sum of all stimuli convoluted
with their associated HRFs. Let X(t) = (X1(t), . . . , Xm(t))T be the sequence vec-
tor of m different stimuli and its associated HRF vector H(t,d) = (H1(t,d), . . . ,
Hm(t,d))T . Specifically, in the time domain, most statistical models to estimate
HRF under the presence of m different stimuli assume that

Y (t,d) = H(·,d) ⊗ X(t) + ε(t,d) =
∫

< H(d, t− u),X(u) > du + ε(t,d), (1)

where ε(t,d) is a spatial and frequent error process.
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Instead of directly using model (1), our MASM focuses on the discrete Fourier
coefficients of Y (t,d), H(t,d), X(t), and ε(t,d), which are, respectively, denoted
by φY(fk,d), φH(fk,d), φX(fk), and φε(fk,d) at the fundamental frequencies
fk = k/T for k = 0, · · · , T − 1. Specifically, in the frequency domain, MASM
assumes that

φY (f,d) =< φH(f,d), φX(f) > +φε(f,d), (2)

where φH(f,d) = (φH1(f,d), . . . , φHm (f,d))T , φX(f) = (φX1 (f), . . . , φXm(f))T .
An advantage of MASM in (2) is that the temporal correlation structure can
be reduced since the Fourier coefficients are approximately asymptotically un-
correlated across frequencies under some regularity conditions [8,1]. Moreover,
φε(f,d) is assumed to be a complex process with the zero mean function and a
finite spatial covariance structure. MASM assumes that for each stimuli j and
each voxel d, φHj (f,d) is close to φHj (f ′,d′) for some neighboring voxels d′ and
frequencies f ′. This is essentially a spatial and frequent smoothness condition,
which allows us to borrow information from neighboring voxels and frequencies.
Equation (2) and different shape neighborhoods at different voxels are the two
key novelties compared to the existing literatures [6].

2.2 Weighted Least Square Estimate

Our goal is to estimate the unknown functions {φH(f,d) : d ∈ D, f ∈ [0, 1]}
based on MASM and the Fourier transformed fMRI data F(Y) = {φY (fk,d) :
k = 0, · · · , T −1,d ∈ D}. To estimate φH(f,d), we may combine all information
at fundamental frequencies fk ∈ ηf (r) = (f−r, f+r)∩{k/T : k = 0, 1, . . . , T−1}
with r > 0 and voxels d′ ∈ B(d, s), where B(d, s) is a spherical neighborhood
of voxel d with radius s ≥ 0 to construct an approximation equation as follows:

φY (fk,d′) ≈< φH(f,d), φX(fk) > +φε(fk,d′). (3)

Then to estimate φHj (f,d) for j = 1, · · · ,m, respectively, we construct m local
weighted functions L[−j](φHj (f,d); r, s) as∑

fk∈ηf (r)

∑
d′∈B(d,s)

|φY [−j](fk,d′) − φHj (f,d)φXj (fk)|2ω̃j(d,d′, f, fk; r, s) (4)

for j = 1, · · · ,m, where φY [−j](fk,d′) = φY (fk,d′) −∑l 
=j φHl
(fk,d′)φXj (fk).

Moreover, weight ω̃j(d,d′, f, fk; r, s) characterizes the physical distance between
(f,d) and (fk,d′) and the similarity between φHj (f,d) and φHj (fk,d′). The pro-
cedure for determining all weights ω̃j(d,d′, f, fk; r, s) will be given later. We de-
rive a recursive formula to update the estimates φ̂Hj (f,d) and Var(φ̂Hj (f,d)) for
j = 1, . . . ,m based on any fixed weights {ω̃j(d,d′, f, fk; r, s) : d′ ∈ B(d, s), fk ∈
ηf (r)}. We obtain φ̂Hj (f,d) by differentiating L[−j](φHj (f,d); r, s) as follows:∑

fk∈ηf (r)

∑
dT ∈B(d,s) ω̃j(d,d′, f, fk; r, s)φXj (fk)φY [−j](fk,d′)∑

fk∈ηf (r)

∑
d′∈B(d,s) ω̃j(d,d′, f, fk; r, s)φXj (fk)φXj (fk)

(5)



272 J. Wang et al.

where φXj (fk) is the conjugate of φXj (fk). We approximate Var(φ̂Hj (f,d)) as

{∑fk∈ηf (r) |
∑

d′∈B(d,s) ω̃j(d,d′, f, fk; r, s)φX(fk)φ̂jε(fk,d′)|2}
{∑fk∈ηf (r)

∑
d′∈B(d,s) ω̃j(d,d′, f, fk; r, s)φX(fk)φX(fk)}2

, (6)

where φ̂jε(fk,d′) = φY (fk,d′) −∑l 
=j φ̂Hl
(fk,d′)φXj (fk). Based on φ̂Hj (f,d)

for j = 1, · · · ,m, we can get

H̃j(t,d) =
1
T

T−1∑
k=0

φ̂Hj (fk,d) exp (i2πtfk) for any d ∈ D and t. (7)

2.3 Mutliscale Adaptive Estimation Procedure

We use a multiscale adaptive estimation (MAE) procedure to determine {ω̃j(·) :
j = 1, · · · ,m} and then estimate {φH(f,d) : d ∈ D, f ∈ [0, 1]}. MAE borrows
the multiscale adaptive strategy from the well-known Propagation-Separation
(PS) approach [10,5]. MAE starts with building two sequences of nested spheres
with spatial radii s0 = 0 < s1 < · · · < sS and frequent radii 0 < r0 < r1 < . . . <
rS . The key idea of MAE for multiple stimuli is to sequentially and recursively
compute φ̂Hj (f,d) from j = 1 increasing to m. Generally, MAE consists of
four key steps: initialization, weight adaption, recursive estimation and stopping
check. In the initialization step, we set s0 = 0, r0 > 0, say r0 = 5/T , and
the weighting scheme ω̃j(d,d, f, fk; r0, s0) = Kloc(|f − fk|/r0). We also set up
another series {rs = rs−1+br : s = 1, · · · , S} as the frequent radii with a constant
value br, say, br = 2/T . Then we apply the backfitting algorithm to iteratively
update φ̂

(0)
Hj

(f,d) and obtain an estimate of Var(φ̂(0)
Hj

(f,d)) for j = 1, · · · ,m
until convergence.

In the weight adaptation step, for s > 0, we set ω̃
(i)
j (d,d′, f, fk; rs, ss) as

Kloc(||d − d′||2/ss)Kloc(|f − fk|/rs)Kst(
||φ̂(i−1)

Hj
(f,d) − φ̂

(i−1)
Hj

(fk,d′)||√
||Var(φ̂(i−1)

Hj
(f,d))||

), (8)

where || · || is the norm operator and || · ||2 is the L2 norm. The functions Kloc(x)
and Kst(x) are two kernel functions such as the Epanechnikov kernel [10,5].

In the recursive estimation step, at the ith iteration, we compute
φ̂

(i)
jε (f,d) = φY (f,d) − ∑

l 
=j φ̂
(i−1)
Hl

(f,d)φXl
(f). Then based on weights

ω̃
(i)
j (d,d′, f, fk; rs, ss), we sequentially calculate φ̂

(i)
Hj

(f,d) and approximate

Var(φ̂(i)
Hj

(f,d)) according to (5) and (6).
In the stop checking step, after the i0-th iteration, we calculate the adaptive

Neyman test statistic, denoted by W
(i)
j (d; ss, ru), for the j-th stimulus to test

difference between φ̂
(i)
Hj

(d) = {φ̂(i)
Hj

(f0,d), . . . , φ̂(i)
Hj

(fT−1,d)} and φ̂
(i−1)
Hj

(d) =

{φ̂(i−1)
Hj

(f0,d), . . . , φ̂(i−1)
Hj

(fT−1,d)}. If W
(i)
j (d; ss, rs) is significant, then we set

φ̂
(s)
Hj

(f,d) = φ̂
(i−1)
Hj

(f,d) for all s ≥ i at voxel d.
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Finally, when s = S, we report the final φ̂(S)
Hj

(f,d) at all fundamental frequen-

cies and substitute them into (7) to calculate Ĥ
(S)
j (t,d) across voxels d ∈ D for

all j = 1, · · · ,m. After obtaining HRFs for all stimuli, we may calculate their
summary statistics including amplitude/height (H), time-to-peak (T), and full-
width at half-max (W) and then carry out group-level statistical inference, say
to test whether H significantly differs from 0, on the images of these estimated
summary statistics [6].

3 Results

Simulation. We conducted a set of Monte Carlo simulations to examine the
finite sample performance of MASM and MAE and compared them with sev-
eral existing HRF models. We simulated the data at 200 time points (i.e.,
t = 1, 2, · · · , 200) with a 40×40 phanton image containing 9 regions of activation-
circles with varying radius at each time point. These 9 regions were also grouped
into three different BOLD patterns with each group consisting of three circles,
which have the same true signal series. The three true HRFs were set as zeros
for t > 15 and otherwise for t > 0 according to

hj(t) = Aj · (t/dj1)aj1 exp (−(t− dj1)/bj1) − c(t/dj2)aj2 exp (−(t− dj2)/bj2)

with (A1, A2, A3) = (1, 5, 3), c = 0.35, (a11, a12) = (6, 12), (a21, a22) = (4, 8),
(a31, a32) = (5, 10), (bj1, bj2) = (0.9, 0.9) and (dj1, dj2) = (aj1 ∗ bj1, aj2 ∗ bj2) for
j = 1, 2, 3. The boxcars consisting of either zeros or ones were independently
generated from a Bernoulli random generator with the successful rate=0.15,
denoted by Xj(t), j = 1, 2, 3. So the true BOLD signals were simulated as
Y (t) =

∑3
j=1 Hj ⊗Xj(t). The signals in each group of the activation-circles were

scaled to be Y1(t) = Y (t)/6, Y2(t) = Y (t)/4 and Y3(t) = Y (t)/2, respectively.
The noise ε(t) were generated from a Gaussian distribution with mean zero and
standard deviation σ = 0.2. Note that it is straightforward to embed AR noise
to simulate the serial autocorrelation. Finally, the simulated BOLD signal was
set as Yj(t) + ε(t) for j = 1, 2, 3. In this simulation, the smallest signal-to-noise
rate (SNR) is around 0.6.

In order to determine the signal patterns, we implemented some EM-based
clustering method with ignoring the details for the sake of space and then com-
puted the average of the estimates in each cluster. The estimates of the clustered
HRFs are displayed in Fig. 1 (b.1-3 and c.1-3). It seems that our algorithm can
simultaneously recover the correct HRFs in all active regions.

To evaluate our method, we compared MASM with some state-of-art meth-
ods in [6], which include (i) SPMs canonical HRF (denoted as GAM); (ii) the
semi-parametric smooth finite impulse response (FIR) model (sFIR); and (iii)
the inverse logit model (IL). Subsequently, we evaluated the HRF estimates by
computing H, T, and W as the potential measure of response magnitude, latency
and duration of neuronal activity. It has been reported in [6] that IL is one of
the best methods in accurately estimating H, T, and W.
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Let D =
∑N

i=1

∑M
j=1(|x̂ij − x0| − |ŷij − x0|)/(NM), where x̂ij and ŷij , re-

spectively, denote the statistics H, T, or W, calculated from MASM and from
the other three methods, and x0 represents the true value of H (or T, W) in the
different active regions corresponding to the different event sequences. Moreover,
N and M , respectively, represent the numbers of replications and voxels in ac-
tive regions with N = 100. We computed the average absolute error differences
between our method and the other three methods. Generally, the negative value
of D indicates that our method outperforms other methods. Table 1 reveals that
MASM can provide more accurate estimates of the HRF summary statistics than
the other three methods.

Table 1. Comparisons of the differences of the absolute errors between our method with
sFIR, IL and GAM, respectively. C1, C2 and C3 denote the 1st, 2nd and 3rd sequences
of events, respectively. A1, A2 and A3 denote the 1st, 2nd and 3rd active regions. Values
in the parentheses are the standard errors. H=Height, W=Width, T=Time-to-Peak.

From Table 1, amongst the tested HRF estimation alternatives, the sFIR
seems to provide the closest results. Thus we pick sFIR to make another com-
parison. We applied the Gaussian smoothing with FWHM equal 4mm to the
original simulated data before running sFIR and compared them to MASM
without using the Gaussian smoothing. An evaluation statistics for the jth voxel
is given by Dj = 1

100

∑100
i=1(|x̂ij − x0| − |ŷij − x0|). The comparison results for

the parameter H given in Fig. 1 (d.1-3) as a representative reveals that MASM
outperforms sFIR, especially on the boundary voxels as Gaussian smoothing
blurred them.
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(a.1) (a.2) (a.3) (a.4)

(b.1) (b.2) (b.3)

(c.1) (c.2) (c.3)

(d.1) (d.2) (d.3)

(e.1) (e.2) (e.3) (e.4)

(f.1) (f.2) (f.3) (f.4)

Fig. 1. Set-up of Simulation: (a.1) a temporal cut of the true images; (a.2) the true
curves of HRF: h1(t), h2(t) and h3(t); (a.3) a temporal cut of the simulated images;
(a.4) the Gaussian smooth result. The estimated results: estimates of HRF for the (b.1
and c.1) 1st; (b.2 and c.2) 2nd; (b.3 and c.3) 3rd sequence of events. The row (b.1-3)
is the average estimated HRF in each cluster. The row (c.1-3) is the recovered pattern
relative to each sequence of events. The comparison statistics Dj with sFIR: (d.1-3) the
difference of estimated Height(H) at each voxel for the three stimulus sequences. The
color bar denotes the value of Dj for the jth voxel. Data analysis results: (e.1)-(e.4) the
slices containing ROIs (colored ones) of the F maps for the 1st-4th stimulus sequences,
respectively; (f.1)-(f.4) estimated HRFs at the significant ROIs corresponding each
condition from MASM (red), sFIR (green) and GAM(yellow).
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Real Data. We used a subject from a study designed for the investigation of the
memory relationship with four different stimulus sequences. We used Statistical
Parametric Mapping (SPM) [4] to preprocess the fMRI and MRI images and ap-
ply a global signal regression method to detrend the fMRI time series. The F-
statistics maps were generated by SPM to test the activation regions triggered by
four sequences of stimulus events. For each stimulus, we set a threshold with p
value less than 0.01 and the extension K = 20 to find significant regions of inter-
est (ROIs). We plotted the estimated HRFs by using MASM, sFIR and GAM in
these ROIs and chose one of them in each brain mapping as a demonstration to
compare MASM with sFIR and GAM (Fig. 1 (e.1-4)). Based on the SPM findings
with GAM, we found the deactive ROIs in Figures (e.1), (e.2) and (e.4) and the
active ROIs in Figure (e.3). They are consistent with those ROIs obtained from
the other two methods. HRFs calculated from MASM and sFIR have similar H,
W, and T, which are different with those statistics obtained from HRFs based on
GAM (Fig. 1 (f.1-4)). This result is consistent with our simulation result (see Table
1). Furthermore, we found that HRFs calculated from sFIR had big variation at
their tails compared to those calculated from MASM. It may indicate that MASM
is an accurate estimation method for reconstructing HRFs in fMRI.
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Abstract. Mild cognitive impairment (MCI), often an early stage of
Alzheimer’s disease (AD), is difficult to diagnose due to the subtlety of
cognitive impairment. Recent emergence of reliable network characteri-
zation techniques based on diffusion tensor imaging (DTI) and resting-
state functional magnetic resonance imaging (rs-fMRI) has made the
understanding of neurological disorders at a whole-brain connectivity
level possible, providing new avenues for brain classification. Taking a
multi-kernel SVM, we attempt to integrate these two imaging modalities
for improving classification performance. Our results indicate that the
multimodality classification approach performs better than the single
modality approach, with statistically significant improvement in accu-
racy. It was also found that the prefrontal cortex, orbitofrontal cortex,
temporal pole, anterior and posterior cingulate gyrus, precuneus, amyg-
dala, thalamus, parahippocampal gyrus and insula regions provided the
most discriminant features for classification, in line with the results re-
ported in previous studies. The multimodality classification approach
allows more accurate early detection of brain abnormalities with larger
sensitivity, and is important for treatment management of potential AD
patients.

1 Introduction

Alzheimer’s disease (AD) is one of the most prevalent dementia in older adults
worldwide, characterized by cognitive and intellectual deficits that is serious
enough to interfere daily life. Accurate diagnosis of AD is crucial for early treat-
ment. Mild cognitive impairment (MCI), often an early stage of AD, is a good
target for early diagnosis and therapeutic interventions of AD. Nevertheless,
MCI is difficult to diagnose due to the subtlety of cognitive impairment.

Recently, several imaging modalities have been proven to be effective in AD
and MCI diagnosis, including diffusion tensor imaging (DTI) [6], magnetic reso-
nance imaging (MRI) [9], resting-state functional MRI (rs-fMRI) [8] and positron
emission tomography (PET) [5]. Nevertheless, most existing pattern classifica-
tion methods use only each of these modalities independently for AD and MCI

G. Fichtinger, A. Martel, and T. Peters (Eds.): MICCAI 2011, Part II, LNCS 6892, pp. 277–284, 2011.
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diagnosis. More effort should be made in integrating of two or more modali-
ties since combining complementary information of different biomarkers can be
useful for improving diagnosis.

To the best of our knowledge, DTI and rs-fMRI have not been combined at a
network level for identifying individuals with MCI, although they have been em-
ployed separately with reasonably good classification performance. The current
study is the first attempt to integrate these two modalities to identify individu-
als with MCI from normal controls. We seek to validate whether complementary
structural and functional information can be combined to improve classification
performance. We will also report brain regions that contribute most to the clas-
sification performance. While confirming findings of previous studies, this paper
sheds new light on the effectiveness of applying multimodality information for
diagnosis of progressive neurodegenerative disorders.

2 Materials and Methods

The current study involved 27 participants, 10 individuals with MCI and 17
socio-demographically matched healthy controls. Informed consent was obtained
from all participants, and the experimental protocols were approved by the in-
stitutional ethics board. Confirmation of diagnosis for all subjects was made via
expert consensus panels. Demographic information of the participants is shown
in Table 1.

Table 1. Demographic information of the participants involved in this study. Group
difference was assessed using two-sample t-tests.

Group MCI Normal p-value

No. of subjects 10 17 –
Gender 5M/5F 8M/9F –
Age (mean ± SD) 74.2 ± 8.6 72.1 ± 8.2 0.5372
Years of education (mean ± SD) 17.7 ± 4.2 16.3 ± 2.4 0.2804
MMSE (mean ± SD) 28.4 ± 1.5 29.4 ± 0.9 0.0405

2.1 Data Acquisition

Data acquisition was performed using a 3.0-Tesla GE Signa EXCITE scanner.
Diffusion-weighted images of each participant were acquired with 25-direction
diffusion-weighted whole-brain volumes with the following parameters: b = 0,
1000 s/mm2, flip angle = 90◦, TR/TE = 17000/78 ms, 72 slices, imaging matrix
= 128×128, FOV = 256×256 mm2, resulting in a voxel dimension of 2×2×2 mm3

reconstructed resolution. Resting-state functional images were acquired using a
SENSE inverse-spiral pulse sequence with the following parameters: flip angle
= 77◦, TR/TE = 2000/32 ms, 34 slices, imaging matrix = 64 × 64, FOV =
256×256 mm2, resulting in a voxel resolution of 4×4×4 mm3. All the subjects
were told to keep their eyes open and stare at a fixation cross in the middle of
the screen during scanning, which lasted for 5 minutes.
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2.2 Data Post-processing and Network Construction

The DTI images were first parcellated into 90 regions by propagating the auto-
mated anatomical labeling (AAL) ROIs [11] to each image using a deformable
DTI registration algorithm. Whole-brain streamline fiber tractography was then
performed on each image using ExploreDTI [7] with the following parame-
ters: starting/stopping FA = 0.45/0.25, minimum/maximum fiber length =
20/400 mm. The number of fibers passing through each pair of regions was
counted. Two regions were considered as anatomically connected if fibers pass-
ing through their respective masks were present, giving us connection topology
of the network. On top of the fiber count based connectivity network, averages
of on-fiber fractional anisotropy (FA), mean diffusivity (MD) and principal dif-
fusivity values were computed to form another 5 connectivity networks with the
same topology but conveying different biophysical properties. Examples of the
constructed connectivity maps are shown in Figure 1.
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Fig. 1. Connectivity maps constructed from DTI different physiological measures

Post-processing of the fMRI images, such as slice timing correction and head-
motion correction were performed using the Statistical Parametric Mapping
(SPM8, http://www.fil.ion.ucl.ac.uk.spm) software package. The images were
then masked with their respective gray matter (GM) masks, which were created
by segmenting the GM regions from their T1-weighted images. This eliminated
the white matter and cerebrospinal fluid from contributing to the fMRI time
series, which contain a relatively high proportion of noise caused by cardiac and
respiratory cycles [12].

Then, we parcellated the brain space into 90 ROIs by warping the fMRI images
to the AAL template. For each subject, the mean time series was computed
for each GM-masked region. Temporal band-pass filtering of frequency interval
(0.025 ≤ f ≤ 0.100Hz) was then performed to minimize the effects of low-
frequency drift and high-frequency noise since the fMRI dynamics of neuronal
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activities are most salient within this frequency interval. This frequency interval
was further decomposed into 5 equally divided, non-overlapping frequency sub-
bands, enabling a relatively frequency specific analysis of the regional mean time
series via a multi-spectral characterization.

Functional connectivity, which examines interregional correlations in neuronal
variability, was measured using pairwise Pearson correlation coefficients between
the ROI pairs. Given a set of N random variables, the Pearson correlation ma-
trix is a symmetric matrix in which each off-diagonal element is the correla-
tion coefficient between a pair of variables. We considered the brain regions as
a set of nodes and the correlation coefficients as signed weights on the set of
edges. Fisher’s r-to-z transformation was applied on the elements of the Pearson
correlation matrix to improve the normality of Pearson correlation coefficients.
Examples of the constructed functional connectivity maps for a normal control
(NC) and an MCI patient are shown in the top and bottom rows of Figure 2,
respectively.

Fig. 2. Multi-spectral functional connectivity maps for NC (top) and MCI (bottom),
respectively

2.3 Multi-Kernel SVM Multimodality Classification

The proposed framework for integrating DTI and rs-fMRI is divided into 3 stages:
feature extraction, feature selection and multimodality data fusion. In the first
stage, the weighted local clustering coefficient, a measure that quantifies the
cliquishness of the nodes, is extracted from all connectivity maps as

f(p) =

∑
q:q 
=p∈ζ 2t(p, q)
kp(kp − 1)

, (1)

where ζ is the subnetwork comprising of kp nodes directly connected to the p-th
node, and t(p, q) is the edge weight between the p-th node and q-th node. Hence,
a total of 90 features can be obtained from each connectivity map, producing for
each subject a pool of 540 and 450 features for DTI and rs-fMRI, respectively.

In the second stage, statistical t-test was performed to select features for
classification. Features with p-values smaller than a predefined threshold will
be selected from each individual modality before they were integrated using a
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multi-kernel SVM algorithm. In the third stage, for n training samples with each
of them is of M modalities, the multi-kernel SVM solves the following primal
problem

minw(m),b,ξi

1
2

M∑
m=1

βm

∥∥∥w(m)
∥∥∥2 + C

n∑
i=1

ξi, (2)

s.t. yi

[
M∑

m=1

βm

(
(w(m))Tφ(m)(X(m)

i ) + b
)]

≥ 1 − ξi; with ξi ≥ 0, i = 1, . . . , n

with X(m)
i = {x(m)

i,1 , . . . ,x(m)
i,D } denotes a feature vector of the m-th modal-

ity of the i-th sample (D = number of maps in the m-th modality, x(m)
i,d =

{f (m)
i,d (1), . . . , f (m)

i,d (90)} and d = 1, . . . , D) and yi ∈ {−1, 1} as its corresponding
class label. Parameters ξi, C, b, w(m), φ(m) and βm ≥ 0 denote the distance of
the i-th misclassified observation from its correct side of the margin, the model
parameter that controls for the amount of constraint violations introduced by
ξi, the bias term, the normal vector of hyperplane, the kernel-induced mapping
function and the weighting factor of the m-th modality, respectively.

The dual form of multi-kernel SVM is solved as

maxα

n∑
i=1

αi − 1
2

∑
i,j

αiαjyiyj

M∑
m=1

βmk(m)(X(m)
i ,X(m)

j ), (3)

s.t.
n∑

i=1

αiyi = 0; with 0 ≤ αi ≤ C, i = 1, . . . , n

where αi is the Lagrange multiplier and k(m)(X(m)
i ,X(m)

j ) = φ(m)(X(m)
i )

φ(m)(X(m)
j ) is the kernel function for a pair of training samples of the m-th

modality.
Given a new test sample X = {X(1), . . . ,X(M)} and let the kernel between the

new test sample and each training sample of the m-th modality be k(m)(X(m)
i ,

X(m)) = φ(m)(X(m)
i )φ(m)(X(m)), the decision function for the predicted label

can be determined as

F (X) = sign

(
n∑

i=1

yiαi

M∑
m=1

βmk(m)(X(m)
i ,X(m)) + b

)
. (4)

The multi-kernel SVM can be naturally embedded into the conventional single
kernel SVM by interpreting k(Xi,X) =

∑
m βmk(m)(X(m)

i ,X(m)) as a mixed
kernel between the multimodality training sample Xi and the test sample X. A
linear kernel SVM classifier based on the LIBSVM library [1] was employed to
demonstrate that the improvement obtained is due mainly to the complementary
information of different modalities.
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3 Experimental Results

The proposed multi-kernel SVM based multimodality classification approach was
compared with the single modality approach and the direct data fusion method.
In the single modality approach, only features selected from a single imaging
modality (DTI or rs-fMRI) were applied for SVM classifier training. While in
the direct data fusion method, all 990 features, which including the DTI and rs-
fMRI features, were first concatenated into a long vector before feature selection
using the t-test. In the multi-kernel approach, the optimal weighting factor, βm,
and SVM parameter, C, were determined via grid search over a fixed range.
In all compared approaches, the p-value of 0.01 was used for each training set
during cross-validation. Classification was performed based on the z-scores of
the features.

We employed various measures to evaluate the diagnostic power of the com-
pared methods. The Youden’s index, Balanced ACcuracy (BAC) and F-score are
defined respectively as [10]

Y = Sensitivity + Specificity − 1 =
TP
FP

+
TN
FN

− 1, (5)

BAC =
1
2
×
[ TP
TP + FN

+
TN

TN + FP

]
, (6)

F = 2 ×
[precision× recall
precision + recall

]
, (7)

where

precision =
TP

TP + FP
; recall =

TP
TP + FN

with TP, TN, FP and FN denoting the true positive, true negative, false positive
and false negative, respectively.

Comparison was performed via leave-one-out cross-validation due to limited
number of available samples. Classification performance for individuals with MCI
using single and multimodality connectivity networks are summarized in Table
2. The proposed method yields a classification accuracy of 96.59%, which is an
increment of at least 7.41% from that of the single modality approach and the
direct data fusion method.

Table 2. Classification performance of single and multimodality connectivity networks.
(ACC = ACCuracy; SEN = SENsitivity; SPE = SPEcificity; Youden = Youden’s index)

Method ACC (%) SEN(%) SPE(%) AUC Youden BAC F-score

fMRI 55.56 60.00 52.94 0.6059 0.1294 0.5647 0.5000
DTI 88.89 80.00 94.12 0.9353 0.7412 0.8706 0.8421
Direct 88.89 90.00 88.24 0.9118 0.7824 0.8912 0.8571
kernel 96.30 100.00 94.12 0.9529 0.9412 0.9524 0.9706
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Fig. 3. ROC curves.

A cross-validation estimation of the generalization performance shows an area
of 0.9529 under the receiver operating characteristic (ROC) curve (AUC), indi-
cating excellent diagnostic power. ROC curves for all compared methods are
shown in Figure 3.

The most discriminant regions that were selected in the course of the clas-
sification include the prefrontal cortex and orbitofrontal cortex [5], temporal
pole [4], anterior and posterior cingulate gyrus, precuneus and insula [3], amyg-
dala [2], thalamus [13], parahippocampal gyrus [8], in line with results reported
in previous studies. The discriminative regions were selected based on whether
their clustering coefficients were selected to be employed for classification. The
order of the regions is determined by their p-values; a smaller p-value indicates
higher discriminative power.

4 Discussions and Conclusion

We investigated the diagnostic power of multimodality classification of the DTI
and rs-fMRI connectivity maps in identifying individuals with MCI. In this
framework, linear SVM classifiers were trained using a mixed kernel that was
constructed from the individual kernels of multiple modalities. This framework
shows better classification performance, and justifies the hypothesis that the
DTI and rs-fMRI contain complementary information, each of them indispens-
able particularly for achieving better diagnostic power. Furthermore, the higher
sensitivity rate of the proposed approach is an important improvement since the
cost of misclassifying individuals with MCI is significantly larger than that of
misclassifying normal controls. Correct diagnosis of individuals with MCI en-
ables early treatment management of potential AD patients possible and thus
reduces the MCI to AD conversion rate. The promising results indicate that the
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proposed framework can provide an alternative and complementary approach
for clinical diagnosis of brain degeneration.
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Abstract. A growing interest has emerged in studying the correlation structure 
of spontaneous and task-induced brain activity to elucidate the functional 
architecture of the brain. In particular, functional networks estimated from 
resting state (RS) data were shown to exhibit high resemblance to those evoked 
by stimuli. Motivated by these findings, we propose a novel generative model 
that integrates RS-connectivity and stimulus-evoked responses under a unified 
analytical framework. Our model permits exact closed-form solutions for both 
the posterior activation effect estimates and the model evidence. To learn RS 
networks, graphical LASSO and the oracle approximating shrinkage technique 
are deployed. On a cohort of 65 subjects, we demonstrate increased sensitivity 
in fMRI activation detection using our connectivity-informed model over the 
standard univariate approach. Our results thus provide further evidence for the 
presence of an intrinsic relationship between brain activity during rest and task, 
the exploitation of which enables higher detection power in task-driven studies. 

Keywords: activation detection, connectivity prior, fMRI, resting-state. 

1   Introduction 

The standard approach for analyzing functional magnetic resonance imaging (fMRI) 
data involves comparing each brain voxel independently against an expected response 
to estimate the likelihood of activation [1]. However, accumulating evidence suggests 
that brain function is also mediated through the interactions between brain regions in 
what is referred to as functional connectivity [2]. Although incorporation of functional 
connectivity may provide activation models that better reflect the nature of brain 
activity, few existing methods have been designed for such purposes [3]. Instead, 
research efforts have largely focused on modeling the spatial structure of fMRI data 
through spatial regularization [4-7]. These methods indirectly account for local voxel 
interactions, but long-range interactions are completely neglected.  

The discovery of structure in ongoing brain activity in the absence of external 
stimulus has ignited enormous research interest [8-10]. Many detected resting-state 
(RS) networks were found to exhibit high resemblance to those engaged during task 
performance [9]. These findings suggest potential relationships between brain activity 
during task and rest, which may serve as an additional source of information for 
detecting stimulus-evoked activation. In particular, task-based fMRI data typically 
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display rather low signal-to-noise ratio (SNR), especially in patients due to difficulties 
in performing certain tasks [10]. Since acquiring RS data requires minimal task 
demands and RS data are less susceptible to behavioural confounds [10], extracting 
connectivity priors from RS data to inform activation detection may enhance 
detection sensitivity, which is especially beneficial for studying diseased populations. 

In this paper, we propose a novel generative model for integrating connectivity and 
task-evoked responses under a unified analytical framework. Assuming brain regions 
displaying functional correlations at rest are more likely to co-activate during task, 
incorporating RS-connectivity information should improve task activation detection. 
To learn the connectivity structure from RS data, we employ and compare graphical 
LASSO (GL) [11] and the oracle approximating shrinkage (OAS) technique [12]. The 
resulting connectivity information is then used as a prior on the task activation effects. 
Unlike most existing generative models [4-7] that employ either approximate 
inference or sampling methods for parameter estimation, our model has the distinct 
advantage of permitting exact closed-form solutions for both the posterior activation 
effect estimates and the model evidence. We apply our model on data from a cohort 
of 65 subjects undergoing a variety of experimental conditions and show increased 
sensitivity in detecting group activation over the standard univariate method. 

2   Connectivity-Informed Activation Model 

Motivated by recent studies that showed high resemblance between functional 
networks detected during rest and task [9], we propose to integrate RS-connectivity 
and task-evoked responses under a unified generative model. Specifically, let Y be an 
d×n matrix containing the intensity time courses of d voxels or d brain regions of a 
subject. Our proposed model can be summarized as follows: 
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where X is an m×n matrix with m regressors along the rows for modeling stimulus-
invoked response and confounds [1]. A is the d×m activation effect matrix to be 
estimated (Section 2.1). V1 is the d×d covariance matrix of Y, V2 is an d×d covariance 
matrix modeling the correlations between the activation effects of the d brain regions, 
and K is an m×m covariance matrix modeling the correlations between the 
experimental conditions. MN(M,V2,K) denotes the matrix normal distribution, which 
serves as the conjugate prior of (1) [13] with α controlling the degree of influence of 
this prior on A (Section 2.3). To ensure that our estimate of A is invariant to affine 
transformations on Y and X, we set M to 0d×m and K to XXT [13]. Setting M to 0d×m also 
ensures that the activation effect estimates will not be biased towards non-zero values, 
which could induce false detections. V1 and V2 are assumed to be known. Compared to 
the model in [13] where V1 and V2 are assumed to be equal, we show that exact  
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closed-form solutions for the posterior estimate of A and the model evidence can be 
derived even for the more general case with V1 and V2 being distinct. Permitting 
distinct V1 and V2 accounts for how Y and A might have different correlation structures. 
Also, we hypothesize that brain regions functionally correlated at rest are more likely 
to co-activate during task performance. We thus set V2 to the covariance estimates 
learned from RS data (Section 2.2). We assume V1 = Id×d as conventionally done for 
analytical simplicity, and defer learning V1 from data for future work. 

2.1   Posterior Activation Effects Estimation 

To estimate A, we first derive the joint distribution of Y and A by taking the product of 
(1) and (2) and isolating the terms involving A from those involving Y: 
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Since the terms involving A take a quadratic form, the posterior distribution of A is 
again a matrix normal distribution, as expected from the conjugacy of (1) and (2). By 
completing the square, the maximum a posteriori mean of A can be derived: 
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Computing MA requires inverting V1 and V2, which is unstable if V1 and V2 are set as 
sample covariance estimated from data with more brain regions than time points. In 
this work, we assume V1 = Id×d, and employ and compare two state-of-the-art 
techniques, namely GL and OAS, for obtaining a well-conditioned V2. 

2.2   Functional Connectivity Estimation  

Graphical LASSO: Given a sample covariance matrix, S, computed from data that are 
assumed to follow a centered multivariate Gaussian distribution, one can estimate a 

well-conditioned sparse inverse covariance matrix, Λ̂ , by minimizing the negative 
log-likelihood of the data distribution over the space of positive definite (p.d.) 

matrices while imposing an l1 penalty on Λ̂ [11]: 

( )
1

0
)det(logminargˆ Λ+Λ−Λ=Λ

>Λ
λStr , (5)

where || · ||1 is the element-wise l1 norm and λ controls the level of sparsity. Enforcing 

sparsity simplifies interpretation, since ijΛ̂ = 0 implies brain regions i and j are not 

connected. To optimize (5), we employ the Two-Metric Projection method [14]. 

OAS: Assume the data for estimating the ground truth covariance, Σ, is generated from a 
multivariate Gaussian distribution. The most well-conditioned covariance estimate of Σ is 
F = tr(S)/d·Id×d [12]. The idea of OAS is to shrink the ill-conditioned sample covariance, 

S, towards F so that a well-conditioned covariance estimate, Σ̂ , can be obtained. 
Specifically, OAS optimizes the following cost function [12]: 
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where ρ controls the amount of shrinkage with the optimal value given by [12]: 
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Thus, no parameter selection is required and the inverse covariance matrix can be 

obtained by inverting Σ̂ with stable inversion guaranteed. 

2.3   Hyper-Parameters Estimation 

A critical hyper-parameter in our model is α, which controls the degree of influence 
of the connectivity prior on the activation effect estimates. To set α, we first derive 
the model evidence by integrating P(Y,A|α,V1,V2) over A: 
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Since 1
2
−V  estimated from GL or OAS is p.d., 1

2
−V  can be decomposed into QΓQT 

where Q are the eigenvectors of 1
2
−V and Γ contains the eigenvalues of 1

2
−V along the 

diagonal. By exploiting this property of p.d. matrix and that V1 is assumed to be Id×d 

hence 1
1
−V = Id×d = QId×dQ

T, the log of (8) can be simplified into: 
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where γi is the ith eigenvalue of 1
2
−V , and terms that do not depend on α, V1, or V2 are 

grouped into C. Since (9) is a single variable function of α, the optimal α at which (9) 
is maximized can be efficiently determined using any generic optimization routines.  

To optimize the choice of λ for the case where 1
2
−V is estimated using GL, we define a 

grid of λ values at which the percentage of non-zero elements in 1
2
−V roughly ranges 

from 10% to 90%. For each 1
2
−V  associated with a given λ, we determine the optimal α 

at which (9) is maximized and compute the log model evidence. The λ associated with 
the largest log model evidence is then taken as the optimal λ. 
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3   Materials 

Synthetic Data: We generated 300 synthetic datasets based on our proposed model. 
Each dataset consisted of 10 subjects. Each subject’s data comprised 100 regions with 
the first 20 regions set to be mutually correlated and activated across all subjects. The 
next 20 regions were set to be mutually correlated but not activated to test if our 
model will falsely declare correlated regions as activated. The remaining regions were 
not correlated nor activated. To simulate this scenario, we generated 100 signal time 
courses, where the first 20 time courses were sine functions with Gaussian noise 
added. The next 20 time courses were cosine functions with Gaussian noise added. 
The remaining 60 time courses were simply Gaussian noise. The empirical covariance 
of these signal time courses was taken as the group covariance of the activation 
effects and the RS networks, Ωg. A random p.d. matrix was added to Ωg to introduce 
inter-subject variability into each subject’s covariance matrix, Ωi. The degree of 
variability was controlled by restricting the Kullback-Leibler divergence of N(0,Ωg) 
and N(0,Ωi) to be ~1.5. For each subject i, 100 RS time courses of length Nt were 
drawn from N(0,Ωi). We set Nt to 25 to emulate the typical situation where the 
number of regions exceeds Nt. To generate task data, samples of A were drawn from 
(2) with V2 set to Ωi. To simulate activation, the means of the first 20 regions in (2) 
were set to a small positive number, δ, that depended on the SNR, δ2/σ2. Gaussian 
noise was added to δ to further introduce inter-subject variability. The resulting A 
were then used to draw samples of Y from (1) with V1 set to σ2I and X being boxcar 
functions convolved with the hemodynamic response function [1]. Three SNRs  
were tested: 0.25, 0.5, and 0.75, with 100 synthetic datasets generated at each SNR 
level. 

Real Data: fMRI data were collected from 65 healthy subjects at multiple imaging 
centers. Each subject performed 10 language, computation, and sensorimotor tasks 
over a period of ~5 min (140 brain volumes) similar to those in [15]. RS data of ~7 
min duration (187 brain volumes) were also collected. 3T scanners from multiple 
manufacturers were used for acquiring the data with TR = 2200 ms, TE = 30 ms, and 
flip angle = 75o. Standard preprocessing, including slice timing correction, motion 
correction, temporal detrending, and spatial normalization, were performed on the 
task-based data using the SPM8 software. Similar preprocessing was performed on 
the RS data except a band-pass filter with cutoff frequencies at 0.01 to 0.1 Hz was 
applied to isolate the signal of interest [8]. Signals from cerebrospinal fluid and white- 
matter voxels were regressed out from the gray-matter voxels. 

To ensure stable sparse inverse covariance estimation using GL [11], we reduced 
the dimension of the data by grouping the voxels into 1000 parcels. Specifically, we 
concatenated the RS voxel time courses across subjects and applied the parcellation 
technique of [16] to generate a group parcellation map. Each subject’s brain images 
(in normalized space) were then parcellated using the group parcel labels. The mean 
voxel time courses of each parcel from rest and task were taken as the input to our 
model. To account for scanner variability across imaging centers, we normalized the 
parcel time courses by subtracting the mean and dividing by the standard deviation.  
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4   Results and Discussion 

Validation: For validation, we compare the sensitivity of our model with connectivity 
prior estimated from OAS and GL against the ridge regression model (i.e. V2 set to I) 
and the standard univariate model [1] in detecting group activation. We denote these 
models as OAS-CM, GL-CM, R-UM, and S-UM. Since the ground truth activated 
brain regions are unknown for real data, we employ the max-t permutation test [17] to 
enforce strict control on false positive rate (FPR) so that we can safely base our 
validation on the number of parcels detected. We note that for each permutation, the 
entire activation effect map of each subject is multiplied by 1 or -1 chosen at random. 
Hence, the spatial covariance structure of the activation effect maps is preserved. 
Also, we emphasize that our validation criterion is independent of the criterion used 
for optimizing the model parameters, which mitigates bias from being introduced. 

Synthetic Data: The mean receiver operating characteristics curves averaged over the 
synthetic datasets are shown in Fig. 1. At all FPR and SNR levels, OAS-CM and GL-
CM achieved higher true positive rates (TPR) than R-UM and S-UM, thus confirming 
that given the activation effects are inherently correlated, our model can exploit this 
information to improve group activation detection. We note that there is less need for 
imposing a prior (which introduces a bias) at higher SNR since more signals are 
available to estimate A, hence the decrease in sensitivity for OAS-CM and GL-CM. 
Also, the higher sensitivity achieved by OAS-CM compared to GL-CM might be due 
to how GL tends to produce unstable covariance estimates for large-scale problems. 
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(c) SNR = 0.75  

Fig. 1. Synthetic data results. OAS-CM (red) and GL-CM (blue) achieved higher TPR for all 
FPR and SNR levels than R-UM (green) and S-UM (black). 

Real Data: To test the generality of our model, we examined 21 contrasts between the 
10 experimental conditions. Contrasts included computation vs. sentence processing 
task, auditory vs. visual task among others. Shown in Fig. 2(a) is the percentage of 
parcels detected with significant activation differences averaged over contrasts for p-
value thresholds ranging from 0 to 0.5. Incorporating a connectivity prior using OAS-
CM and GL-CM outperformed R-UM and S-UM even under the simplifying yet 
common assumption that V1 = Id×d. We note that adding a shrinkage prior to control 
overfitting, as in the case of R-UM, only improved detection mildly. Thus, our results 
suggest an intrinsic relationship between the correlation structure of activation effects 
and RS-connectivity, and this relationship is consistent across subjects, hence the 
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improved group activation detection. Qualitatively, incorporating a RS-connectivity 
prior resulted in more detections of bilateral activation in brain regions implicated for 
the contrasts examined, examples of which are shown in Fig. 2(b) and (c).  
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Fig. 2. Real data results. (a) % of parcels with significant activation differences averaged across 
contrasts vs. p-value thresholds. (b) Parcels detected by contrasting computation against 
sentence processing task, and (c) auditory against visual task. Red = detected by only OAS-
CM. Purple = detected by both OAS-CM and GL-CM. Blue = detected by all methods. 

5   Conclusions 

We proposed a novel generative model for integrating connectivity and stimulus-
induced response under a single analytical framework. Our model permits exact 
closed-form solutions for the posterior activation effect estimates and the model 
evidence without resorting to approximate inference or computationally-expensive 
sampling methods. On real data, we demonstrated that integrating a RS-connectivity 
prior improves sensitivity in detecting group activation. Our results thus support that 
the correlation structure of task activation effects is pertinent to RS connectivity, and 
this relationship is common across subjects. The flexibility of our model permits other 
V1 and V2 to be easily examined. In particular, integrating an anatomical connectivity 
prior estimated from diffusion MRI data would be a promising direction to explore. 
We expect that our model can similarly improve intra-subject activation detection, 
which enables more refined subject-specific analysis for studying patient populations. 
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Abstract. Purpose: The debate regarding how best to model variabil-
ity of the hemodynamic response function in fMRI data has focussed on
the linear vs. nonlinear nature of the optimal signal model, with few stud-
ies exploring the deterministic vs. stochastic nature of the dynamics. We
propose a stochastic linear model (SLM) of the hemodynamic signal and
noise dynamics to more robustly infer fMRI activation estimates. Meth-
ods: The SLM models the hemodynamic signal by an exogenous input
autoregressive model driven by Gaussian state noise. Activation weights
are inferred by a joint state-parameter iterative coordinate descent al-
gorithm based on the Kalman smoother. Results: The SLM produced
more accurate parameter estimates than the GLM for event-design simu-
lated data. In application to block-design experimental visuo-motor task
fMRI data, the SLM resulted in more punctate and well-defined motor
cortex activation maps than the GLM, and was able to track variations in
the hemodynamics, as expected from a stochastic model. Conclusions:
We demonstrate in application to both simulated and experimental fMRI
data that in comparison to the GLM, the SLM produces more flexible,
consistent and enhanced fMRI activation estimates.

Keywords: fMRI, hemodynamic signal, Kalman filter, state space model.

1 Introduction

The mapping from neuronal activation to measured blood oxygenation level
dependent (BOLD) signal in fMRI involves a complex interplay between physi-
ological and physical processes, most of which are yet to be fully understood [7].
The hemodynamic response function (HRF) is known to vary across subjects,
sessions, scans, and brain regions [6]. Approaches to dealing with this variabil-
ity in HRF have, with few exceptions, focussed on parameterised, deterministic
models of the HRF, eg. [14]. Parameterised models may appear at first glance to
be stochastic, given that estimated parameters are assumed to be drawn from
prior distributions. However, given knowledge of the parameters, the resultant
HRFs are deterministic. A notable exception to the deterministic component

G. Fichtinger, A. Martel, and T. Peters (Eds.): MICCAI 2011, Part II, LNCS 6892, pp. 293–301, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



294 L.A. Johnston, M. Gavrilescu, and G.F. Egan

models are the techniques originated by Ciuciu et al. [3], in which smooth HRFs
are ensured by placing a Gaussian prior on the norm of the second derivative of
the HRF, with estimates enforced to start and end at zero.

In contrast to deterministic BOLD signal models, we propose a stochastic
linear model (SLM) of the BOLD signal, in which noise is used to drive the state
dynamics directly. Unlike the methods of Ciuciu et al., our model is stochastic
and parameterised, with the BOLD signal estimated voxelwise along with the
activation weight. The SLM is a state space model, similar in form to the bilinear
dynamical systems (BDS) proposed by [12] and recently extended by [10]. The
key difference between the SLM and BDS is that BDS models the supposed
neuronal activity via stochastic state dynamics, which are then convolved with
HRF kernels to form the BOLD signal. Given the vast difference in temporal scale
between fMRI observations and neuronal activity, the SLM does not attempt to
separate neuronal activity from the hemodynamic response. Rather, the SLM is
a fully stochastic model of the hemodynamic BOLD signal.

The primary focus of the current paper is to present the SLM as a stochastic
variant of the general linear model (GLM), and to compare the robustness,
statistical significance and consistency of activation estimates derived from the
SLM and GLM approaches, rather than to explicitly estimate a correlate of
neuronal activity.

2 Methods

The Stochastic Linear Model: Let k = 1, . . . , T be the discrete time index of
repetition time (TR) intervals. The system input is a binary stimulus sequence,
uk, representing task-on/task-off, and system output is the observed voxelwise
BOLD signal, yk. The SLM is a state space model consisting of an ARX state
equation modelling the hemodynamic signal, xk, and an observation equation:

xk = axk−1 + buk + wk, wk ∼ N(0, σ2
w), (1)

yk = xk + vk + rk + ek, vk ∼ AR(c, σ2
n), rk ∼ MA(d, σ2

ξ ), ek ∼ N(0, σ2
e).

For full generality, we consider additive autoregressive (AR), moving average
(MA) and Gaussian white noise processes in the observation equation.

The SLM can be represented in canonical state space form by embedding the
ARMA noise processes in the state vector. For the MA noise process, state em-
bedding occurs via defining a dummy variable, r̃k = dξk. Let xk = [xk, vk, rk, r̃k]′

be the state vector and wk = [wk, nk, ξk, dξk]′ be the noise vector. Then the SLM
canonical state space form is,

xk = Axk−1 + buk + wk, wk ∼ N(0, Q), (2)

yk = g′xk + ek, ek ∼ N(0, σ2
e), (3)

A =

⎡⎢⎢⎣
a 0 0 0
0 c 0 0
0 0 0 1
0 0 0 0

⎤⎥⎥⎦ , b =

⎡⎢⎢⎣
b
0
0
0

⎤⎥⎥⎦ , Q =

⎡⎢⎢⎣
σ2

w 0 0 0
0 σ2

n 0 0
0 0 σ2

ξ d σ2
ξ

0 0 d σ2
ξ d2 σ2

ξ

⎤⎥⎥⎦ , g =

⎡⎢⎢⎣
1
1
1
0

⎤⎥⎥⎦ .
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The full state vector, xk, and the ARMA noise processes, vk and rk, are
estimated from the noisy BOLD signal, yk.

There are three key differences between the SLM and the GLM. Firstly, the
SLM dynamics of the neurovascular signal, xk, are driven by a state noise pro-
cess, wk, whereas the GLM neurovascular signal dynamics are deterministic.
Secondly, unlike the GLM, the SLM does not contain an explicit activation pa-
rameter, β, or hemodynamic response function, hk. This permits a more flexible
modelling of the neurovascular signal where the HRF may be unknown. In order
to map the strength of activation, we define an SLM activation weight following
in Eq. (4). The third key difference is that in the GLM, attempts are made to
mitigate the effect of observation noise through pre-whitening or pre-colouring
of the measured BOLD signals [4]. In contrast to these noise suppression pro-
cedures, the SLM noise processes are explicitly estimated, through embedding
them in the state dynamics.

SLM Activation Estimation: While the activation weight, βGLM , is explicit
in a GLM formulation, there is no analogous parameter in the SLM state or
observation equation, Eq. (1). Rather we define the activation weight to be

βSLM �
=

b

1 − a
, (4)

where a and b are SLM parameters in Eq. (1). This definition is derived directly
from the SLM state equation, Eq. (1), by noting that xk contains stimulus terms
in an arithmetic sequence due to the autoregression. We therefore define the
activation weight to be the limiting sum of the arithmetic sequence, Eq. (4).
Activation weights for higher order AR models can be defined similarly using
the characteristic polynomial in the denominator of (4).

State and parameter estimation: The proposed SLM algorithm estimates
the noise processes explicitly, rather than suppressing their effect through pre-
whitening. The SLM parameters Θ = {a, b, c, d, σ2

e , σ
2
w, σ2

n, σ
2
ξ} are unknown, as

are the state vectors, xk. Given that both states and parameters are unknown,
we seek to estimate the MAP estimates of the states and parameters,

{X,Θ}MAP = argmax
X,Θ

p(X,Θ|y1, . . . , yT ) (5)

where p(X,Θ|y1, . . . , yT ) =
T∏

k=1

1√
2πσ2

e

exp
(
− (yk − g′xk)2

2σ2
e

)
× (6)

1
(2π)2|Q| 12 exp

(
−1

2
(xk −Axk−1 − buk)′Q−1(xk −Axk−1 − buk)

)
This MAP optimisation is intractable, and therefore a suboptimal estimation
algorithm must be applied. We have chosen iterative coordinate descent algo-
rithm [9], known to converge to a local minimum of the posterior, in which
a Kalman smoother and parameter updating are consecutively applied to the
system, starting from initial parameter estimates. The computational time of
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the iterative estimation is less than 1 second per voxel time-series (for a scan
length of 240 volumes), implemented in Matlab and run on a standard 2GHz
PC. The algorithm is entirely parallelisable as each voxel analysis is independent
of others.

Simulated fMRI Data: Event design data was generated by the balloon
model, through random sampling over a realistic range of parameters [5]. SNR
was varied by change in neuronal efficacy, ε. Parameters were generated in each
of 50 runs according to

T = 150s, TR = 2s, a1 = 1, a2 = 3.37, α ∼ N(0.33, 0.1), E0 0.3 + 0.3U(0, 1),

τs ∼ N(1.54, 0.2), τf ∼ N(2.46, 0.2), τ0 ∼ N(1, 0.2), V0/σ
2
e = 5

An estimated activation weight was computed for each run based on the peak
of the noiseless BOLD signal, for comparison with βGLM and βSLM . Mean
square error between the noiseless BOLD signal and the estimated signal from
the GLM and SLM methods was similarly computed.

Experimental fMRI Visuomotor Task Data: Three healthy controls were
scanned (3T Siemens TRIO, MCRI Melbourne) while performing a visuomotor
task, 222 EPI images, in-plane: 3.125x3.125mm2, TR=1.6s, FA=90◦, TE=20ms,
24 axial slices of 5mm with 0.5mm gap. The visuomotor task was a simple
block design of alternating periods (30s each). Images were motion corrected and
spatially smoothed with a 6mm isotropic Gaussian kernel. The supplementary
motor area (SMA) was expertly delineated using landmarks in each subject’s
native space. The SLM’s iterative coordinate descent algorithm was applied for
20 iterations, determined to be sufficient to allow the parameter estimates to
converge. For comparison, a GLM using the SPM canonical HRF and temporal
derivatives was implemented.

3 Results

Simulations: Simulated data that has been generated using the Balloon model,
rather than the actual models underlying SLM or GLM, avoids the problem of
bias toward a particular algorithm in the results. The Balloon model, being based
on physiology, is also a more realistic model from which to generate data. Vary-
ing the ‘efficacy’ parameter, ε, in the Balloon model [5], varies the cerebral blood
flow and hence BOLD signal. Fig. 1 demonstrates that for the simulated event
design data, the SLM achieves more accurate estimates of activation weights
than the GLM, which consistently underestimates the signal level. The SLM
returned a lower MSE than the GLM for almost all efficacies (SNRs), excepting
the extremely low SNR regime; as expected the SLM will tend to overfit the
signal and match to noise in very low SNR BOLD signals that are dominated
by noise.
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Fig. 1. Performance comparison between SLM and GLM on simulated event design
data, simulated for six signal efficacies, ε ∈ [0, 1]. A. Ground-truth activation weights
(black) vs SLM (red) and GLM (blue). Where not visible, black line underlies SLM
red line. B. MSE between ground-truth time-series and each of SLM (red) and GLM
(blue) estimates. All estimates display mean ± standard error bars over 50 runs.
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Fig. 2. Estimation of BOLD signal dynamics by SLM and GLM across 3 subjects for a
visuomotor block design task. A. T statistics. B. Activation estimates. C. SMA time-
series (red) and estimates (blue). D. Time-series (red and estimates (blue) for voxels
labelled by green arrows in B.
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Experimental Results: Fig. 2A and B depict the T statistic and estimated
activation maps for a representative slice in each subject containing the motor
regions as identified manually by an expert. T statistics for the SLM were com-
puted as detailed in App. A. The T statistic maps display a greater range of
values with particularly stronger activation in expected motor areas. The SLM
activation maps tend to be more punctate than those of the GLM. Fig. 2C
displays the observed BOLD signal in the SMA and the corresponding SLM
and GLM estimates. For comparison purposes, the same display is presented in
Fig. 2D for a second voxel chosen in each subject at a region determined to be
activated more strongly by the SLM than the GLM method. These voxels are
indicated by green arrows in Fig. 2B. Comparison of the time-series estimates
demonstrate that the SLM is more consistent in assignment of activation weights
than the GLM, in the following ways: In Subject 1 SMA, the SLM and GLM
activation weights are similar (10.1 and 8.0 respectively as indicated on the fig-
ures). The GLM fails to capture the shape of the comparison voxel’s time-series
in Fig. 2D however, resulting in a halving of βGLM , while the SLM determines
a reasonable activated time-series shape. The same comment applies to Sub-
jects 2 and 3; The SLM activation weight between SMA and the comparison
voxel are reasonable given the relative time-series shapes, while the GLM fails
to be able to account for any activation in the comparison voxels. Indeed, in
Subject 3, the GLM estimate in the SMA is a poor fit to the data that re-
sults in a halved activation weight (βGLM = 11.4) compared to the SLM SMA
(βSLM = 21.1).

4 Discussion and Conclusion

The use of a state noise to drive the system dynamics is fundamentally different
to the inclusion of AR noise in the observation equation, as in [14,13,11]. The
model proposed by [1] is similar to the SLM, however the ARX model is presented
as an observation equation and is thus reduces to a deterministic model in high
SNR.

The SLM is implicitly Bayesian, in that the state equation is equivalently a
prior on the signal dynamics, and the resultant estimation algorithm optimises in
a maximum a posteriori sense for the best state and parameter estimates given
the observed data. Our approach differs to Bayesian models in the literature,
for example [14,10], in that we have not placed prior distributions governed by
hyperparameters on the signal and noise parameters. Such prior distributions can
be added at the cost of computational expense. The purpose of the current model
is to provide an alternative to the GLM without the use of prior distributions
on the parameters.

The stochastic nature of our hemodynamic signal model results in the abil-
ity to reshape the input sequence, uk, to better fit the observed BOLD signal
in each voxel. Overfitting of data by models with many parameters is always a
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concern. Our simulations and experimental results have demonstrated that the
SLM refines the GLM estimates, suggesting that the SLM parameterisation well
represents the state and observation processes rather than making overfit infer-
ences. What has previously been described as the nonlinearity of the HRF [2]
is now placed in the domain of deterministic vs stochastic. It is of interest to
compare in future the SLM with methods in which parameterised, determinis-
tic HRFs are estimated [14], or those in which the HRF is constrained to be
a smoothly varying function [3]. Similarly, in future work we will compare the
stochastic linear model with nonlinear extended balloon models of the BOLD
signal [8] and their estimation strategies, and alternative stochastic modelling
approaches such as BDS [10,12].

We have established the stochastic linear model as an alternative to the gen-
eral linear model for mapping activation, hemodynamic dynamics and noise pro-
cesses in BOLD fMRI experiments. The SLM provides an inherently flexible
model that makes use of uncertainty to drive the estimated hemodynamic signal
dynamics, thus accounting for non-canonical responses. Unlike other stochastic
models of the BOLD signal, the SLM does not attempt to separate out neu-
ronal activity from the hemodynamics, a decision reflecting the lack of available
ground truth at the level of neuronal activity for fMRI experiments.

A SLM Significance Testing

The SLM activation weights are calculated according to Eq. (4), from parameter
estimates of a and b at the M th iteration, a(M) and b(M), which are themselves
the result of a least squares optimisation of the objective function. Therefore the
variances of the parameter estimates are known.

T-statistics for a(M) and b(M) are formed by dividing the estimates by their
respective standard deviations. The activation estimate, βSLM , is a ratio be-
tween estimates b(M) and (1 − a(M)). While it is known that the ratio of two
Gaussian random variables produces a Cauchy-distributed random variable, the
distribution of the ratio of non-zero-mean T-distributed estimates is considerably
more involved. Through simulations, we have empirically derived the following
expression for the standard deviation of βSLM ,

std(βSLM ) = std(b(M)) (1 − a(M)), (7)

that is, interestingly, independent of standard deviation of a(M). This expres-
sion enables transformation of βSLM to a t-statistic as per a(M) and b(M)

above.
To validate the empirical relationship in Eq. (7), we present the results of sim-

ulations of the SLM state equation, Eq. (1), for a range of a and σ2
w. Changes

in b modulate the mean without affecting variances, therefore this is chosen to
be b = 1 without loss of generality. The stimulus uk is from the experimen-
tal visuomotor data, thus T = 215. 5000 runs were simulated per parameter
pair.
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Fig. 3. Simulations validating the empirical relationship in Eq. (7). Standard deviation
of βSLM calculated at each parameter a ∈ {−0.75,−0.5,−0.25, . . . , 0.75} (data sets
bottom to top of plot) from 5000 simulation runs (dots) and via Eq. (7) (solid lines).

Fig. 3 depicts the standard deviation of the βSLM estimates along with
the empirical relationship in Eq. (7) for each parameter pair, in close agree-
ment. Skewness and kurtosis of the βSLM estimates were concordant with a
Gaussian.
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Abstract. The difference between networks has been often assessed by
the difference of global topological measures such as the clustering coef-
ficient, degree distribution and modularity. In this paper, we introduce a
new framework for measuring the network difference using the Gromov-
Hausdorff (GH) distance, which is often used in shape analysis. In order
to apply the GH distance, we define the shape of the brain network by
piecing together the patches of locally connected nearest neighbors us-
ing the graph filtration. The shape of the network is then transformed
to an algebraic form called the single linkage matrix. The single linkage
matrix is subsequently used in measuring network differences using the
GH distance. As an illustration, we apply the proposed framework to
compare the FDG-PET based functional brain networks out of 24 atten-
tion deficit hyperactivity disorder (ADHD) children, 26 autism spectrum
disorder (ASD) children and 11 pediatric control subjects.

1 Introduction

The functional and anatomical connectivity studies based on graph theory have
provided new understanding of human brain [1,2]. The characteristic of the brain
network is quantified by the global topological measures such as clustering co-
efficient, characteristic path length and modularity [1,3]. The network compar-
ison is then performed by determining the difference between these topological
measures. Each measure reflects different topological characteristic of the brain
network. For example, the clustering coefficient and characteristic path length
are related with the small-worldness, the assortativity and betweenness are re-
lated with the scale-freeness and the modularity is related with the community
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structure [4,1]. These measures give us a clue for whether the networks have sim-
ilar topological properties. However, it is unclear which measure is appropriate
for network comparison. Instead of trying to find one particular characteristic
of network at a given scale, one can also look at the overall change of topologi-
cal features through persistent homology [5,6,7]. In the persistent homology, the
topological features such as the connected components and circles of the net-
work are tabulated in terms of the algebraic form known as Betti numbers. The
network difference is then often measured using the bottleneck distance which
basically ignores the geometric information of network nodes.

In this paper, we propose a radically different computational framework for
determining network difference. Instead of trying to model the topological fea-
tures of networks, we first define the shape of network using the topological
concept called the graph filtration. The graph filtration is a new graph simplifi-
cation technique that iteratively build a nested subgraphs of the original graph.
The algorithm simplifies a complex graph by piecing together the patches of
locally connected nearest nodes. The process of graph filtration can be shown
to be mathematically equivalent to the single linkage hierarchical clustering and
dendrogram construction. Once the shape of network is defined, we transform
the shape into an algebraic form called the single linkage matrix. The single
linkage matrix is subsequently used in computing the network difference using
the Gromov-Hausdorff (GH) metric. The GH metric is a deformation-invariant
dissimilarity measure often used in matching deformable shapes [8,9]. The GH
metric was never used in measuring the distance between brain networks before.

The proposed method is applied in differentiating functional brain networks
with 96 regions of interest (ROIs) extracted from FDG-PET data for 24 attention-
deficit hyperactivity disorder (ADHD), 26 autism spectrum disorder (ASD) and
11 pediatric controls (PedCon). Numerical experiments show that the graph
filtration framework can differentiate the populations better than most known
graph theoretic approaches and the recently popular persistent homology frame-
work. The methodological contributions of this paper are:
(1) We propose a new geometric framework for defining the shape of networks

using graph filtration. We introduce the concept of graph filtration and show
that it is equivalent to the single linkage hierarchical clustering and dendro-
gram construction. This implies that there is a mapping from any complex
networks to dendrograms.

(2) We determine the distance between networks using the Gromov-Hausdorff
metric for the first time. The framework is then used in determining the
brain network difference.

(3) We demonstrate that our framework outperforms most of graph theoretic
measures and the recently popular persistent homology framework.

2 Main Ideas

The main problem we are trying to solve is to compare and quantify the brain
network differences in ADHD, ASD and PedCon populations. We start with
briefly introducing the correlation-based brain network construction.
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Fig. 1. (a) An example of shape representation using a network of nodes X =
{x1, . . . , x6} and the distance cX . The pair (X, cX) defines the hand. (b) Graph fil-
tration algorithm for representing the graph (X, cX ). (c) The resulting shape can be
equivalently represented as the single linkage matrix dX and the geodesic distance
matrix lX . (d) A deformable hand where dX and lX are invariant.

Brain Network Construction. Suppose FDG-PET measurements are ob-
tained in p selected ROIs in n subjects. Each ROI serves as a node in the brain
network. Let X = {x1, · · · , xp} be the collection of such nodes. Let fi be the
FDG-PET measurement at the node xi modeled as a random variable. The mea-
surement fi are assumed to be distributed with mean zero and the covariance
Σ = [σij ] ∈ R

p×p. The correlation between fi and fj is given by

corr(fi, fj) =
σij√
σiiσjj

.

We can define the metric between the nodes xi and xj through the correlation:

cX(xi, xj) = 1 − corr(fi, fj).

Then the brain network can be represented as the metric space (X, cX).

Shape of Brain Network. One can characterize the deformable shapes in
images using a collection of nodes and the mapping between the deforming
nodes. In deformation-invariant shape matching frameworks [8,9], we can iden-
tify an open and bended hands as equivalent by establishing the correspondence
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Fig. 2. The shapes of brain networks at the end of the graph filtration (a) ADHD, (b)
ASD and (c) PedCon

between nodes (Fig. 1 (d), see below for details). Unlike shapes in images, the
shape of brain network is difficult to define and visualize since it is not deter-
mined by the Euclidean distance between the nodes, but the correlation between
measurements on the nodes. In this paper, we define the shape of the network
by piecing together patches of locally connected nearest neighbor nodes in an
iterative fashion as illustrated in Fig. 1 (b).

The brain network can be viewed as the weighted graph (X, cX) consisting
of the collection of nodes X and the distance cX . We start with ε = 0 and
increase the ε value at each iteration. The value of ε is taken discretely from the
smallest cX(xi, xj) to the largest cX(xi, xj). We connect two nodes xi and xj

if cX(xi, xj) < ε. By increasing ε, more connected edges are allowed and larger
patches are generated. If two nodes are already connected directly or indirectly
via other intermediate nodes in smaller ε values, we do not connect them. For
example, in Fig. 1 (b), we do not connect x2 and x5 at ε = 3.2 since they were
already connected through other nodes at ε = 3. When ε is larger than any
distance cX(xi, xj), the iteration terminates since the graph does not change
anymore. Suppose Gj corresponds to the graph obtained at the j-th iteration
with ε = εj . Then for ε1 < ε2 < ε3 < · · · , the algorithm generates the sequence
of graphs, G1 ⊂ G2 ⊂ G3 ⊂ · · · . Such a sequence of nested graphs is called a
graph filtration in algebraic topology[5,6]. In this fashion, we define the shapes
of the brain network as a sequence of nested subgraphs (Fig. 2).

Single Linkage Matrix. The graph filtration exactly corresponds to the single
linkage hierarchical clustering as demonstrated in Fig. 1 (b). The equivalence to
the graph filtration and the dendrogram is self-evident. The linking of two nodes
corresponds to the linking of leaves in the dendrogram. Increasing the ε value in
the graph filtration corresponds to increasing the height of the dendrogram.

In the hierarchical clustering, the distance between patches of nodes C1 and
C2 is given by the distance between the closest members in C1 and C2:

dX(C1, C2) = min
x1∈C1

min
x2∈C2

cX(x1, x2).
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For example, when ε = 3, the distance between the two patches {x1, x2, x3} and
{x4, x5, x6} is given by the distance between x3 and x4. Thus, we can represent
the shape of brain network as the single linkage matrix, where the elements are
the single linkage distances between nodes.

Gromov-Hausdorff Distance. After representing the shapes of brain net-
works, we need to compute the distance between the networks for quantification.
Given two metric spaces (X, dX) and (Y, dY ), the Gromov-Hausdorff Distance
(GH) distance between X and Y is defined as [10,8]:

dGH(X,Y ) = inf
f :X→Y

g:Y →X

1
2

max (F(f),G(g),H(f, g)) , (1)

where F(f) = sup
x1,x2∈X

|dX(x1, x2) − dY (f(x1), f(x2))|,

G(g) = sup
y1,y2∈Y

|dX(g(y1), g(y2)) − dY (y1, y2)|,

H(f, g) = sup
x∈X,y∈Y

|dX(x, g(y)) − dY (f(x), y)|.

We used the single linkage distance for dX and dY . Note that the single linkage
distance does not satisfy the triangle inequality but satisfies [11]

max(dX(x1, x2), dX(x2, x3)) ≥ dX(x1, x3).

In our problem, all the nodes in X and Y are in the fixed locations, thus, the
mapping functions f and g are simply given as f(xi) = yi and g(yi) = xi and
Eq. (1) is discretized as [9,12]

dGH(X,Y ) =
1
2

max
∀i,j

|dX(xi, xj) − dY (yi, yj)|.

3 Experimental Results

Data Description. The data consists of 24 ADHD (19 boys, mean age: 8.2
± 1.6 years), 26 ASD (24 boys, mean age: 6.0 ± 1.8 years) and 11 PedCon (7
boys, mean age: 9.7 ± 2.5 years). PET images were preprocessed using Statistical
Parametric Mapping (SPM) package. After spatial normalization to the standard
template space, mean FDG uptake within 96 ROIs were extracted. The values
of FDG uptake were globally normalized to the individuals total gray matter
mean count.

Comparison of the Connectivity Matrix. The distance matrices obtained
from correlation cX and single linkage matrices dX are shown in Fig. 3. The
group difference is more evident in the single linkage matrices. The maximum
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Fig. 3. The correlation-based distance cX (top) and single linkage matrix dX (bottom)
for (a) ADHD, (b) ASD and (c) PedCon. In each connectivity matrix, the upper-left
and the lower-right 48 ROIs are from left and right hemispheres, respectively. The
order of ROIs of the left and the right hemispheres are horizontally and vertically
symmetric, thus, the diagonal terms from the top-right to the bottom-left represents
bilateral symmetry of brain.

single linkage distances of ADHD, ASD and PedCon are 0.62, 0.51, 0.48. The
most regions in ADHD are weakly connected except a few strongly connected
regions within the occipital (O) and left frontal (F) regions and between the
right and the left frontal regions [13,14]. On the other hand, PedCon network is
well-connected in the whole brain regions. In ASD, the connection is segmented
according to lobes and temporal (T) asymmetry is obviously visible [15,14].

Performance against other Network Measures. We estimated single link-
age matrices of 24 ADHD, 26 ASD and 11 PedCon jackknifed resampled data sets
and estimated the network differences using 8 different measures including the
GH distance, bottleneck distance, assortativity, centrality, clustering coefficient,
characteristic path length, small-worldness and modularity (Fig. 4) [6,1,3].

After constructing the distance matrices, we divided the networks into 3 clus-
ters using the hierarchical clustering and evaluated the clustering accuracy by
comparing the assigned labels with the true labels. The clustering accuracies of
GH distance, characteristic path length and small-worldness are all 100 %. How-
ever, the distance between the groups is much larger than the distance within
the groups in the GH metric, i.e. |w − b| = 0.49 in (Fig. 4(a)), indicating the
superior performance of the GH-metric.
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Fig. 4. Network comparison using various network measures: (a) GH distance, (b)
bottleneck distance, (c) assortativity, (d) centrality, (e) clustering coefficient, (f) char-
acteristic path length, (g) small-worldness and (h) modularity

4 Conclusions

We presented a novel framework for computing the distance on networks. Using
the graph filtration, we defined the shape of the network as a sequence of nested
subgraphs. The graph filtration is then transformed into an algebraic form called
the single linkage matrix. The single linkage matrices were demonstrated to dif-
ferentiate the group differences in the ADHD, ASD and PedCon populations.
The distance between different single linkage matrices is quantified using the
Gromov-Hausdorff metric. The Gromov-Hausdorff metric was validated against
other global network measures from graph theory and persistent homology:
bottleneck distance, assortativity, centrality, clustering coefficient, characteris-
tic path length, small-worldness and modularity. The GH metric outperforms
all of them in terms of the clustering accuracy and the difference between the
within- and the between-group distance.
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Guillaume Auzias1, Julien Lefèvre1,2, Arnaud Le Troter1, Clara Fischer3,
Matthieu Perrot3, Jean Régis4, and Olivier Coulon1

1 LSIS Lab, UMR CNRS 6168, Marseille, France
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Abstract. In the context of inter-subject brain surface matching, we
present a parameterization of the cortical surface constrained by a model
of cortical organization. The parameterization is defined via an harmonic
mapping of each hemisphere surface to a rectangular planar domain that
integrates a representation of the model. As opposed to previous confor-
mal mapping methods we do not match folds between individuals but
instead optimize the fit between cortical sulci and specific iso-coordinate
axis in the model. Experiments on both hemispheres of 34 subjects are
presented and results are very promising.

Keywords: Surface matching, harmonic mapping, cortical organization,
parameterization.

1 Introduction

The rise of surface-based methods for neuroimaging data analysis in the past 10
years has brought a new range of methods in the area of multi-subject compar-
isons: inter-subject surface matching. Such methods allow to define a common
referential in which to perform group studies and inter-subject comparisons. The
difficulty comes from the fact that, contrary to volume-based methods, the do-
main on which the data is defined is different from one subject to another. If
one wants to register geometrical information or anatomical landmarks on the
cortical surface between different subjects it is necessary to define a common
domain on which to perform the registration. This is why existing methods map
cortical surfaces to a standard geometry such as a sphere before registration.
This mapping is either isometric or conformal [5]. Registration after or dur-
ing the mapping generally optimize the matching of geometrical information
(e.g. convexity [14]) or anatomical landmarks [10,12,13,8] but rarely embeds ex-
plicit information about the nature of the variability or stability of the cortical
anatomy across subjects.

Nevertheless, the idea of an intrinsic organization of the cortical surface around
which variability occurs has arisen [1,3,4], and it has been shown that a model
of such organization can be used to perform cortical localization and implicitly
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solve the problem of inter-subject cortical surface matching [3,2]. In particular
in [2] a model is presented that embeds the concept of stable sulcal landmarks
conjointly with the notion of organization of these landmarks through specific
hypothesis of orientation and alignment of sulci. In this method, the authors pro-
pose a scheme of cortical organization, stating that a set of folds that correspond
to the first folding location during antenatal life are stable across individuals,
and that these folds are organized according to two orthogonal directions and
two poles, the insular pole and the cingular pole (Fig.1). This model defines a
natural spherical parameterization of the cortical surface, and in the same paper
the authors propose an implementation of this model that computes a param-
eterization constrained by the model for any given cortical mesh and therefore
provide a cortical localization and an implicit inter-subject matching. Essen-
tially, this leads to a coordinate system in which the folds that are part of the
model always have the same coordinate (longitude or latitude, specified by the
model, Fig.1), with a smooth interpolation of the coordinate fields between the
constraints. The drawbacks of this approach are that the two coordinate fields
are computed independently, the method is therefore unable to theoretically
guarantee the integrity of the coordinate system, and that there is no control
over the isometric or conformal properties of the resulting mapping.

In this paper we integrate the assumptions given by model presented in [2]
and propose a new method for mapping this model onto an individual corti-
cal surface. The relevance of the anatomical hypothesis underlying the model
will be investigated in future work. Indeed, we define a mapping that explicitly
minimizes angular distortions while matching cortical folds with the model, and
introduces a coupling of the two coordinate fields. The originality compared to
previous similar harmonic mapping methods (e.g. [10,12]) lies in the fact that
folds are not matched to a specific target (e.g. the same fold across subjects) but
instead are matched to an iso-coordinate axis of the 2D coordinate system.

In the next section we present our method, and in section 3 the results of our
algorithm applied to a set of subjects are presented and discussed.

Fig. 1. Left: insular and cingular poles shown on an inflated hemisphere. Right: flat
representation of the sulcus-based model of cortical organization.
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2 Method

We detail here our method to define a parameterization of the cortical mesh
under the sulcal constraints defined on Fig.1. We formalize the parameteri-
zation of the cortex as follows. Let us denote ST ∈ R3 the cortical mesh.
The parameterization of ST consists in finding a suitable domain Ω ⊂ R2

and a piecewise linear mapping h : ST → Ω that is linear on each triangle
in ST and continuous. Such a mapping is uniquely determined by the images
u = (u1, u2) = h(v) = (h1(v1, v2, v3), h2(v1, v2, v3)) ∈ R2.

The first step is the definition of the parameterization domain, presented in
the next section.

2.1 Parameterization Domain

In contrast with previous approaches, the geometrical assumptions given by our
anatomical model impose some constraints on sulcal landmarks but also on the
insular and cingular poles, the later being defined around the corpus callosum.
While the cortex can be represented as a surface which topology is spherical,
i.e. closed without self intersection, the tessellation corresponding to an hemi-
sphere remains open as a hole is formed by the cut around the corpus callosum,
i.e. the cingular pole. When a parameterization is achieved on a spherical do-
main, this hole can be artificially closed but the closing influences the resulting
coordinate system. We alternatively suggest to consider the open hemi-cortical
representation for fitting our model.

The hemi-spherical cortical surface can then be subdivided into 3 anatomical
patches : the insular pole, the cingular pole and the rest of the neocortex. The
cingular pole, i.e. the corpus callosum, does not need to be parameterized, as it is
not cortex. The parameterization of the insular pole is quite straightforward as its
geometry is very close to a plane and is not detailed in the present contribution.
Both poles can be segmented automatically (e.g. as presented in [2]), so we focus
on the parameterization of the rest of the cortex which is the most challenging.

At this point, the neocortex is represented as a surface with two holes that has
the same topology as a cylinder (Fig.2). A cut in the surface linking the two poles
is mandatory to obtain the desired topology. We suggest to cut the neocortex
following the shortest geodesic path between the two poles. This artificial cut is
robustly located as illustrated on Fig.2.

We now suggest to decompose the parameterization of the neocortex into two
steps:

– We first define a mapping f : ST → Ω from the surface of the neocortex
onto a 2D rectangle, which corresponds to the integration of the constraints
associated to the poles;

– and then include the sulcal constraints, which is thus reduced to a purely
2D deformation problem resulting in a second mapping g : Ω → Ω.

The parameterization mapping h is then defined as the composition of f and g:
h = g ◦ f .
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Fig. 2. Each cortical surface is mapped onto a rectangle. Boundaries and sulcal con-
straints are colored: latitude constraints in blue, longitude constraints in red, insular
pole in cyan, cingular pole in green and cut between poles in pink. Mean curvature of
the original surface is shown in gray and −→n is the normal of the boundary.

2.2 Unconstrained Harmonic Mapping of the Neocortex onto a
Rectangle

Given the intrinsic orthogonal organization of the cortical surface [1,3] the map-
ping between the neocortex and the rectangular domain should minimize an-
gular distortions. Such mapping has been intensively studied and is denoted as
conformal or harmonic mapping. Several research groups have reported work
on conformal mapping from the cortical surface to a sphere [11] possibly with
additional sulcal landmarks [12]. Hurdal et al. [9] reported a discrete mapping
approach that uses circle packing to produce flattened images of cortical surfaces
on the sphere, the Euclidean plane, or the hyperbolic plane.

Here, we extend the method introduced to the computer graphics community
by Eck et al.[6] which consists in approximating a harmonic map using a finite
element method based on P1 basis functions. This technique consists in two
steps.

1. First fix the boundary mapping, i.e. fix fδST = f0 , by mapping the bound-
ary δST homeomorphically to some convex polygon in the plane. Here this
parameterization domain is defined as a planar rectangle.

2. Find the piecewise linear mapping f : ST → Ω which minimizes the Dirichlet
energy subject to the Dirichlet boundary condition fδST = f0:

ED(f) = 1/2
∫

ST

||∇ST f ||2 (1)

Fixing the boundary remains however a major drawback in the context of our
model: the conformality of the mapping is not guaranteed and the orthogonality
of coordinate axis is lost near the boundary. We thus adapted this procedure
by relaxing the boundary constraints such that the points on the boundary can
move along the coordinate parallel to the boundary and only the four points in
the corners remain fixed (see Fig.2 and Eq.2).
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Derivating the Dirichlet energy ED(f) gives ∇ED(f) = −ΔST f and its min-
imization reduces to solving independently the two linear system of equations
which are Poisson equations with mixed boundary conditions:⎧⎪⎨⎪⎩

ΔST f1 = 0,∈ ST ,

f1 = f0
1 on δ1ST

⋃
δ3ST

∇f1.
−→n = 0 on δ2ST

⋃
δ4ST

⎧⎪⎨⎪⎩
ΔST f2 = 0,∈ ST ,

∇f2.
−→n = 0 on δ1ST

⋃
δ3ST

f2 = f0
2 on δ2ST

⋃
δ4ST

(2)

where δST = δ1ST

⋃
δ2ST

⋃
δ3ST

⋃
δ4ST is the domain boundaries as shown on

Fig.2.The existence and uniqueness of the solution has been proved (e.g. in [7])
and ΔST can be discretized with the harmonic weights defined in [6]. Inverting
the two matrices involved in those two linear equations can be achieved in few
seconds with efficient linear algebra libraries.

2.3 Harmonic Mapping under Orthogonal Constraints

We now define two sets of constraints Klat and Klon corresponding to the sulcal
fundi specified in our anatomical model (as latitudes and longitudes respec-
tively). Contrary to other methods, we want to align those sulcal fundi onto
specific coordinates (longitude or latitude) and not to other landmarks.

The constrained mapping g : Ω → Ω that minimizes the angle distortion
is defined as the optimum of the following equation under the same boundary
conditions as in Eq.2:

E(g) = ED(g) + λEP (g) =
1
2

∫
Ω

||∇ST g||2 +
λ

2

∫
Ω

||g(u) − p(g(u))||2du (3)

where p is defined as: p :
(
u1

u2

)
→
(
ulon

1

u2

)
if u ∈ Klon, p:

(
u1

u2

)
→
(
u1

ulat
2

)
if

u ∈ Klat, and p =Id otherwise. EP (g) measures the distance between each sulcal
fundus and the corresponding target longitude (resp. latitude) coordinate value
ulon

1 (resp. ulat
2 ) via the projection p. The derivative of the constraint energy

EP (g) can be computed as:

∇EP (g) = 2(I −D∗
gp)(g − p(g)) (4)

where D∗
gp is the adjoint operator applied to the derivative matrix of p, i.e.

D∗
gp(u) =

(
∂p1
∂u1

∂p1
∂u2

∂p2
∂u1

∂p2
∂u2

)t

=
(

1 0
0 0

)
if u ∈ Klon, D

∗
gp(u) =

(
0 0
0 1

)
if u ∈ Klat (5)

and D∗
gp = Id otherwise. We thus obtain

∇E(g) = −ΔST g + λ(I −D∗
gp)(g − p(g)) (6)

and the energy is then minimized using a classical iterative gradient descend
scheme. Note that the projection of a point onto the corresponding axis p(g(u))
depends on its current location g(u) which is updated between two iterations.
This original data-driven term EP (g) introduces a coupling between the two
coordinate fields, latitudes and longitudes.
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3 Results

We applied this parameterization process with λ = 1 to the left and right cortical
surfaces of 34 subjects, for which sulci were identified manually by an expert after
an automatic extraction of cortical surfaces using the BrainVisa1 T1 processing
pipeline on T1-weighted MR images of the subjects. Fig.3 presents the mapping
on the rectangular domain of all sulcal fundi that are part of the model for all
34 subjects. Top row shows the result of the unconstrained conformal mapping
presented in section 2.2 and bottom row shows the results of the constrained
mapping presented in section 2.3. It is visible that the mapping without sulcal

Fig. 3. Sulcal constraints of the 34 subjects mapped onto the rectangular domain with
unconstrained mapping (top row) and with the model-driven mapping (bottom row).
The sulci are colored according to the model shown on Fig.1

constraints shows a reasonable orthogonality of “longitude” and “latitude” sulci,
which tends to advocate for the notions of orthogonal principal direction fields
introduced in [1,3], and illustrates the pertinence of the model presented in [2].
On the bottom row of Fig.3, the effects of the model-driven harmonic mapping
are very clear. Sulci have been well aligned on the axis of the model. The implicit
inter-subject matching performed by our method can also be observed since
sulci show a good alignment across subjects. Residual variability is also visible,
often at the extremity of sulcal fundi for which the assumption of alignment
is sometime corrupted. It is also understood that this assumption is subject
to variability and cannot be systematically observed due to the complexity of
the folding process during growth, which is subject to many factors. The inter-
subject matching can also be checked on Fig.4, in which the mean curvature has
been averaged across all subjects and is represented on a single cortical surface.
The major sulcal and gyral structures are well preserved: deep blue areas indicate
that the dispersion of sulci has been reduced, and red parts show that the crown
of gyri are matched across subjects although they are not part of the model.
The improved alignment of gyri shows that the coordinates are well interpolated
between sulcal constraints and that the harmonic properties of the mapping help
to align a number of gyri that are also subject to the orthogonal organization.
The density of the model constraints also shows its influence for instance in
1 http://brainvisa.info

http://brainvisa.info
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Fig. 4. Mean curvature averaged across 34 subjects. Top row: after unconstrained
planar mapping; bottom row: after mapping constrained by the model.

Fig. 5. The resulting parameterization, shown as a coordinate grid on the slightly
smoothed cortical surface of one hemisphere. In blue (resp. red), the sulci and axes of
the rectangular domain corresponding to latitude (resp. latitudes) constraints of the
model. The histogram of the angular distortion through all 34 left and right cortical
surfaces before (blue) and after (red) sulcal alignment is shown on the right.

the parietal lobe where the model lacks information [2] and the alignment of
curvatures is not as good.

The adaptation of the resulting coordinate grid to local anatomy can be seen
for one subject on Fig.5. Iso-coordinate axes follow the local geometry and com-
ply with the sulcal constraints. See e.g. the Calcarine Fissure (CF) which is a
good predictor of the position of primary visual functional areas. Finally, Fig.5
also shows the control over angular distortions, as indicated by their distribution
through the 34 left and right cortical surfaces before and after the constrained
mapping.

4 Conclusion

We have proposed here an implementation of the cortical model presented in [2],
performed via a mapping to a planar domain. The harmonic aspect of our map-
ping allows to explicitly take into account the directional nature of the model,
based on the notion of orthogonality of sulcal axis. As opposed to previous har-
monic approaches, we do not match folds across subjects or between subjects
and a template, but instead we optimize the fit between cortical sulci and specific



Model-Driven Harmonic Parameterization of the Cortical Surface 317

iso-coordinate axis in the model. Results show a good alignment of structures,
sulci and gyri, across subjects. The process should prove useful for cortical lo-
calization and surface matching in the context of surface-based group analysis
of functional and anatomical studies, although more work remains to be done,
in particular to compare our method to reference methods such as [14].
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Abstract. Cortical folding patterns are believed to be good predictors of brain 
cytoarchitecture and function. For instance, neuroscientists frequently apply 
their domain knowledge to identify brain Regions of Interests (ROIs) based on 
cortical folding patterns. However, quantitative mapping of cortical folding 
pattern and brain function has not been established yet in the literature. This 
paper presents our initial effort in quantification of the regularity and variability 
of cortical folding pattern features for working memory ROIs identified by task-
based fMRI, which is widely accepted as a standard approach to localize 
functionally-specialized brain regions. Specifically, we used a set of shape 
attributes for each ROI base on multiple resolution decomposition of cortical 
surfaces, and described the meso-scale folding pattern via a polynomial-based 
approach. We also applied brain atlas label distribution as a global-scale 
description of ROI folding pattern. Our studies suggest that there is deep-rooted 
regularity of cortical folding patterns for certain working memory ROIs across 
subjects, and folding pattern attributes could be useful for the characterization, 
recognition and prediction of ROIs, if extracted and applied in a proper way. 

Keywords: ROI, folding pattern, prediction. 

1   Introduction 

The relationship between brain anatomy and its function has been of keen interest for 
years. Extensive neuroscience research suggests that the cortical folding process and 
axongenesis process are closely coupled [1]. Since the structural connectivity pattern 
has been shown to be good predictor of function [2], it is reasonable to believe that 
cortical folding is a good predictor of brain function as well. For instance, the cortical 
folding patterns are shown to be good predictors of the brain cytoarchitecture [3]. 
However, quantitative mapping of cortical folding pattern and brain function has not 
been adequately studied yet in the literature. The accomplishment of such a goal 
entails the availability of both quantitative cortical folding pattern descriptors and 
accurate localizations of functionally-specialized brain regions.  

This paper presents our initial effort in quantitative mapping of the relationship 
between cortical folding patterns and brain function, particularly in quantification of 
the regularity and variability of folding pattern features for working memory ROIs. 
First, we identify brain regions involved in the working memory system by using 
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task-based fMRI. Then, we introduce two groups of descriptive cortical folding 
pattern features for these ROIs in multiple scales. One is to present the global-scale 
folding pattern by using the widely used MNI (Montreal Neurological Institute) atlas 
labels. Another is to present the meso-scale folding pattern by using the recently 
published polynomial models [4]. Compared with other folding pattern descriptors [5, 
6, 7], the advantages of the polynomial model not only lie in its meso-scale view 
which is more suitable for ROIs, but also its compactness for describing the 
symmetric shape patterns and its soundness for classifying the cortical shapes into 
eight primitive folding patterns [8]. To effectively extract folding pattern features for 
the ROIs, the cortical surface is decomposed into multiple resolutions [7] and 
attributes are generated on the multi-resolution surfaces. In order to assess the 
regularity and variability of the shape attributes for each ROI in the working memory 
network, we performed a set of statistical and computational analysis for ROIs within 
a population. The experimental results show that there exists deep-rooted regularity of 
cortical folding patterns for certain ROIs. Finally, we performed ROI prediction based 
on the extracted multi-scale folding attributes, and our results show that only certain 
ROIs with consistent folding patterns across individuals can be predicted accurately. 

 

Fig. 1. The flowchart of our approaches. (a) Obtain working memory network ROIs from task-
based fMRI. (b) Reconstruct cortical surface from DTI data. (c) Map ROIs onto cortical 
surface. (d) Decompose cortical surface into multi-resolution surfaces. (e) Map ROIs on multi-
resolution surfaces. (f) Compute folding patterns. (g) Generate meso-scale attributes for each 
ROI. (h) Atlas labeling. (i) Generate global-scale attribute for each ROI. 

2   Methods 

2.1   Overview 

The flowchart of the proposed algorithmic pipeline is outlined in Fig. 1. The folding 
pattern of human cerebral cortex is a multi-scale concept [9]. Hence, we extract shape 
features for each ROI base on both folding patterns of multi-resolution surfaces and 
MNI atlas labels, and then assess the regularity and variability of these features. The 
cortical surface reconstructed from DTI data [10] is decomposed into multi-
resolutions by the spherical wavelet algorithm approach [7]. The volumetric working 
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memory ROIs were obtained from task-based fMRI, and then are mapped onto the 
reconstructed surface, as well as other decomposed multi-resolution surfaces. Then, 
the folding patterns of the ROIs are computed by the polynomial models [4], and the 
feature vectors of each ROI is then obtained and analyzed via the methods illustrated 
in Fig. 1 separately. Finally, ROI prediction based on these folding pattern features is 
performed and a PCA (principal component analysis) model is introduced to constrain 
the spatial relationship among ROIs.  

2.2   Data Acquisition and Pre-processing 

Seventeen healthy students were recruited to participate in this study. Each participant 
performed a modified version of the OSPAN task (3 block types: OSPAN, 
Arithmetic, and Baseline) while fMRI data was acquired. DTI scans were also 
acquired for each participant. FMRI and DTI scans were acquired on a 3T GE Signa 
scanner. Acquisition parameters are as follows: fMRI: 64x64 matrix, 4mm slice 
thickness, 220mm FOV, 30 slices, TR=1.5s, TE=25ms, ASSET=2; DTI: 128x128 
matrix, 2mm slice thickness, 256mm FOV, 60 slices, TR=15100ms, ASSET=2, 3 B0 
images, 30 optimized gradient directions, b-value=1000. Each participant’s fMRI data 
was analyzed using FSL FEAT. Individual activation map reflecting the OSPAN 
(complex span) contrast was identified. Totally, 15 activated ROIs were recognized 
and applied for this study (Table 1). These ROIs were mapped on the cortical surface 
and on the corresponding decomposed surfaces, as shown in Fig. 2. The size of ROI is 
defined by the number of neighborhood vertex rings, which is set as 5 in this paper. 

Table 1. The names and coresponding IDs of 15 recognized working memory ROIs 

Region name Region ID Region name Region ID 
Left Right Left Right 

Insula 1 10 Precuneus 6 13 
Medial Frontal Cortex 2  Superior Frontal Gyrus 7 14 
Occipital Pole 3  Inferior Parietal Lobule 8 15 
Paracingulate Gyrus 4 12 Dorsolateral Prefrontal Cortex  9 
Precentral Gyrus 5  Lateral Occipital Gyrus  11 

2.3   Multi-scale Surface Decomposition 

In this paper, the over-complete spherical wavelets algorithm [7] is applied to 
decompose the original cortical surface reconstructed from DTI data into a cascade of 
7 lower resolutions (Fig. 2). The lower the resolution is, the smoother and less 
convoluted the surface will be. In this spherical wavelet transform process, a set of 
wavelet coefficient samples on the subdivided icosahedron grid are obtained from the 
input shape described as a set of mesh vertices, which corresponds directly to the 
resolution level of the spherical wavelet transform. After the transformation, each 
vertex has a set of wavelet coefficients representing its position in lower resolutions. 
The total number of vertices and the indices of vertices do not change during this 
decomposition process [7]. Thus, the correspondence of a vertex remains in all 
resolutions, which is illustrated by the same ROI colors in Fig. 2. More details of the 
over-complete spherical wavelets algorithm are referred to [7]. 
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Fig. 2. An example of multi-resolution decomposition for a cortical surface. The ROIs are 
mapped onto all resolutions respectively encoded by certain colors. 

2.4   Folding Pattern Descriptors 

2.4.1   Meso-Scale Attributes Based on Polynomial Folding Descriptors 
Based on the above surface decomposition, the folding pattern attributes of each ROI 
are extracted on multi-resolutions, respectively. To compute the folding pattern of a 
surface patch, a parametric folding descriptor using polynomials [4] is applied: ܼ ൌ ܽܺଶ  ܾܻଶ  ܿܺଷ  ܻ݀ଷ (1)

where, a and b describe the mirror symmetric components of the patch along x axis 
and y axis respectively, while c and d represent the rotational symmetric components 
[4]. Then, a model-driven method similar to that in [4] is applied to classify the 
combination of the symmetric components into eight primitive patterns of peak, pit, 
ridge, valley, saddle ridge, saddle valley, flat, and inflection [8]. The attribute vector 
of ROI on each surface resolution is defined as the normalized histogram of eight 
patterns within ROI. Thus, there is an 8-dimensional attribute vector for each ROI on 
each resolution of surface representation. Hence, we have a 64-dimensional meso-
scale folding pattern attribute vector for each ROI. 

2.4.2   Global-scale Folding Attribute Based on MNI Labels 
The HAMMER tool [12] was used to label the cortical surface into MNI labels. Then, 
the global-scale attribute vector of ROI based on MNI atlas labels is defined as the 
normalized histogram of MNI labels within each ROI as follows.   

ܸ ൌ ൫ݒభ, ,మݒ ڮ , ,భݒ൯หݒ ,మݒ ڮ , หݒ  (2)

where ݒೖ is the number of vertices with MNI label ݄ within ROI ݅. The size of the 
vector is dependent on the combination of MNI label within an ROI.  

2.5   Folding Pattern Feature Analysis 

The cosine similarity has been widely applied as a measurement of similarity between 
feature vectors, and is adopted here. Denote ܴ  as ROI #m of subject p and  ܣ  as 
the attribute vector of ܴ  , the average similarity ܵ between 2 ROIs m and  
n is defined to measure the feature similarity for each ROI pair within a group as 
follows: 
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ܵ ൌ ∑ ∑ ሺܴܨ , ܴሻேୀାଵேିଵୀଵ ேଶܥ (3)

ሺܴܨ , ܴሻ ൌ ܣ · ܣฮܣ ฮฮܣ ฮ (4)

where N is the number of subjects. 
Considering the length of global-scale attribute can be different, when comparing 

the similarity between them, the attribute vectors are normalized to the same length. 
Elements that represent certain MNI labels are viewed as the weights of attribute 
vector in certain direction. For those elements not shared between attributes, they are 
set to zero in order to unify the length of attribute vectors. 

2.6   ROI Prediction 

An ROI prediction framework is developed based on the cortical folding features 
described above. Before performing the ROI prediction, all of the subjects are aligned 
to the same template space (a randomly selected subject in the dataset) by using the 
linear image registration algorithm FSL FLIRT [13]. Then, the ROI prediction is 
formulated and solved by minimizing the energy function defined below: ܧ ൌ ௧ܧߣ  ሺ1 െ ௫௧ܧሻߣ  (5)

where internal term ܧ௧  is the spatial constraint of ROIs’ locations which regularizes 
the search of ROI in a certain space, and the external term ܧ௫௧ describes the distance 
between folding pattern feature vectors, and ߣ trades off these two terms. 

As there exists certain consistence in the spatial distribution pattern of ROIs, an 
ROI coordinate PCA model is introduced to constrain the spatial relationship among 
ROIs. ܧ௧  is defined as the reconstruction error when projecting the candidate ROIs 
into the sub-space represented by the PCA model. The external energy for one 
candidate group is formulated as: ܧ௫௧ ൌ ଵ ∑ ൫ܧߚ  ሺ1 െ ௦ܧሻߚ ൯ୀୀଵ   (6)

where ܧ ௦ܧ ,  are the distances between global and meso scale folding pattern 
feature vectors of candidate ROI #i and those in the training set, and β is the trade-off. 
The optimization is solved by search over the whole space.  

3   Results 

3.1   Meso-scale Folding Pattern Analysis 

Quantitative assessments of the regularity and variability of the folding pattern 
attribute vectors for each ROI are summarized in Fig. 3. It is evident in Fig. 3(a) that 
the meso-scale attributes of certain ROIs including ROI #1, #2, and #7, are less  
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variable in that the first principal components can account over 85% of the variances. 
However, the attributes of other ROIs, including ROI #6, have much more variability 
and the first principal components can only account for 68% of the variance. These 
results demonstrate that there is deep-rooted regularity of cortical folding patterns for 
specific working memory ROIs such as ROI #1 and #7 across subjects, and the 
folding pattern attributes could be potentially used as predictors of functional ROIs.  

The similarities between attribute vectors of each pair of ROIs across 17 subjects 
were calculated in different resolution using the methods in section 2.5 and shown in 
Fig. 3(b). It can be seen from Fig. 3(b) that, in the first and second resolutions of 
surface, the 'flat' folding pattern dominates over others and the attribute vectors are 
almost the same in these two resolutions. However, starting with the third resolution, 
the attribute vectors are much more distinctive among ROIs which indicates that the 
distinctiveness of folding pattern attributes of ROIs is dependent on the resolutions of 
surface representations.  If we look at the diagonals in the matrices in Fig. 3(b), some 
ROIs such as ROI #2, #3, #7, and #13, have higher similarity, while others such as 
ROI #5 and #11 have lower similarity. This result partly reflects the similar 
conclusion made by PCA analysis. An interesting finding in Fig. 3(b) is that ever 
since the fourth resolution, 4 dark lines can be obviously observed in the matrices, 
which are highlighted by blue arrow in Fig. 3(b.VIII). As dark represents low 
similarity, it means that the attribute vectors of ROI #1 and ROI #10 are very different 
from those of other ROIs and share unique patterns. An intriguing fact is that these 
two ROIs are left and right insular respectively. We used a classifier based on the 
support vector machine (SVM) [11] to differentiate these two ROIs from the rest by 
the folding attributes. The classification test was performed in a leave-one-out 
fashion. We obtained a relatively high true positive rate of 85.29% in test and a low 
false negative rate of 2.26%. This promising result suggests that folding patterns can 
characterize certain brain ROIs (e.g., insular) and can provide distinctive 
morphological signatures for ROI recognition. 

 

Fig. 3. (a): Histograms of percentages of variance that the first principal components can 
account for after applying PCA on meso-scale feature vectors of each ROI. (b): Average 
similarity Smn between meso-scale feature vectors of 15 ROIs on each resolution. Each line 
represents an ROI. Color bar is on the right. (c): Similarity of global-scale ROI attributes 
between 17 subjects. Each line represents a single subject. 
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could facilitate ROI prediction within homogeneous subgroups and potentially 
improve ROI prediction accuracy. For other ROIs, our methods can not significantly 
improve the initialized ROI positions in that the folding pattern features of these ROIs 
are not consistent in either meso or global scale across individuals, as shown in Fig. 3.     

It should be noted that although our ROI prediction results in Fig. 4 are 
preliminary, it suggests the possibility of using folding patterns to predict certain 
functional ROIs without the availability of task-based fMRI data. In many clinical 
applications in which there is no task-based fMRI data available, it would be very 
helpful to accurately predict certain functional ROIs based only on the folding pattern 
features that can be extracted from widely available structural MRI data.        

4   Conclusion  

We presented a novel framework to assess folding patterns of ROIs that are identified by 
working memory task-based fMRI. The regularity and variability of these attributes have 
been assessed within and across ROIs, as well as within and across subjects. The major 
conclusions of our work are as follows. (1) There are deep-rooted regularities of cortical 
folding patterns for specific working memory ROIs, e.g., insular, across subjects. 
However, the intrinsic relationship between the regularity of cortical folding patterns and 
brain connectivity and function remains to be elucidated in the future. (2) Folding pattern 
attributes, if extracted and applied in a proper way, could be very useful for the 
characterization, recognition and prediction of brain ROIs, e.g., ROI #10 of insular in the 
working memory network in Fig. 4. In the absence of fMRI data, this ROI prediction 
capability based on widely available MRI data could be helpful in localizing functional 
brain regions in clinical applications.   
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Abstract. In this paper we develop a novel technique for surface defor-
mation and mapping in the high-dimensional Laplace-Beltrami embed-
ding space. The key idea of our work is to realize surface deformation
in the embedding space via optimization of a conformal metric on the
surface. Numerical techniques are developed for computing derivatives of
the eigenvalues and eigenfunctions with respect to the conformal metric,
which is then applied to compute surface maps in the embedding space
by minimizing an energy function. In our experiments, we demonstrate
the robustness of our method by applying it to map hippocampal atro-
phy of multiple sclerosis patients with depression on a data set of 109
subjects. Statistically significant results have been obtained that show
excellent correlation with clinical variables. A comparison with the pop-
ular SPHARM tool has also been performed to demonstrate that our
method achieves more significant results.

1 Introduction

Surface mapping is an important technique in studying brain morphometry and
has the potential of pinpointing atrophy in various pathologies [1]. While many
methods were proposed for the modeling and mapping of anatomical surfaces
[2–6], there is still a lack of general, yet feature sensitive, methods for the charac-
terization and mapping of 3D anatomical surfaces. To overcome this challenge,
one promising technique that is receiving increased interests is to use Laplace-
Beltrami (LB) eigenfunctions as modeling tools of anatomical structures [7–10].
In this work, we propose a novel, and general approach for surface analysis with
LB eigenfunctions by optimizing conformal metrics on surfaces.
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The eigenfunctions of the LB operator can be considered as the extension of
the Fourier basis onto 3D surfaces. The critical difference is that the LB eigen-
functions depend on surface geometry, and are invariant up to isometry. This
robustness makes them ideal for intrinsic modeling of anatomical surfaces across
population. For general shape classification, the LB eigenvalues were proposed
as a DNA-like signature [7]. For detailed analysis of surface geometry, the eigen-
functions provide more information and have been applied to smoothing [8, 11],
feature extraction [9, 12], and surface mapping [10].

The metric optimization method proposed in this work is based the embed-
ding of surfaces into the Hilbert space l2 with their LB eigen-systems [13]. This
embedding is scale and pose invariant, and provides a general framework for
intrinsic surface analysis. A histogram feature was developed for shape classi-
fication with the LB embedding [13]. One important result is that the surface
is still a manifold in the embedding space and a rigorous distance measure be-
tween embedded manifolds was proposed [14]. The main contribution of this
work is that we develop a general approach for surface deformation in the high-
dimensional embedding space, which can be applied to various shape analysis
tasks such as surface mapping. By iteratively optimizing conformal metrics on
a surface, we can evolve its LB eigenvalues and eigenfunctions, and realize its
deformation in the embedding space. With this novel technique, we develop an
intrinsic approach for surface mapping and demonstrate its application in map-
ping hippocampal atrophy of multiple sclerosis (MS) patients with depression.
Statistically significant results are obtained that show excellent correlation with
clinical measures of depression. We also compare our method with the popular
SPHARM tool [5] and demonstrate our method is able to achieve more signifi-
cant mapping results.

2 Conformal Metric Optimization and LB Embedding

In this section, we introduce LB embedding with conformal metrics and develop
numerical schemes with finite element methods on triangular meshes. For metric
optimization, we derive the derivatives of eigenvalues and eigenfunctions with
respect to the weight function in the conformal metric.

2.1 LB Embedding with Conformal Metrics

Let (M, g) be a genus-zero Riemannian surface where the metric g is the stan-
dard metric induced from R3. For a function f : M → R, the LB operator on
M with the metric g is defined as:

Δg
Mf =

1√
G

2∑
i=1

∂

∂xi
(
√
G

2∑
j=1

gij ∂f

∂xj
) (1)

where (gij) is the inverse matrix of g = (gij) and G = det(gij). Because the
spectrum of Δg

M is discrete, its eigen-system is defined as

Δg
Mfn = −λnfn (n = 0, 1, 2, · · · ) (2)
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where λn and fn are the n-th eigenvalue and eigenfunction, respectively. Using
the LB eigen-system, an embedding Ig

M : M → l2 was proposed in [13]:

Ig
M(x) = (

f1(x)√
λ1

,
f2(x)√

λ2

· · · ,
fn(x)√

λn

, · · · ) ∀x ∈ M. (3)

Note that the embedding is not unique because of the sign ambiguities in the
eigenfunction, i.e., both fn and −fn are the n-th eigenfunction. For practical
applications, the sign ambiguities can be resolved by anatomical priors or simply
searching through all 2N possible sign combinations when up to N eigenfunctions
are used for numerical implementation.

(a) (b) (c)

(d) (e) (f)

Fig. 1. Impact of non-isometric shape dif-
ferences. (a)(d) Two surfaces M1 and M2.
(b)(e) The 4,5,6,7-th eigenfunctions on the
two surfaces. (c) (f) Projection of M2 onto
M1, and M1 onto M2 with closest point
matching in the embedding space.

The embedding Ig
M(M) is scale

and pose invariant, and automatically
aligns surfaces in the l2 space for
the intrinsic analysis of anatomical
surfaces [14]. On the other hand, non-
isometric shape differences remain
intact in the embedding space and
affect further analysis. As an exam-
ple, we show in Fig. 1(a) and (d)
two hippocampal surfaces M1 and
M2 with different degree of bend-
ing. Such non-isometric shape differ-
ences lead to different eigenfunctions
as shown in Fig. 1(b) and (d). Using
closest point matching in the embed-
ding space, which is approximated with the first 10 eigenfunctions in this ex-
ample, we can project the mesh structure of M1 onto M2, and vice versa. The
impact of non-isometric shape differences can be clearly seen in the large distor-
tions in the projected mesh structures that are plotted in Fig. 1(c) and (f).

A class of conformal metrics on M are denoted as ĝ = ωg, where ω : M → R
+.

To achieve better surface matching in the embedding space, we propose in this
work to optimize the Riemannian metric in the class of metrics conformally
equivalent to g. By iteratively perturbing the weight function, we can realize
surface deformation in the embedding space, and minimize non-isometric shape
differences. The existence of such weight functions are theoretically guaranteed
since all genus-zero surfaces are conformally equivalent. Following (1), the LB
operator with the conformal metric is Δĝ

M = 1
ωΔg

M, and the eigen-system of the
weighted operator is

Δĝ
Mf = −λf. (4)

Using the relation between ĝ and g, we have the weak form of (4):∫
M

∇g
Mf∇g

MηdM = λ

∫
M

ωfηdM ∀η : M → R (5)

where ∇g
M is the gradient operator on M with the standard metric g, and η is

a test function.
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For numerical computation, we represent M as a triangular mesh with L
vertices V = {vi|1 ≤ i ≤ L}. At each vertex vi, we denote its barycentric
coordinate function as φi and represent the weight function as ω =

∑L
j=1 ωjφj ,

and the eigenfunction as f =
∑L

k=1 βkφk. By choosing the test function η =
φi(1 ≤ i ≤ L), we convert the weak form into its matrix form:

Qβ = λU(ω)β. (6)

The elements of the matrix Q are defined as Qik =
∫
M < ∇φi,∇φk > dM.

The matrix U(ω) is a function of ω with its elements defined as U ik(ω) =∑L
j=1 ωjUijk, where Uijk =

∫
M φiφjφkdM. By solving (6), we can compute

the LB embedding Iwg
M under the new metric ĝ = wg.

2.2 Eigen-Derivatives

To realize surface deformation in the embedding space, we derive the derivatives
of the eigenvalues and eigenfunctions with respect to the weight function ω.

Let λn and fn denote the n-th eigenvalue and eigenfunction of the LB operator
under the conformal metric ωg. We compute the derivative with respect to ωj ,
the j-th component of ω, on both sides of (6) and have:

Q
∂fn

∂ωj
=

∂λn

∂ωj
Ufn + λn

∂U

∂ωj
fn + λnU

∂fn

∂ωj
(7)

where the elements of ∂U
∂ωj

are defined as [ ∂U
∂ωj

]ik = Uijk. Pre-multiplying both
sides with fT

n , we obtain:

∂λn

∂ωj
= −λnfT

n
∂U

∂ωj
fn (8)

because fT
n Ufn = 1 and fT

n (Q− λnU) = 0.
To compute the derivative of the eigenfunction, we need to solve

(Q − λnU)
∂fn

∂ωj
= Fn (9)

where Fn = −λnf
T
n

∂U
∂ωj

fnUfn+λn
∂U
∂ωj

fn. Because Q−λnU is singular, we follow

[15] and write ∂fn

∂ωj
= μnj + cnjfn with the constraint that the p-th component of

uij is zero, where p is the index of the component that has the largest magnitude
in fn. This is realized by setting the p-th component of Fn as zero and the p-th
row and column of (Q− λnU) as zero except the diagonal term, which is set to
one. Equation (9) then becomes⎡⎣[Q − λnU ]11 0 [Q − λnU ]12

0 1 0

[Q − λnU ]21 0 [Q − λnU ]22

⎤⎦ μnj =

⎡⎣[Fn]1
0

[Fn]2

⎤⎦ (10)

where [Fn]1 is the 1 to (p − 1)-th components of Fn, and [Fn]2 is the p + 1
to the end of the vector Fn. Assuming there is no multiplicity at λn [15], this
problem is non-singular, and we can solve it to obtain μnj . To compute cnj , we
use the condition that fT

n Ufn = 1. By taking derivatives on both sides, we have
∂fn

∂ωj
Ufn = 0 and get cnj = −μT

njUfn. This completes the solution for ∂fn

∂ωj
.
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3 Surface Mapping via Deformation in Embedding Space

In this section, we demonstrate the application of metric optimization by ap-
plying it to compute surface maps in the embedding space. Let (M1, g1) and
(M2, g2) denote two surfaces, and ω1 and ω2 the weight functions on them, re-
spectively. The eigenvalues and eigen-functions of (Mm, ωmgm)(m = 1, 2) are
denoted as λm,n and fm,n. To match these two surfaces in the embedding space,
we minimize the following energy function with respect to the conformal metrics:

E(ω1, ω2) =
1

S1

∫
M1

d2
1(x)dM1 +

1

S2

∫
M2

d2
2(x)dM2 + ξ

2∑
i=1

∫
Mi

‖∇ωi‖2dMi. (11)

The distances are defined as d1(x) = miny∈M2‖Iω1g1
M1

(x)−Iω2g2
M2

(y)‖2 and d2(x) =
miny∈M1‖Iω2g2

M2
(x)− Iω1g1

M1
(y)‖2, where Iω1g1

M1
and Iω2g2

M2
are LB embeddings cho-

sen to minimize the distances among all possible sign combinations [14]. The
third term in the energy encourages smoothness in the weight functions and ξ
is a regularization parameter.

To find the optimal metrics that minimize the energy, we iteratively update
the weight functions in the gradient descent direction to deform the surfaces in
the embedding space. We represent each surface as a triangular mesh Mm =
(Tm,Vm) for m = 1, 2. For both surfaces, we use the first N eigenfunctions
to approximate the embedding. At each iteration, we denote u1(V1) = AV2,
and u2(V2) = BV1 as the closest point maps that minimizes d1 and d2 in the
embedding space, where A and B are interpolation matrices. Using these two
maps, we can write the energy at the current iteration in discrete form:

E(ω1, ω2) =
N∑

n=1

(
1

S1

(
f1,n√
λ1,n

− f2,n(u1)√
λ2,n

)T

U1

(
f1,n√
λ1,n

− f2,n(u1)√
λ2,n

)
(12)

+
1

S2

(
f2,n√
λ2,n

− f1,n(u2)√
λ1,n

)T

U2

(
f2,n√
λ2,n

− f1,n(u2)√
λ1,n

))
+ ξ(ωT

1 Q1ω1 + ωT
2 Q2ω2)

where Um and Qm are matrices defined in (6) with uniform weight, i.e., the
standard metric. Using the eigen-derivatives with respect to the weight functions,
we can derive the gradient flows for the weight functions as follows:

∂E

∂ω1
= 2

N∑
n=1

[
1

S1

(
1√
λ1,n

∂f1,n

∂ω1
− ∂λ1,n

∂ω1

(f1,n)T

2 3/2
√

λ1,n

)
U1

(
f1,n√
λ1,n

− Af2,n√
λ2,n

)
(13)

− 1

S2

(
∂f1,n

∂ω1

BT√
λ1,n

− ∂λ1,n

∂ω1

(Bf1,n)T

2 3/2
√

λ1,n

)
U2

(
f2,n√
λ2,n

− Bf1,n√
λ1,n

)]
+ 2ξQ1ω1

∂E

∂ω2
= 2

N∑
n=1

[
1

S2

(
1√
λ2,n

∂f2,n

∂ω2
− ∂λ2,n

∂ω2

(f2,n)T

2 3/2
√

λ2,n

)
U2

(
f2,n√
λ2,n

− Bf1,n√
λ1,n

)
(14)

− 1

S1

(
∂f2,n

∂ω2

AT√
λ2,n

− ∂λ2,n

∂ω2

(Af2,n)T

2 3/2
√

λ2,n

)
U1

(
f1,n√
λ1,n

− Af2,n√
λ2,n

)]
+ 2ξQ2ω2

Starting from a pair of embeddings Iω1g1
M1

and Iω2g2
M2

that achieve the minimum
energy among 2N possible sign combinations, we iteratively deform the embed-
dings by optimizing the metrics in the gradient descent direction following above
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equations. Note that the search through 2N combinations only needs be done
once in the first iteration to resolve sign ambiguities in eigenfunctions. After that,
we can resolve the sign ambiguities efficiently by comparing correlations between
corresponding eigenfunctions in consecutive iterations because only small per-
turbations are introduced in one iteration. Once the iterative process converges,
we obtain u1 and u2 as the maps between these two surfaces.

4 Experimental Results

Fig. 2. The optimized
weight function in the
conformal metric of the
two surfaces

In this section, we present experimental results on hip-
pocampal surface mapping to demonstrate the appli-
cation of our method in brain imaging research. In
the first experiment, we present detailed results on
the mapping of two surfaces. The robustness and clin-
ical relevance of our method are demonstrated in the
second experiment on a clinical dataset of 109 sub-
jects. A comparison with the popular SPHARM tool
is presented in the third experiment.

4.1 Mapping Results of Two Surfaces

(a) (b)

(c) (d)
Fig. 3. Eigenfunctions and map results after met-
ric optimization. (a) Eigenfunctions of M1. (b)
u2(M2). (c) Eigenfunctions of M2. (d) u1(M1).

In this experiment, we ap-
ply our metric optimization
method to the two surfaces in
Fig. 1(a) and (d). The param-
eters are N = 20, ξ = 0.1 and
150 iterations of metric opti-
mization according to equa-
tions (13) and (14) are used to
obtain the final maps u1 and
u2. The computational time is
around 15 minutes on a PC.

The optimized weight func-
tions of these two surfaces are
shown in Fig. 2, where corresponding regions exhibit complimentary metric de-
formations to account for non-isometric differences of these parts. Under the con-
formal metrics, the corresponding eigenfunctions of the two surfaces are shown
in Fig. 3(a) and (c). We can see they are almost identical and agree much better
than the ones in Fig. 1. The quality of the maps can be visualized by the mesh
quality of u1(M1) and u2(M2) in Fig. 3(b) and (d). Compared with the meshes
in Fig. 1(c) and (f), we can see the mesh structures are much more uniform.

4.2 Hippocampal Mapping in MS Patients with Depression

In this experiment, we demonstrate the robustness of our method by apply-
ing it to a clinical study of hippocampal atrophy in MS patients with depres-
sion. Using the Center for Epidemiologic Studies-Depression (CES-D) scale as
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Fig. 4. Top (left) and
bottom (right) views of
the thickness p-value map
from our method

the measure for depression, the 109 female subjects
in this study are split into two groups: low depres-
sion (CES-D≤ 20) and high depression (CES-D> 20).
To study group differences, the right hippocampi are
mapped with our metric optimization method to an
atlas surface, which is the right hippocampus of one
randomly selected subject. Using the computed maps,
we project the mesh structure of the atlas onto all hip-
pocampal surfaces to establish one-to-one correspon-
dences across subjects. At each corresponding triangle
of the 109 surfaces, a one-sided t-test is applied using
a thickness measure [10] to test the hypothesis that MS patients with high de-
pression have more severe hippocampal atrophy.

(a) Correlation. (b) P-value map.

Fig. 5. The correlation between CESD and thick-
ness, and its p-value map

As shown in the signifi-
cance map of p-values in Fig.
4, the highlighted regions in-
dicate larger atrophy occurs
in the right hippocampus of
MS patients with high de-
pression. To correct for mul-
tiple comparisons, we applied
1000 permutation tests and
an overall p-value of 0.017 is
obtained, which means the overall significance of the thickness map. To further
validate the clinical relevance of the thickness map, we test the correlation of
the thickness measure and CES-D scores at each triangle. The correlation coeffi-
cients are plotted in Fig. 5(a) with the significance map of the correlation in Fig.
5(b), which indicates highlighted regions in Fig. 4 match excellently to regions
with significant negative correlations between thickness and CES-D scores. This
shows that patients with more severe depressive symptoms in deed have more
hippocampal atrophy in the highlighted regions detected by our method.

4.3 Comparison with SPHARM

Fig. 6. Top (left) and
bottom (right) views of
the thickness p-value map
from the SPHARM tool

In this experiment, we apply the popular SPHARM
tool to map the same group of hippocampal sur-
faces in the second experiment. We adopt the sug-
gested parameters for hippocampus in the manual of
SPHARM [5]. Using the correspondences established
by the SPHARM maps, the same one-sided t-tests
are applied at each triangle to test for group differ-
ences among the 109 surfaces. The resulting signifi-
cance map of p-values is plotted in Fig. 6. To correct
for multiple comparisons, we also apply 1000 permutation tests and the overall
p-value is 0.07. By comparing the results in Fig. 4, 5 and 6, we can see that our
method achieves better performance by detecting more group differences that
correlate well with clinical variables.
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5 Conclusions

In this work we proposed a general approach for surface deformation in LB
embedding space by optimizing conformal metrics on surfaces. In future work, we
will minimize bias in statistical analysis by developing group-based techniques.
We will also conduct more extensive comparisons with existing methods.

References

1. Thompson, P., Hayashi, K., de Zubicaray, G., Janke, A., Rose, S., Semple, J., Hong,
M., Herman, D., Gravano, D., Doddrell, D., Toga, A.: Mapping hippocampal and
ventricular change in Alzheimer disease. NeuroImage 22(4), 1754–1766 (2004)

2. Joshi, S., Miller, M.: Landmark matching via large deformation diffeomorphisms.
IEEE Trans. Imag. Process. 9(8), 1357–1370 (2000)

3. Davies, R., Twining, C., Allen, P., Cootes, T., Taylor, C.: Shape discrimination in
the hippocampus using an MDL model. In: Taylor, C.J., Noble, J.A. (eds.) IPMI
2003. LNCS, vol. 2732, pp. 38–50. Springer, Heidelberg (2003)

4. Yeo, B., Sabuncu, M., Vercauteren, T., Ayache, N., Fischl, B., Golland, P.: Spher-
ical demons: Fast surface registration. In: Metaxas, D., Axel, L., Fichtinger, G.,
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Abstract. In this paper, we propose a novel area-preserving surface
flattening method, which is rigorous in theory, efficient in computation,
yet general in application domains. Leveraged on the state-of-the-art
flattening techniques, an infinitesimal area restoring diffeomorphic flow
is constructed as a Lie advection of differential 2-forms on the manifold,
which yields strict equality of area elements between the flattened and
the original surfaces at its final state. With a surface represented by
a triangular mesh, we present how an deterministic algorithm can be
faithfully implemented to its continuous counterpart. To demonstrate the
utility of this method, we have applied our method to both the cortical
hemisphere and the entire cortex. Highly complied results are obtained
in a matter of seconds.

Keywords: Brain mapping, area-preserving flattening, Lie advection.

1 Introduction

Given the fact that many anatomical surfaces are intrinsically 2D and highly un-
dulated, flattening techniques constitute a major means of visualizing patholo-
gies that are deeply buried within the folds [4]. Flattening (parametrization) also
enables many procedures on a regular parameter domain, therefore resulting in
more efficient and stable computation. However, existing flattening methods,
including conformal mapping [2,6,5], typically suffer from severe, unpredictable
area distortion when dealing with extruding shapes that contains rich, com-
plex features, which largely impedes the capture of anatomical characteristics as
well as other associated imaging modalities on a planar domain. Although it is
known that surface cuts can effectively reduce the distortion of final flattening,
such practice is typically not preferred, since neighborhoods on opposite sides of
a cut will become far apart in the final flattened representation.

The technique presented in this paper theoretically ensures a uniform sam-
pling of the surface on the parameter domain. Each patch retains exactly the
same area when flattened to 2D. Based on the mathematical advance, a series of
analysis tasks regarding neuronal density, activation extent, cortical thickness,
� Corresponding Author.
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among others, can be instead invoked in 2D where more compact data struc-
tures, more efficient discretization schemes and faster data access are available.
Towards the same goal, a handful of respectable efforts have been made [3,4,8,9].
However, the flattening results typically correspond only to local minima with
respect to certain objective functionals [3,4], and lack provable guarantee of area
preservation. Pons et al. [8] designed a tangential motion according to a given
normal motion in a cortical inflating procedure, which preserves area exactly,
but is not capable of flattening a 3D surface into 2D. A mass (e.g., area/volume)
preserving mapping was explicitly sought in Rn by a gradient decent method
to the Monge-Kantorovich functional in [9], implemented on a regular Cartesian
grid. It is not clear how this method can be extended to a general manifold.

In contrast, our method computes global strict area-preserving (A.P.) flat-
tening of arbitrary 2-manifolds using Lie advection, a concept from classical
mechanics. To our best knowledge, this is the first work that employs Lie advec-
tion as a tool to manipulate area changes in the context of surface flattening.
Besides a general framework, our method also allows an efficient, yet accurate
discretization scheme that is motivated by preserving the original geometric and
algebraic structures of the continuous model in the limit, therefore rendering
better numerical fidelity.

A similar idea was mathematically sketched in [1]. The discussion was re-
stricted to a spherical domain. Despite similar concepts, our method is deter-
ministic and derived for arbitrary surface manifolds. In the remainder of this
paper, we take brain surface as an acting example, while the presented method
is principally applicable to general surfaces.

2 Basic Idea

Starting with an arbitrary initial diffeomorphism from an given surface to the
desired domain, e.g., a conformal parametrization [7,5], we can subsequently
evolve it to an A.P. alternative as follows. Suppose M and N are two differ-
entiable 2-manifolds, associated by a diffeomorphism f : M → N . The area
element of a surface is a differential 2-form. Let ωi, i = M,N be the area form
of M and N , respectively. The pullback of ωN under f is a differential 2-form
on M , denoted as f∗(ωN ). Suppose M and N have the same area integral af-
ter an appropriate scaling, that is,

∫
M

ωM =
∫

N
ωN . Computing an A.P. map

μ : M → N now is equivalent to finding a diffeomorphism ϕ : M → M , such
that ϕ∗(ωM ) = f∗(ωN ). Therefore, μ is given by f ◦ ϕ−1. To accomplish this,
we first linearly interpolate a 2-form over time:

ωt = (1 − t)ωM + tf∗(ωN ), t ∈ [0, 1]. (1)

Note that ω0 = ωM and ω1 = f∗(ωN ). In the following, we will design a one
parameter family of diffeomorphisms, such that the corresponding flow deforms
the area element in the same fashion as ωt.

More specifically, consider a smooth surface M with a smooth vector field
V on it. Given any point p ∈ M , there exist a unique integral curve γ(t) of V
passing through it, such that
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{
dγp(t)

dt = V (γp(t)),
γp(0) = p.

(2)

A one parameter family of diffeomorphisms (which are also automorphisms) φt,
parameterized by t ∈ [0, 1], can be defined on M as

φt(p) = γp(t). (3)

We want φ∗
t (ω0) = ωt. Substituting p with ωt in Eq. (3) and computing time

derivative at t = 0, we get

dφ∗
tω

dt

∣∣∣
t=0

= ωM − f∗(ωN), (4)

which, by definition, is the Lie derivative of ωt with respect to V . Hence, the
central equation to solve is

LV (t)ωt = ωM − f∗(ωN ), (5)

where LV (t) denotes the Lie derivative with respect to V (t). Intuitively, LV (t)

estimates the change of ωt along the flow of V (t). By using Cartan’s formula
LV = diV + iV d, where iV denotes the interior product with respect to V (t), we
have

d(iV ωt) + iV dωt = ωM − f∗(ωN ). (6)

Since ωt is a 2-form, dωt = 0 on M . Hence, we have

d(iV ωt) = ωM − f∗(ωN ). (7)

By definition, we can write ωM = h1du ∧ dv and f∗(ωN ) = h2du ∧ dv. h1

and h2 are the scaling factors from a mutual parameter domain to M and N ,
respectively. Now let

Δg = h2 − h1, (8)

where Δ denotes the Laplacian-Beltrami differential operator. We substitute
Eq. 8 into Eq. 7. Using the fact that M and N are 2-manifolds, V (t) can be
solved as

V (t) =
1

(1 − t)h1 + th2
∇g. (9)

Note that, as implied by Eq. (9), V (t) varies both in magnitude and direction
over time. we need to solve V (t) at each time. g is essentially a harmonic scalar
field on M . As a result, the corresponding gradient vector field ∇g is guaranteed
by construction to be highly smooth and free of extraneous critical points. Time
integration of V (t) yields a diffeomorphism. Finally, the A.P. mapping is given
by f ◦ φ−1

t=1 : M → N .
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3 Algorithm

In practice, the surface is represented by a triangular mesh. The position of
vertex vi is denoted by vi ∈ R3. The 1-ring neighbors of vi is denoted as N1(i).
For a vertex vi, the associated surface patch is chosen to be the barycentric finite
volume, denoted as Ai.

We first assume the target domain is a unit square, which is commonly used
to parameterize topological disks. Later, we will show how this framework can
be extended to the unit sphere to flatten closed genus zero surfaces in spherical
geometry. The square boundary condition is set up as follows: first, the boundary
is isometrically mapped to that of the unit square D; next, a discrete conformal
map of the interior is computed in the least squares sense [7]. Fig. 1(a) and
1(b) show the lateral and mesial views of a cortical hemisphere, respectively.
The initial (conformal) flattening is illustrated in Fig. 1(c), the area distortion
of which is color encoded in Fig. 1(d). Notice how some lateral cortical patterns
suffer from the intense geometric stretch, which greatly impairs inspection of
these regions. Note that, since our A.P. surface flattening method is independent
of the initial mapping, other surface parametrization methods can also be equally
employed in order to achieve specific functionality relevant in applications. In

(a) Lateral view (b) Mesial view (c) Conformal map (d) Area distortion

Fig. 1. Initial conformal flattening. (a) and (b) show the lateral and mesial views of a
cortical hemisphere. (c) is the initial (conformal) flattening on a unit square. The area
distortion is color-coded in (d).

the following, we describe the essential steps of the algorithm in the order they
occur in the procedure.

3.1 Solving Δg = h2 − h1

For an area-preserving flattening, h1 is always 1, whereas h2 is the model area/
parameter area ratio at play. When the total areas of the model and the domain
are not equal, h2 is subject to a normalization to make them equal. The result
will therefore be of relative area preservation.

Given a continuous function on the surface, its discrete version is represented
as a vector, defined on the vertex set V . To solve Eq. (8) on a triangular mesh,
Δg is estimated at vi in the same manner as [3]. Note that this discrete approx-
imation requires acute angles. For obtuse ones, a proper remeshing procedure
should be employed. As such, Eq. (8) can be written as a linear system: Lx = b,
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(a) g(t = 0) (b) ∇g(t = 0) (c) A.P. map(t=1) (d) Area/angle distortion

Fig. 2. Area-preserving flattening on a unit square. The solved function g is shown in
(a) and its gradient vector field in (b). After time integration of a dynamic diffeomorphic
flow following the vector field, the proposed A.P. flattening is obtained in (c). (d) shows
the histograms of area and angle distortion metrics.

where x = g, b = h2 − h1, L represents the coefficient matrix of the discrete
Laplace-Beltrami operator. As L is sparse, Eq. (8) can be solved efficiently in
linear time. Fig. 2(a) shows the solved function g.

3.2 Computing ∇g

Now that the g is obtained, we can proceed to compute the corresponding gra-
dient vector field on the triangulated domain. We consider a face fijk with its
three corners lying at vi, vj , vk in R3. Also, let n be a unit normal vector
perpendicular to the plane spanned by fijk. By assuming linear interpolation
within each triangle, the gradient vector can be easily computed by solving the
3 × 3 linear system: ⎡⎣vj − vi

vk − vj

n

⎤⎦∇g =

⎡⎣gj − gi

gk − gj

0

⎤⎦ , (10)

for which a closed-form solution exists. To obtain a unique vector at each vertex,
∇g at vertex vi is defined as an average of the gradients of the adjacent faces,
weighted by the incident angle αi

jk of each face fijk at vi. The resulting vector
field is shown in Fig. 2(b).

3.3 Time Integration of V (t)

Recall that the Lie derivative is defined as the instantaneous change of forms
evaluated at φt(x), which is a dynamic definition (See Eq. (4)). In fact, V (t)
only coincides with the flow vector field at t = 0. In other cases, V (t) needs be
transported accordingly. By an simple analytical integration, we have∫ 1

0

V (t)dt =
lnh2 − lnh1

h2 − h1
∇g. (11)

When h1 = 1, we have limh2→1
ln h2−ln h1

h2−h1
= 1, which means that, when h2 is

sufficiently close to 1, the displacement vector field can be properly approxi-
mated by ∇g. Thus, the area-correcting process is divided into K sequential
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steps. With each step, the area element is only modified by an small amount δh
towards the target setting such that the overall area adjustment is equal to Kδh.
More specifically, we let h2 = 1 + δh and h1 = 1 as the input of the analytical
integration (Eq. (11)), and the result gives the corresponding displacement for
the area change of δh. This procedure is discretized into 50 steps for the results
shown. By choosing step length carefully, we can guarantee that the time inte-
gration converges. The final A.P. flattening of the cortical hemisphere is shown in
Fig. 2(c). Fig. 3(d) presents the statistics of the area (darkred) and angle (blue)
distortions; the employed metrics will be explained in Section 4. All boundary
vertices can either be fixed, or evolved by the covariant derivative of V (t) along
∂D. Empirically, the latter one gives better approximation to the continuous
case, but less robust to degenerate mesh triangles.

3.4 Genus Zero Surface Flattening

The entire brain surface is often modeled as a topological sphere, i.e., a closed
surface of genus zero, thus is preferred to be flattened on a unit sphere (S2)
without any topological changes. Our method can easily adapt to this case as
well. We first compute its initial mapping using the method described in [5]. The
Lie advection flowing to the area preservation is then performed in the tangent
spaces of the spherical domain. In practice, whenever a vertex moves out of the
unit sphere, it is pulled back by ṽi = vi/|vi|. Fig. 3(a) shows the entire cortex,
while its spherical conformal mapping is shown in 3(b). Its A.P. flattening is
shown in Fig. 3(c) and the corresponding histograms about the area (darkred)
and angle (blue) distortions is presented in 3(d).

(a) g(t = 0) (b) ∇g(t = 0) (c) A.P. map(t=1) (d) Area/angle distortion

Fig. 3. Area preserving mapping of closed genus zero surface. (a) is the original brain
surface model. Its spherical conformal mapping and subsequent A.P. flattening are
shown in (b) and (c), respectively. Similarly, the statistics of the result is shown in (d).

4 Results

All brain surface models are reconstructed on the gray matter/white matter
interface of 3D MRI brain volumes. To verify that the area elements (associ-
ated with the vertice) are preserved globally independent of the triangulation,
we build up our distortion measures on their dual cells–triangular faces. To be
specific, we examine both the area distortion and the quasi-conformal distortion
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(a) Conformal flattening result (b) A.P. flattening result

Fig. 4. Application of quantitative surface-based analytics. The color visualizes the
integrated PET data. (a) shows the flattening result via conformal mapping, where
most anatomical and functional meaningful areas are squeezed in a few square elements.
In contrast, the cortical surface is more evenly sampled under A.P. flattening, as shown
in (b).

per face over the mesh. The area distortion metric Υ and the quasi-conformal
distortion metric Λ are computed respectively as follows:

Υ = ln(γmax · γmin), Λ = ln
γmax

γmin
, (12)

where (γmax, γmin) are the larger and smaller eigenvalues of the Jacobian of the
affine transformation that maps the domain triangle to the surface, normalized
in such a way that the total area of the surface equals that of the domain. In both
cases, a value of 0 indicates no distortion at all, while distortions can deviate on
both sides.

In Fig. 2(d) and Fig. 3(d), the statistics of the area distortion (darkred) and
the quasi-conformal ones (blue) are illustrated for both examples, respectively.
From the distribution of metric Υ , we can see that the areas of triangles are
clearly well preserved. Because for general manifolds, no isometric mapping exists
except for a few special cases, quasi-conformal distortion is expected for A.P.
maps, as indicated by the distribution of Λ.

In terms of runtimes, the underlying mesh of the cortical hemisphere model
is composed of 48,287 faces and the A.P. flattening was obtained in 57 sec; the
model of the entire cortex is with 99,736 faces and it took 122 sec. All experiments
were conducted on an Intel T6600 2.20GHz laptop with 3GB RAM. Generally,
the cost linearly depends on the size of the mesh and the number of discretized
steps needed for the desired accuracy.

For a visual analytical framework that is designed to integrate various com-
plementing neuroimaging modalities from multiple sources and for quantitative
analyses, A.P. flattening exhibits unique advantages. In Fig. 4, the brain surface
is sliced open along the medial plane at the bottom, without passing any signifi-
cant anatomical features. The entire brain surface is then mapped to a rectangle
with a height/width ratio of 1:2. To capture the statistics of abnormal brain
activity, a sufficient number of sampling points should be grouped at certain
resolution. Each unit forms a cortical element. Since the surface of the brain
is uneven and varies across human subjects, subdividing it into a set of equal
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geometric elements is nontrivial. With A.P. flattening, we can easily define fi-
nite homotopic cortical elements on the parametric domain with simple isotropic
grid. Comparing to other “quasi” area-preserving/conformal mapping, each ele-
ment based on an A.P. flattening accounts for an identical amount of portion in
the original brain surface. With these well-defined equiareal cortical elements, a
variety of functional patterns can be readily quantified on a per element basis.

5 Conclusion

In this paper, we have presented a special surface flattening methodology that is
strictly area-preserving. Given an arbitrary initial parametrization, an A.P. re-
sult can be efficiently and uniquely obtained via the Lie advection of area forms
along the domain. As our method only depends on the intrinsic surface geome-
try, it is insensitive to different discretized representations, including variations
in triangulation and/or resolution. Our implementation strives to preserve the
analytical ingredients of the computation as far as possible. As a result, our
method is highly efficient and stable in getting consistent results, as opposed
to an optimization approach. While conformal maps are known to be powerful
for shape analysis, in a number of other scenarios, such as studies of neuronal
density, cortical functional activation extent, and cortical thickness variations,
where accurate modality sampling and statistical sensitivity are critical, areal
preservation is highly preferable. Extensive comparison between our method and
existing approaches in clinical practice will be conducted in the near future.
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7. Lévy, B., Petitjean, S., Ray, N., Maillot, J.: Least squares conformal maps for au-
tomatic texture atlas generation. ACM Trans. Graph. 21(3), 362–371 (2002)

8. Pons, J., Keriven, R., Faugeras, O.: Area preserving cortex unfolding. In: Barillot,
C., Haynor, D.R., Hellier, P. (eds.) MICCAI 2004. LNCS, vol. 3216, pp. 376–383.
Springer, Heidelberg (2004)

9. Zhu, L., Haker, S., Tannenbaum, A.: Flattening maps for the visualization of multi-
branched vessels. IEEE Trans. Med. Imaging 24(2), 191–198 (2005)



Non-parametric Population Analysis of Cellular

Phenotypes

Shantanu Singh1, Firdaus Janoos1, Thierry Pécot1, Enrico Caserta3,
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Abstract. Methods to quantify cellular–level phenotypic differences be-
tween genetic groups are a key tool in genomics research. In disease pro-
cesses such as cancer, phenotypic changes at the cellular level frequently
manifest in the modification of cell population profiles. These changes
are hard to detect due the ambiguity in identifying distinct cell pheno-
types within a population. We present a methodology which enables the
detection of such changes by generating a phenotypic signature of cell
populations in a data–derived feature–space. Further, this signature is
used to estimate a model for the redistribution of phenotypes that was
induced by the genetic change. Results are presented on an experiment
involving deletion of a tumor–suppressor gene dominant in breast cancer,
where the methodology is used to detect changes in nuclear morphology
between control and knockout groups.

Keywords: Microscopy Image Analysis, Cell Nucleus, Shape Analysis.

1 Introduction

Gene targeting methods have elucidated the roles of several genes in disease
processes such as cancer. In these experiments, a genetic perturbation such as a
gene knockout is introduced in a model organism and the effects on the genetic
as well as phenotypic makeup of the organism are examined. Recent advances
in microscopy coupled with automated image analysis tools have enabled re-
searchers to quantify a broad range of such phenotypic alterations at the cellular
level [8]. In these studies, the phenotype of interest, such as cell morphology, is
quantified using image features across a population of cells, and differences be-
tween normal and genetically perturbed populations are examined. In the event
that a clear hypothesis can be posed based on a priori knowledge, it is possible
to extract specific cellular features of interest [2] and investigate this hypothesis
using standard statistical tests.

In the absence of such prior knowledge, investigations rely on exploratory
data analysis techniques, making the detection of phenotypical changes more
challenging. In addition, some of the changes affect only a certain subpopulation
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Fig. 1. Detecting changes in cell populations. (a) Examples of fibroblast nuclei
from the study (b) Scatter plot of fibroblast nuclei obtained from a control group (Wild-
type) and genetically modified group (PTEN -deleted) plotted in top three principal
components (PC) of the shape space; no evidence of separation between the groups (c)
Mean nuclear shapes of the two groups; difference between means is not statistically
significant (Sec. 4.1) (d) Estimated (marginal) densities of the two groups in the third
PC; distributional differences between the groups are statistically significant (Sec. 4.1).

of the cells, resulting in very subtle differences between groups. In this case it
is no longer sufficient to analyze the global statistic of a specific cellular feature
to detect the presence of an effect. In particular, during the onset of a disease
such as the early stage cancer, small perturbations in the system are not easily
detectable using existing methods. The quantification of such changes through
the analysis of alterations in the population as a whole is the focus of this paper.

In this paper a methodology is presented that is applied to detect the phe-
notypic effect of deletion of a tumor–suppressor gene (PTEN ) in the context
of breast cancer. Deletion of PTEN in fibroblasts has been shown to increase
the predisposition to cancer in certain mouse models [11]. Of specific interest
are changes at the cellular level in the early stages of cancer development which
provide an important indication of what precursor activities occur prior to tu-
mor metastasis. Motivated by the seminal role played by the cell nucleus in
cancer [13], nuclear morphology has been used in this study as a proxy for the
cell phenotype. The study focuses on detecting the effect of PTEN deletion on
the nuclear shape of fibroblasts in an exploratory manner. The following data
analysis approach, illustrated in Fig.1, explicates the guiding principles of the
proposed method.

A spherical harmonics–based shape parameterization was used to represent
nuclear morphology (Sec. 3.1) and PCA was used to reduce dimensionality. A
plot of the data in the top three principal components is shown in Fig. 1b. No
evidence of a discernible separation between the genotype groups was observed.
The differences in the mean shapes (Fig. 1c) were not observed to be statistically
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significant based on a non–parametric test for differences between means (Sec.
4.1). However, the presence of an effect was observed when testing for differences
in the shape of the distributions of the two populations (Fig. 1d). Note that the
shape of the distribution essentially represents the phenotypic population profile,
a characterization of the mix of the nuclear phenotypes present in a population.
By using a non–parametric test for difference in distributions between the two
groups, a difference between the marginal distributions in the third PC was
observed at a significance of p = 0.002 (See Sec. 4.1 for further details).

The principles behind this analysis approach are summarized as follows. First,
the feature set used is agnostic in that we did not seek specific structures (such
as in [2]) to measure the cell phenotype. Rather, the biologically relevant modes
of variation were learned from data using dimensionality reduction, which were
used as the feature set. Second, the cell population exhibits a significant degree
of phenotypic heterogeneity as seen in Fig. 1a. The change in the population
profile corresponds to a change in the composition of this heterogeneity, which
is detected through the analysis. In summary, the above approach enables the
detection of phenotypic changes in population profiles in a data–driven manner.

In this paper, the proposed methodology builds on these principles to fur-
ther estimate an interpretable model for the changes that have occurred. This is
achieved by modeling the redistribution of cellular phenotypes that putatively
occurred due to the induced perturbation. The formulation of the problem is
equivalent to finding the Earth Mover’s Distance (EMD) [10] in a data–derived
feature space. The rest of the paper is organized as follows. A review of related
work is presented in Section 2. The proposed methodology is discussed in Section
3 and results on breast cancer datasets are presented in Section 4. We conclude
with a discussion in Section 5.

2 Related Work

Several methods for modeling cellular morphology have been proposed in im-
age cytometry literature. A physically–based deformation model of a cell was
proposed in [4] which served as an atlas to compare sub–cellular features. A
multi–modal approach incorporating diverse cellular features was proposed in
[6] that enabled simultaneous segmentation and classification of cells. A statisti-
cal methodology for the analysis of sub-cellular features was proposed in [1] that
used descriptors from spatial statistics to characterize the internal structure of
cells. The above approaches focused on the characterization of individual cells. A
computational anatomy framework was used in [9] to quantify shape differences
in cells by analyzing the deformation fields in mapping between the samples.
This approach enables group analysis on cell populations in an agnostic frame-
work, similar to the approach proposed in this paper. In contrast to the above
approaches, this paper presents a methodology that enables the detection of sub-
tle variations between population profiles as a whole, and additionally provides
an interpretable model of differences between them.
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3 Mathematical Approach

A non–parametric shape representation is adopted in order to support an unbi-
ased exploratory study of nuclear phenotypes. Let ψ : Z → X denote the shape
representation, where Z is the domain of nuclear shapes and X is the domain of
shape features. A low–dimensional feature–space X̃ corresponding to biologically
plausible nuclear shapes is estimated by learning a transformation φD : X → X̃
where D ⊂ X is a large set of nuclear shapes. Given a normal cell population
P ⊂ Z and a perturbed one Q ⊂ Z, the set of most likely transitions that ex-
plain the apparent redistribution of phenotypes is estimated. A process similar
to computing the Earth Mover’s Distance metric [10] is used to measure the
total cost of the transformation (Sec. 3.2).

3.1 Nuclear Morphology Representation

Nuclear morphology is modeled using a spherical harmonic (s.h.) representation
of its surface [3]. The surface is mapped to a sphere by a distortion–minimizing
transformation resulting in the representation of the original surface through
the set of coordinate functions [x(φ, θ), y(φ, θ), z(φ, θ)] on the unit sphere. These
functions are represented in the s.h. basis as x(φ, θ) �

∑∞
l=0

∑l
m=−l cx

l,mYl,m(φ, θ)

where Yl,m(φ, θ) are the s.h. basis functions of degree l and order m and cx
l,m is

the corresponding coefficient [3]. The functions y(φ, θ) and z(φ, θ) are represented
similarly. The resulting set of s.h. coefficients form the shape vector, with dimen-
sionality 3(L+1)2, where L is the maximum degree of the harmonics considered.

Previous in vivo studies indicate that changes in morphology have low–
dimensional modes of variation [5]. Linear dimensionality reduction methods are
well suited to estimate these modes of variation [7]. Motivated by these studies,
PCA is subsequently used to estimate a low–dimensional subspace of biologically
relevant nuclear shapes. The resulting linear transform is represented as φε

D,
where ε is the fraction of variance that is discarded, resulting in a k–dimensional
embedding.

3.2 Estimating Redistribution of Phenotypes

The differences between the distributions of P and Q represent the differences in
the phenotypic profiles of the two populations of cells. This difference is modeled
in terms of the putative redistribution of phenotypes that transformed P to Q.
To estimate this, the optimal “moves” required to transform one population to
another is computed under a cost model d : Z×Z → R. The choice of d is taken to
be the Euclidean distance in φε

D since this subspace captures the principal modes
in which cell shapes vary [7]. It is noted here that the above is a formulation of
the earth mover’s distance [10] and can be solved using linear programming as
follows.

Denote Pφ = φε
D ◦ ψ(P ) where ψ(P ) corresponds to the shape representa-

tion and φε
D to the low–dimensional embedding. Pφ and Qφ are converted to
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empirical normalized histograms in the form P̂φ � {(s1, p1), (s1, p1), . . . , (s1, pn)}
and Q̂φ � {(t1, q1), (t1, q1), . . . , (t1, qm)} where the pairs (x, c) indicate that x ∈ X̃
is a bin center and c is the normalized frequency of points in the bin. The bin
centers are obtained by vector quantization. The optimal solution is found in
terms of the “flow” R � (rij) that minimizes the total cost

∑m
i=1

∑n
j=1 rijdij

where dij � d(si, tj) and R obeys the constraints (i) rij ≥ 0, 1 ≤ i ≤ m, 1 ≤ j ≤ n

(ii)
∑m

i=1 rij ≤ pj, 1 ≤ j ≤ n (iii)
∑n

j=1 rij ≤ qi, 1 ≤ i ≤ m (iii)
∑m

i=1

∑n
j=1 rij =

min(
∑m

i=1 pi,
∑n

j=1 qj).
Given the optimal solution R∗ � (r∗ij), the putative redistribution is ob-

tained by removing rij instances of phenotype si from P̂φ and adding an equal
number of instances of phenotype tj to Q̂φ. Table 2 provides an illustrative
example for this interpretation. Thus by the above formulation, we are able
to interpret the difference between the two populations in terms of the most
likely phenotypic transitions that occurred. Further, the difference between the
two distributions is measured by the total cost of the transformation given by
D(Pφ, Qφ) �

∑m
i=1

∑n
j=1 r∗ijdij/

∑m
i=1

∑n
j=1 r∗ij.

In experiments with small sample sizes, histogram estimation in the dimen-
sionality of the embedded space may result in unstable estimates. In this event,
the following strategy is used to retain the dimensions in which the marginal dis-
tributional differences are (statistically) most significant. Denote φi(·) � [φ(·)]i.
The statistic D(Pφi , Qφi) is computed for i ∈ {1 . . . k} and its significance is ob-
tained through permutation testing. The bases are ranked by increasing order
of p-value, and a cutoff p-value is used to select the top l features.

4 Results

The method was applied to the knockout study discussed in Section 1 to deter-
mine the phenotypic changes resulting from the selective deletion of the PTEN
gene. The study focused on the morphological changes in fibroblasts, the cell
type in which the gene was selectively deleted.

Data Collection and Feature Extraction. Tissue sections were collected from
two–month old female mice belonging to control (P ) and PTEN -deleted (Q)
groups, with three mice per genotype group. The sections were stained with
DAPI, a fluorescent marker for DNA, to identify cell nuclei. Endogenously ex-
pressed cell-specific fluorescence was used to detect fibroblasts. 3D images of the
tissue were acquired with a confocal microscope at an in-plane resolution 0.31μm
and axial resolution of 0.5μm. Nuclei were segmented using Otsu thresholding
followed by morphological closing to fill holes in the volume. Segmentation er-
rors were manually corrected using a semi-automatic segmentation tool [12]. For
each nucleus, s.h. coefficients were computed to the fifth degree resulting in a
108-dimensional feature–vector. In all, a random subset of 125 fibroblast nuclei
from each group were selected for the study.
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4.1 Statistical Tests

A set of statistical tests were performed on the cell populations to test for dif-
ferences between the PTEN -deleted and control groups as follows. Tests were
performed in each dimension of (a) the s.h. feature–space Ssh and (b) the prin-
cipal components feature–space Spc, obtained by reducing dimensionality of Ssh

keeping 95% of the total variation. Test for difference between the group means
was performed using the Student’s t test (ST). The Kolmogorov-Smirnov test
(KS) was used to test for difference between the distributions of the groups.
Permutation testing was performed over 20,000 iterations. In each iteration,
the labels of the data were randomly permuted and the relevant test statis-
tic was computed to generate the null distribution. Results from these tests
are reported in Table 1. The columns p(1) through p(5) list the five most sig-
nificant uncorrected (w.r.t. multiple comparisons) p-values in ascending order.
The index of the component is shown in parentheses. The p-values that are
significant after multiple test correction using false discovery rate method are
underlined. For both, Ssh and Spc, ST did not report an effect in any of the
features, an indicator that the heterogeneity of the cellular population precludes
the use of a simple test of difference between means to identify differences.

Table 1. Permutation testing results

Feat Test p(1) p(2) p(3) p(4) p(5)

Ssh ST 0.177 (17) 0.209 (27) 0.387 (12) 0.513 (35) 0.551 (31)
Ssh KS 0.011 (12) 0.021 (23) 0.210 (17) 0.319 (31) 0.332 (27)
Spc ST 0.191 (2) 0.262 (1) 0.291 (3) 0.655 (7) 0.706 (10)
Spc KS 0.002 (3) 0.050 (4) 0.181 (10) 0.237 (5) 0.286 (7)

The KS test on the
other hand, reported a
statistically significant
difference in the third
PC. None of the com-
ponents in Ssh reported
significance in the KS
test due to the ef-
fect of multiple compar-
ison correction over 108
comparisons.

4.2 Estimating Redistribution of Phenotypes

While the KS test established the presence of a difference between the distribu-
tions, there was no interpretation provided by the test about how the phenotype
transformation occurred. Such an interpretation is provided by using the method
described in Section 4, where the most likely redistribution that explains the dif-
ferences is modeled as follows.

Estimating Embedding from Data. A collection of 1600 fibroblast nuclei col-
lected across several images in the same animal model were used to obtain the
biologically relevant modes of variation using PCA. By using a larger data set,
a larger gamut of the biological variability is captured and results in a better
characterization of the natural modes of variation. Keeping 95% of the total
variation resulted in an 11-dimensional feature-space. The representation of the
two populations in this feature space were computed.
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5 5
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1221
10 18

8

P1 P2 P3 P4

Q1 Q2 Q3 Q4 Q5

P1 P2 P3 P4

Q1 4.8(1.2) 3.1(1.2) 18.2(1.8) 0.3(0.9)
Q2 10.1(2.1) 7.8(1.9) 0.4(0.1) 0.3(0.1)
Q3 1.1(0.6) 1.2(0.3) 21.2(2.4) 12.1(1.8)
Q4 0.8(0.3) 2.1(0.8) 1.3(0.4) 5.8(2.9)
Q5 0.4(0.1) 1.8(0.4) 0.3(0.1) 6.9(1.2)

Table 2. Estimating the redistribution of phenotypes. The nuclei P1...P4 and
Q1...Q5 represent the cluster centers within the groups Wild-type and PTEN -deleted
respectively. Edge weights correspond to total percentage of the optimal flow from one
phenotype subgroup to another. Edges with weight less than five are not shown for
clarity. The table shows the bootstrap estimates of edges weights demonstrating the
stability of the solution (1 s.d. shown in brackets). Dominant flows are highlighted.

Estimating Redistribution. Since the sizes of the datasets in the experiment
were small (n = 125/group), the dimensionality was further reduced as described
in Sec. 3.2 in order to get stable estimates of histograms. The sorted plot of the
negative log p-values are shown in the inset. A sharp knee was observed at PC4
and was used as the criterion for selecting PC3 and PC4 for the rest of the anal-
ysis. Next, the empirical histograms P̂φ and Q̂φ in this space — representing the
population profiles — were computed by adaptive binning, for which centroids
were obtained using using k-means clustering. A total of np = 4 and nq = 5 cen-
troids were selected for the two groups based on the AIC criterion. The centroids
for P and Q are visualized in Table 2 (left). This solution is visualized through the
directed graph shown in the figure. In order to establish stability of the result,
bootstrap estimates of the edges weights were estimated over 1000 iterations.
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It is observed that phenotypes P4, small elongated nu-
clei were transformed to Q3, significantly larger nuclei
and to Q4, smaller and rounded ones, while a cer-
tain amount of them remained relatively unaltered
Q5. Further, a significant fraction of rounded nuclei
P4 acquired a curved morphology Q1. This model of
redistribution thus provides an interpretation of the
phenotypic shifts that occurred, giving additional in-
sights into the nature of the genetic perturbation.

5 Discussion

In this paper, a methodology was presented to quantify differences between two
cell populations in terms of their phenotypic profiles and an explanatory model
by which the differences can be interpreted was provided. Using an example
of perturbations induced by the deletion of a tumor–suppressor gene in the
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mouse model, it was first shown that the phenotypic differences between control
and perturbed fibroblast cell populations can be characterized in terms of their
differences in distribution in a data–derived phenotype space. The proposed
methodology was further used to estimate the putative redistribution of nuclear
phenotypes. This model of redistribution provides a hypothesis about the nature
of changes induced by genetic perturbations in the animal system.

The experiment described was conducted in the context of understanding
the role of the tumor microenvironment in breast cancer [11]. A characteri-
zation of the changes that take place in fibroblasts — cells that play a ma-
jor role in this microenvironment — can lead to the generation of new hy-
pothesis about cancer progression. While nuclear morphology was used as a
proxy for cell phenotype in this study, the proposed methodology can be ap-
plied to any phenotypic characterization of a cell, so long as an appropriate cost
model d can be estimated for the same. In future studies, we plan to integrate
more morphological features including cell image texture and cellular context
for further characterization of the effects of genetic perturbation in the tumor
microenvironment.
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Abstract. Hippocampal atrophy and developmental positional variants may co-
occur in various neurological disorders. We propose a surface-based framework to 
analyze independently volume and positioning. After extracting the spherical 
harmonics combined with point distribution models (SPHARM-PDM) from 
manual labels, we computed displacement vectors between individual surfaces and 
the template. Then, we computed surface-based Jacobian determinants (SJD) from 
these vectors to localize volume changes. To analyze positional variants, we 
constructed a mean meridian axis (MEMAX), inheriting the shape-constrained 
point correspondences of SPHARM, on which we compute local curvatures and 
position vectors. We validated our method on synthetic shapes, and a large 
database of healthy subjects and patients with temporal lobe epilepsy. Our 
comprehensive analysis showed that in patients atrophy and positional changes co-
occurred at the level of the posterior hippocampus. Indeed, in this region, while 
SPHARM-PDM showed mirrored deformations, SJD detected atrophy, and shape 
analysis of MEMAX unveiled medial positioning due to bending. 

Keywords: surface, shape analysis, hippocampus, medial axis, Jacobian 
determinant, epilepsy. 

1   Introduction 

The most frequent drug-resistant epilepsy is temporal lobe epilepsy (TLE) related to 
hippocampal sclerosis, which generally appears as atrophy on MRI [1]. Detecting 
hippocampal atrophy is clinically relevant as patients have about 70% chance of 
becoming seizure free after surgery [2]. 

As atrophy reflects a single morphological characteristic, it may be insufficient to 
fully describe pathology. Indeed, in addition to atrophy, developmental anomalies, 
secondary to incomplete folding of the fetal hippocampus, may increase the 
susceptibility to TLE [3]. Such anomalies have been reported in other brain disorders 
in which the pathogenic mechanisms involve the temporal lobe, such as schizophrenia 
[4] and autism [5]. On MRI, hippocampal developmental anomalies appear as atypical 
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shape and positioning of the hippocampus [3]. The complexity of the brain anatomy 
may hamper their visual identification, particularly when they co-occur with atrophy.  

Advanced surface-based shape models, including deformation-based mapping and 
spherical harmonics description combined with point distribution models (SPHARM-
PDM), have allowed localization of morphological changes that may not be readily 
visible [6], and successfully identified hippocampal pathology in TLE [7] and 
schizophrenia [8]. The displacement metric provided by these approaches, however, does 
not allow differentiating volume changes from positional differences. Thus, a 
biologically meaningful interpretation of findings may be difficult, particularly when 
both morphological characteristics co-exist. Moreover, the concomitant presence of 
atrophy and positional changes, by increasing inter-subject shape variability, may reduce 
statistical sensitivity to detect subtle pathology.  

A surface-based Jacobian metric has been proposed as a robust technique to assess 
volume changes [9]. Shape models based on the medial axis (i.e., the central path of a 3D 
object), on the other hand, allow quantifying local positional variations [8, 10]. 
Nevertheless, as these methods rely on coarse-scale sampling, they may lack sensitivity 
to assess high-dimensional features. 

We propose a surface-based framework to analyze independently volume and 
positioning. We measured surface-based Jacobian determinants as in [9]. We construct a 
medial axis model that inherits the shape-constrained point correspondence of 
SPHARM-PDM, and quantifies fine-scale local positional vectors and curvature. We 
validated sensitivity and specificity using synthetic shapes, and assessed the pathological 
variations of the hippocampus by applying our method to a large database of healthy 
subjects (n=46) and TLE patients (n=78). 

2   Methods 

2.1   Spherical Harmonic Description and Point Distribution Model  
(SPHARM- PDM) 

The hippocampal meshes are first extracted from manual labels and are parameterized 
using SPHARM-PDM, an area-preserving and distortion-minimizing spherical mapping 
that ensures point-wise correspondence through an icosahedron subdivision [6]. A 
template is then constructed by averaging all the individual SPHARM-PDM surfaces 
after rigid-body alignment. Individual surfaces are again rigidly aligned to this template 
to avoid any bias. Finally, vertex-wise displacement vectors are calculated between each 
individual and the template. The surface normal components of these vectors are used to 
quantify inward and outward deformations. 

2.2   Surface-Based Analysis of Volume Changes 

Volume changes are quantified on each vertex of the SPHARM-PDM surface as 
described in [9]. Briefly, we apply the heat equation to interpolate the vertex-wise 
displacement vectors within the volume domain enclosed by the surface boundary. The 
Jacobian determinant is then calculated from this interpolated vector field and projected 
back onto the SPHARM-PDM surface. Finally, after substracting 1 from the Jacobian 
determinant, growth (J>0) or shrinkage (J<0) of a unit-size cube is quantified along the 
surface-normal direction.  
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2.3   Construction of the Medial Axis 

Conventional approaches create the central path of a 3D object by joining points that 
are equidistant from the two closest facing points on the object’s boundary [8, 10-11]. 
To provide inter-subject point correspondence, all individual skeletons are deformed 
into a common spatial frame by a thin plate registration [11]. Registration errors and 
smoothing in the resampling step may introduce biases in the subsequent analysis 
steps. In our approach, using the latitudes and longitudes parameters of SPHARM-
PDM, we parameterize the prime meridians of the object’s two hemispheres (Fig 1A, 
B). Then we create a central route by performing pair-wise averaging of the prime 
meridians. This allows the route to inherit the shape-constrained correspondence of 
the SPHARM, thus minimizing biases, mainly those related to registration. 

2.3.1   Geometric Parameters of SPHARM  
The spherical harmonic basis functions Yl

m of degree l and order –l ≤ m ≤ l are defined 
by the spherical coordinates φθ ,  as: 

φθ
π

φθ iml
m

m
l eP

ml

mll
Y )(cos

)!(4

)!(12
),(

+
−+=

   
),()1(),( * φθφθ m

l
mm

l YY −=−  (1)

In (1), Yl
m* denotes the complex conjugate of Yl

m and Pl
m the associated Legendre 

polynomials [6]. Summation of the spherical harmonics from 1 to L degree 
approximates a given structural boundary to a surface.  A vertex point s  on S is 
then uniquely determined by:  

∑ ∑
= −=

==
L

l

l

lm

m
l

m
l Yczyxszyxs

1

),()),(),,(),,((),,( φθφθφθφθ  (2)

The 3D weight vectors m
lc  are computed through least-square minimization. φθ ,  define 

latitudes and longitudes, respectively (yellow and green in Fig. 1A, B). Accordingly, 
)2/,0( πs  and )2/,( ππs  indicate the poles, and ),2/( φπs  the equator [6]. 

2.3.2   Mean Meridian Axis (MEMAX) 
The functions )0,(θs  and ),( πθs  in Eq. (2), describe a set of points that constitute the 

prime meridian (blue in Fig. 1A, B). The prime meridian points on a given hemisphere 
s= )0,2/0( ππ oras ≤≤ and their counterparts on its opposite side 
ŝ= )0,2/( ππππ oras ≤−≤  are averaged in a pair-wise fashion, thus yielding a mean 

meridian axis M, henceforth called MEMAX (red in Fig. 1C) as the skeleton of a shape.  
For shape analysis, we sample K points on M. We define M(k), where k={k | 1, 

2, .., K}, using equidistant subdivisions of θ, that is: 
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2.4   Assessment of Local Positioning  

To assess shifting, group analysis is performed by comparing the location of each 
sample point on M using Hotelling T2 metric [12] as:  
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nn

T  (4)

In this equation, μ1, μ2 are the group mean vectors, ∑1, ∑2 the group-separated 
covariance matrices and n1, n2 the number of samples in groups 1 and 2. 

The curvature at a given point (x,y,z) of a 3D curve is generally computed using 
the Frenet-Serret formula. This measurement, however, provides only the degree of 
curving without distinguishing convexity from concavity, thus requiring additional 
visual inspection to fully understand its nature. Instead, we propose to measure the 
signed curvature varying along the normal directions of a surface defined by the 
prime meridian or the equator. We create an open surface C where its boundaries are 
defined by the prime meridian s(k) and ŝ(k). Since the MEMAX M(k) is a geometric 
mean of the two prime meridians, M(k) is placed in the middle s(k) and ŝ(k) on the 
surface C (Fig. 1D left). We then calculate the Gaussian curvature κGauss at each 
sample point M(k) on C (Fig. 1D right). To differentiate the convexity (+) from the 
concavity (-), signs are computed using the normal vector of the kth facet on C 

n(Ck)=(M(k+1)-M(k)) × (s(k) - ŝ(k)), as: 

( ))()(/)()())(( 11 ++ ⋅•= kkkkk SignSign CnCnCnCnCn   (5)

The signed curvature is finally determined as: 

Κ = Sign(n(Ck)) |κGauss| (6)

In the same fashion, we create the surface C’ on which boundaries are defined by the 
equator and place M(k) on C’. Then, we compute curvature K’ to measure changes 
along the normal to C’. 

 

Fig. 1. Modeling of the mean meridian axis (MEMAX; A-C) and computing point-wise 
curvature (D). See text for details. 
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3   Experiments and Results 

3.1   Synthetic Data 

We created a rounded cylindrical volume with a resolution of 0.25ⅹ0.25ⅹ0.25 mm3 
and applied (Fig. 2A-C): i) bending, ii) local shifting (4.0 mm), and iii) simultaneous 
local shrinking (0.5 mm) and shifting (4.0 mm). We extracted the SPHARM-PDM 
surfaces and calculated the displacement vectors. Then, at each vertex, we computed 
the surface-normal component of the displacement vector (SNV) and the surface-
based Jacobian determinant (SJD) as a metric of local volume change. The MEMAX 
were extracted from all shapes. Finally, we quantified point-wise positioning of the 
variants compared to the reference.  

The SNV showed mirrored inward/outward deformations on facing surfaces 
reflecting bending/shifting (Fig. 2D, top and middle). In case of simultaneous local 
shrinking and shifting, SNV did not enable differentiating shrinkage from shifting 
(Fig. 2D, bottom). Contrary to SNV, SJD was not influenced by bending/shifting 
(Fig. 2E, top and middle) and accurately localized the 0.5 mm local shrinkage (Fig. 
2E, bottom). Analysis of MEMAX detected bending and local shifting only (Fig. 2F), 
and was robust to shrinking (Fig. 2F, middle and bottom).  

 

Fig. 2. Analysis of synthetic data. The -/+ signs indicate the direction of displacement (in D), 
volume (in E), and shifting (in F) with respect to the reference. 

3.2   Shape Analysis of the Hippocampus in Temporal Lobe Epilepsy 

3.2.1   Subjects and Image Pre-processing 
We studied 78 drug-resistant TLE patients (age: 36±10). Diagnosis and lateralization 
of the focus into left (LTLE; n=34) and right (RTLE; n=44) were determined by 
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video-EEG and MRI evaluation. The control group consisted of 46 age- and sex-
matched (age: 32±12) healthy subjects. Our Ethics Committee approved this study. 

High-resolution 1mm-isotropic 1.5T MRIs were linearly registered to a stereotaxic 
space. An expert manually segmented the hippocampi in all subjects. Using z-score 
normalization based on healthy controls’ distribution, all patients showed 
hippocampal atrophy (i.e. z<-2) ipsilateral to the seizure focus.  

3.2.2   Optimization of Sampling Scale Along MEMAX  
We first extracted the MEMAX of the right hippocampi in controls and patients with 
RTLE. We then evaluated the effect of varying the total number of sample points (Ns 
= 2-36) on the sensitivity to detect positional changes (i.e., position vectors and 
Gaussian curvatures). For each individual and each metric, we averaged all sample 
points. We then performed group-wise Hotelling T2 test on the mean position vectors 
and Student’s t-test on the mean curvatures. Results are shown in Fig. 3.  

Comparing groups, we detected shifting in TLE with Ns ranging from 14 to 34 
(T2>3.6) and bending with Ns ranging from 14 to 22 (t>2.82). The mean inter-point 
distance spanned from 2.1 to 3.3 mm. The sampling along MEMAX that provided the 
most significant group differences was Ns = 18 (T2=3.71; t=2.85). Thus, for the 
subsequent analyses, we used 18 points, with a mean inter-point distance of 2.7 mm. 

 

Fig. 3. Relationship between sampling points (Ns) along MEMAX and sensitivity in detecting 
shifting (A) and bending (B) in TLE patients  

3.2.3   Clinical Analysis of Local Hippocampal Shape Changes in TLE 
We performed vertex-wises group comparisons of surface-normal component of the 
displacement vector (SNV) and the surface-based Jacobian determinant (SJD), and 
point-wise comparisons of the Gaussian curvatures and positional vectors. We used the 
false discovery rate (FDR) to correct for multiple comparisons [13]. To localize 
changes, we schematically outlined hippocampal subfields on the surface template 
according to histological parcellations [7]. 

Results are presented in Fig. 4 A and B. Ipsilateral to the seizure focus, both SNV and 
SJD revealed areas of inward deformation and atrophy, respectively, in the hippocampal 
head and body (FDR<0.001). In the tail, where SNV detected mirrored inward/outward 
deformations, SJD on the other hand unmasked atrophy. In addition, SJD detected small 
areas of CA1 inward deformations (FDR<0.05) in the contralateral hippocampus.  

Curvature analysis of the mean meridian axis (MEMAX) detected ipsilateral 
bending towards the mid-sagittal plane (LTLE: 1 sample point, FDR=0.04; RTLE: 2 
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sample points, FDR<0.05; Fig. 4D), at the transition between hippocampal body and 
tail. We also found ipsilateral medial shifting at the level of the tail (LTLE: 3 points, 
FDR<0.01; RTLE: 6 points, FDR<0.05; Fig. 4E), which overlapped with the region 
of mirrored inward/outward deformations detected by SNV (Fig. 4A). 

 

Fig. 4. Comparisons between TLE and controls for SPHARM-PDM (A), Surface-based Jacobian 
(B), Gaussian curvature (C), position vectors (D). The geometric means of MEMAX (E) is shown 
to ease the interpretation of C/ D. Color-scales show FDR-corrected p-values. 

4   Discussion and Conclusion 

We previously proposed [9] to quantify local volume changes by computing SJD. In case 
of co-occurrence of volume and positional anomalies this method failed to quantify the 
latter. Here we unambiguously disentangled volume from positional changes by 
quantifying independently both morphological characteristics, i.e. by calculating SJD and 
Gaussian curvatures on the mean meridian axis (MEMAX). 

In agreement with histology [14], SJD detected atrophy in TLE encompassing the 
CA1 subfield. Moreover, our analysis showed that atrophy and positional changes co-
occurred in the hippocampal tail. In this region, while SPHARM-PDM showed mirrored 
deformations, SJD detected atrophy, and shape analysis of MEMAX unveiled medial 
positioning due to bending. 

In conventional medial models, a small number of sample points (e.g., 8) are used 
mainly to reduce registration errors [8, 10-11]. This relatively coarse sampling may 
reduce sensitivity to subtle changes. By using geometric parameters of SPHARM [6], 
MEMAX allowed shape-constrained correspondence without a registration step. We 
found that modulating the number of sample points influenced the sensitivity to detect 
positional changes, with the largest changes at a finer scale of 18 points.  
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A single longitudinal central path would not allow measuring thickness nor retrieve 
the original shapes of an object. Our model was specifically designed to quantify 
positional changes. To achieve this, conventional medial representations would 
require additional processing steps, such as pruning [10-11], to eliminate undesirable 
secondary branches producing irregular skeleton topologies. 

Medial positioning is a feature of hippocampal developmental abnormalities [3] 
that may predispose to TLE. Disentangling atrophy from positioning anomalies may 
provide new insights in the pathogenesis of a variety of other brain disorders, such as 
schizophrenia and autism, in which these morphometric characteristics coexist.  
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Abstract. The trapeziometacarpal joint enables the prehensile function
of the thumb. Unfortunately, this joint is vulnerable to osteoarthritis
(OA) that typically affects the local shape of the trapezium. A novel,
local statistical shape model is defined that employs a differentiable lo-
cality measure based on the weighted variance of point coordinates per
mode. The simplicity of the function and the smooth derivative enable
to quickly determine localized components for densely sampled surfaces.

The method is employed to assess a set of 60 trapezia (38 healthy,
22 with OA). The localized components predominantly model regions
affected by OA, contrary to shape variations found with PCA. Further-
more, identification of pathological trapezia based on the localized modes
of variation is improved compared to PCA.

1 Introduction

The prehensile biomechanical function of the thumb is determined for a large part
by the complex saddle-shaped trapeziometacarpal (TMC) joint (Fig. 1a). Unfor-
tunately, the unique motion of the TMC joint renders trapezium and metacarpal
1 vulnerable to impairment by osteoarthritis (OA), e.g. [7]. Depending on the
progression of the disease, the symptoms range from discomfort to the complete
inability to manipulate objects. Initially, OA manifests as local, destructive shape
changes of the adjacent joint surfaces [4] that result in joint space narrowings
and affect motion patterns. Such shape changes are particularly difficult to di-
agnose using conventional X-ray images. We hypothesize that a model of known
shape variations can aid in detecting pathological changes.

A common approach to describe shape variations is to use active shape mod-
els (ASM) [3]. An ASM models coordinate distributions of surface points on
example shapes by a mean shape and orthogonal modes of variation using prin-
cipal component analysis (PCA). However, PCA typically describes global shape
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variations. It has been observed, mainly in segmentation applications, that these
global descriptions are not always appropriate to model local variations in shape,
e.g. [8]. A well-known alternative to PCA is independent component analyis
(ICA). Although ICA tends to describe shape variations in a more localized
way [10], the ICA components are non-orthogonal. Since a shape representation
using non-orthogonal components is not unique, this complicates a statistical
comparison between healthy and pathological shapes.

Two methods that do preserve the orthogonality between components are
VARIMAX [6] and sparse component analysis (SPCA) as proposed in [2]. Both
techniques aim to minimize the number of point coordinates that are affected by
each mode. However, there is not an explicit optimization for spatially coherent
variations. To improve on this aspect, Alcantara et al. [1] proposed a method for
localized component analysis (LoCA) in hippocampi. This method adapts the
cost function from [2] with a term that penalizes concurrent movement of distant
surface points. A limitation, though, is that the proposed localization term in
[1] does not have a continuous derivative. This makes the method difficult to
optimize using gradient descent methods and thereby sensitive to local minima.

In this work we propose a new method for localized component analysis with
a penalty function for non-locality that has continuous 1st and higher order
derivatives. Using this function a localized statistical model is defined for a set
of 38 healthy and 22 pathological trapezia. The local shape variations are used
in the design of a classifier for identification of pathological trapezia.

2 Materials and Methods

The method proposed in this work uses a point distribution model (PDM) as
used in ASMs [3]. However, instead of using the principal components of vari-
ation, determined by PCA, the components are optimized to explicitly model
local variations. Therefore a novel, differentiable locality measure is derived.

2.1 Active Shape Models

A PDM assumes a set of example shapes, represented by points for which the
correspondence relations to a point on any of the other shapes have been estab-
lished. It comprises a linear model that describes how the surface points xi of
shape Si deviate from the mean x̄ of a set of example shapes:

xi = x̄ + Pbi (1)

where xi =
[
x1 y1 z1 · · · xN yN zN

]T contains the concatenated coordinates
of N points on surface Si, x̄ describes the mean shape, P =

[
p1 p2 · · · pM

]
contains the M modes of variation as columns pj , j = 1, . . . ,M and bi is a
vector with weightings for each mode. When the columns of P are orthogonal,
bi uniquely describes surface Si.

Thus, a set of surfaces is described with the mean coordinate vector x̄ and
a matrix B where each column bi describes a different example surface. The
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(a) (b)

Fig. 1. (a) The TMC joint in a left-handed wrist. (b) Schematic overview of the
weighted variance as a measure for locality. The radius of the red circles indicates
the magnitude of the variation of the surfaces points in a mode. The blue dots are the
weighted means mj . The sum of the lengths of the dashed lines squared, weighted with
the squared magnitudes of the variations is the localization measure in (6).

variance per mode σ2
j (for mode j) is a measure for the ‘importance’ of a mode

and is estimated as the variance of each row of B. It is customary to compute
the relative variance per mode as vj = σ2

j /
∑M

k=1 σ
2
k. PCA is often implemented

using an eigenvalue or singular value decomposition, but the same P can also be
obtained by rotating the components and thereby minimizing [2]:

Cpca(P ) =
∑M

j=1 −vj log (vj) (2)

A common strategy for such a minimization is to pairwise rotate components in
the plane spanned by them until Cpca is minimal [2,1]. This procedure ensures
that the rotating components remain orthogonal to all other components. The
formulation (2) has the advantage that it can be extended to sparse or local
component analysis, where a trade-off between compactness of the model (PCA)
and other criteria is needed such as sparsity or locality.

2.2 Localized Component Analysis

For a localized description of shape variation within a set the following cost
function is minimized (similar to [2,1]):

C (P ) = (1 − λ)Cpca (P ) + λCloca (P ) (3)

where λ is a parameter to balance between compactness (Cpca) and locality
(Cloca). The latter will be derived in this section.

Each column pj of P is normalized (‖pj‖ = 1) and contains the relative
displacements of all surface points compared to x̄. The relative displacement per
surface point (in 3D) is thus given by each triplet of elements of vector pj :

pj = [dj,1; · · · ;dj,N ] (4)
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Here dj,k is the 3-element vector with the displacement of surface point k.
The relative displacement amplitudes of all points are thus given by dj,k =
‖dj,k‖. The newly derived locality measure in this work uses these displacement
measures as weights in a variance analysis of the coordinates of the affected
points in the following manner.

Intuitively, one might observe that points with large relative displacements
should be close together in a description of local variations (Fig. (1b)). In other
words, the distribution of points that have a high value of dj,k should be com-
pact. Therefore, a measure for the compactness of large variations is the variance
of the coordinates weighted by dj,k. The most likely estimate of the set of varying
shapes is given by the mean shape and therefore the weighted variance is com-
puted on the mean cloud x̄. By denoting the coordinate vector for each point in
x̄ as zk =

[
xk yk zk

]T , the weighted variance vector for the j-th mode is given
by

sj =
∑n

k=1 d
2
j,k (zk − mj)

2 where mj =
∑N

k=1 d
2
j,kzk (5)

is the weighted mean point. The weighted mean mi can be interpreted as the
point around which the displacement concentrates. Note that this point does
not have to be positioned on the shape surface. The cost function Cloca is then
composed from the weighted variance vectors as

Cloca (P ) =
∑M

j=1

∑d
l=1 sj,l (6)

where d is the number of dimensions and sj,l is the l-th element of sj . We dub
this method Localized Variance Component Analysis (LVCA).

To obtain localized components, C (P ) is minimized using sequential pairwise
rotations of components as in [2]. This split in pairwise rotations is allowed
because both Cpca (P ) and Cloca (P ) are summations in which the terms that
depend on non-rotated components remain constant. A crucial aspect of our
method is that (5) is by definition a smooth function that has a continuous
derivative. Therefore (3) can be minimized efficiently with a gradient-descent
minimization. We employ the Boyden-Fletcher-Goldfarb-Shanno algorithm.

3 Experiments

The advantages of a localized statistical shape model over a PCA model are
demonstrated in two datasets. Initially, the effect of the parameter λ is studied
in an artificial set of facial contours. Subsequently, the shape changes between
healthy trapezia and trapezia with OA are assessed and used for classification.

3.1 Data

Faces. The ‘faces dataset’ was obtained from the IMM Face Database [9] that
consists of 240 images of faces annotated with 58 points each. The focus was
on the 120 full frontal faces (the others presenting lateral views). Translations,
rotations and scale differences were removed with a Procrustes analysis.
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Trapezia. Two datasets of CT scans were separately acquired: a set of healthy
trapezia and a set with trapezia affected by osteoarthritis.

The normal dataset contains 38 CT scans with a mean age of 51 (21-70) years. All
CT scans were obtained as a result of bilateral scanning over a period of two years
at the Academic Medical Center, The Netherlands. Individuals in this set had
no complaints (pain, dysfunction) regarding included wrists and all wrist bones
were fully developed (epiphyseal lines closed). An experienced musculoskeletal
radiologist (MM) deemed all included wrists as healthy and excluded any wrists
showing signs of: fractures, arthritis, fragments and fusions.

The OA group contained 22 CT scans from patients with a mean age of 58 (40-
72) years. The CT scans were consecutively acquired over a period of one year
from Holstebro Regional Hospital and Herning Regional Hospital, Denmark. The
dataset contained preoperative scans from patients who received a TMC joint
prosthesis. The patients had all been referred to the department of hand surgery
due to thumb pain and dysfunction. They were all graded for TMC OA using
the Eaton Glickel Classication system by an experienced hand surgeon (TBH)
using the anteroposterior (AP) radiographs [4]. The group was comprised of 6
stage II and 18 stage III patients with TMC OA in addition to a single patient
with stage I and a single patient with stage IV TMC OA.

All scans were resampled to have an isotropic voxel size of 0.3×0.3×0.3 mm3.
The voxel sizes in the original scans slightly varied, but were almost isotropic
with voxel volume differences in the order of 10%. The trapezia in both sets were
segmented using a level set based method, with the same parameter settings
as in [5]. 104 points per bone surface, corresponding between the bones, were
established using non-rigid registration similar to [5].

3.2 Faces

The modes of variations determined by the proposed localized component anal-
ysis method (LVCA) were compared to those found by PCA and the method
proposed by Alcantara [1] (LoCA). Alcantara’s method needs a user-defined
function that describes the locality. Therefore, we chose a non-normalized Gaus-
sian: exp

(−q2/2σ2
)
, with σ = 0.02, where q is the distance between points and

the face coordinates are between 0 and 1 in horizontal and vertical direction.
For both LoCA and LVCA, the influence of the parameter λ was studied.

The 10 modes of variation with the largest variance per mode are shown in
Fig. 2. The PCA model (effectively λ = 0 in (3)) clearly distinguishes itself from
the other models by the global variations. For the other extreme case (λ = 1),
both LoCA and LVCA render variations that are too sparse, which is observable
as several modes only perturb a single point. Clearly, such extremely localized
components are not very informative. This behavior arises because the dataset
contains more shapes (120) than point coordinates (2 × 58 = 116). Reversely,
if there are less example shapes than point coordinates, then by definition any
mode of variation must affect more than one point. Setting λ < 1 allows for a
trade-off between local and principal components. This can be seen in the rows
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1 2 3 4 5 6 7 8 9 10

PCA

LoCA
λ=0.25

LoCA
λ=0.50

LoCA
λ=1.00

LVCA
λ=0.25

LVCA
λ=0.50

LVCA
λ=1.00

Fig. 2. The 10 modes of variation with the highest variance in the IMM faces data
for PCA, localized components as in [1] (LoCA) and as proposed (LVCA), both for
λ = 1, 0.5, 0.25. For each mode the deviations from the mean shape at +/- 3 standard
deviations are shown.

with λ = 0.25, 0.5 for both LoCA and LVCA of Fig. 2, which show variations
that are locally concentrated (e.g. around the mouth, nose or eyes), but leave
structures further away unaffected. However, LoCA easily gets stuck in local
minima, which is demonstrated in modes 1 to 4 for λ = 0.25, 0.5, which are
(almost) the same as the corresponding PCA modes. Computing components
was approximately 130 times faster for LVCA than for LoCA.

3.3 Trapezia

The trapezia experiment compared PCA and the proposed LVCA to identify
shape changes between healthy and pathological shapes. Clearly, the number of
point coordinates (3× 104) is vastly larger than the number of example trapezia
(60). To obtain the most localized components possible in this set, λ in (3) was
set to 1. The coefficients of the modes of variations for the PCA and LVCA model
are denoted as bPCA

i and bLVCA
i , respectively. Using the coefficients with the

largest discrepancy between healthy and pathological bones, a linear logistic
classifier is trained. The number of features used is optimized using forward
feature selection. The performance of feature selection and classifier training
were tested by a 50 times repeated cross validation.

Fig. 3a demonstrates that for PCA the coefficients of the healthy and patho-
logical trapezia lie (in general) closer together than for LVCA. This is to be
expected, as the changes of the bone surface due to osteoarthritis are mainly
local. In Fig. 4 the 10 modes with the largest differences between healthy and
pathological coefficients are shown, in which the color reflects the values dj,k×σj

(See (4)), i.e. the average deviation (in mm). Clearly, the modes of the PCA



366 M. van de Giessen et al.

0 10 20 30
1

0.5

0

0.5

1

PCA Mode

N
or

m
. c

oe
ff.

0 10 20 30
1

0.5

0

0.5

1

LVCA Mode

N
or

m
. c

oe
ff.

(a)

0 0.5 1
0

0.2

0.4

0.6

0.8

1

S
en

si
tiv

ity

1 Specificity

PCA
LVCA

(b)

Fig. 3. (a) Normalized means of bPCA
i and bLVCA

i (i.e. expressed in terms of the
corresponding standard deviations (SD)) of the first 30 modes for PCA (left) and
LVCA (right), for healthy (blue,up) and pathological shapes (red,down). Split healthy
and pathological SDs are just below 1. (b) Average ROC curves (over 50 experiments)

for a logistic linear classifier using bPCA
i and bLVCA

i as features.

Fig. 4. The 10 modes of variation, sorted by decreasing variance, for which OA trapezia
differ the most from healthy trapezia, for PCA and LVCA. Both sides of the trapezium
adjacent to the scaphoid (Sc) and metacarpal 1 (MC1) are shown. Intensity increases
with variation amplitude (in mm).

model affect the shape in a more global way than the local modes. Particularly
the local modes 2, 4 (at the bottom edge), 27 and 30 show the locations of
osteophytes, whereas modes 5 and 11 show the flattening of the surface of the
TMC joint. The four last local modes in Fig. 4 (40, 48, 53, 58) contain very
small variations, which are mainly noise. Observe that the global characteristics
of the PCA modes make that they cannot be related to specific bone surface lo-
cations that are affected by osteoarthritis. The average receiver operating curves
(ROC) for the classifiers are shown in Fig. 3b. These curves show that the LVCA
components give a slightly better trade-off between sensitivity and specificity
than the PCA components. We hypothesize that this must be attributed to the
higher sensitivity of LVCA to local deviations as the classification improvement
mainly concerns trapezia with small osteophytes and that deviate as in LVCA
mode 11.
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4 Discussion

We proposed a new method for efficient modeling of local shape variations.
A novel, differentiable locality measure was defined, which effectively equals
a 3D weighted variance of the point coordinates per mode. The simplicity of
the function and the smooth derivative enable to quickly determine localized
components for densely sampled surfaces. The LVCA models based on the IMM
faces dataset clearly show that the locality of the modes depends on the trade-off
parameter λ. For (relatively) small sets of densely sampled shapes, such as the
trapezia, the number of components in the trainingset is sufficiently limited to
obtain clinically meaningful local shape variations for λ = 1. Larger, sparser
training sets require a λ < 1. Estimating LVCA components was shown to
be less sensitive to local minima and 2 orders of magnitude faster than LoCA
components in the IMM faces set. The LVCA modes corresponded to trapezoid
surfaces variations where changes are expected from clinical practice. Reversely,
for PCA components the variations were global. Particularly, the area around
the facet adjacent to the scaphoid bone was (incorrectly) detected to contain
important variations. Classification of pathological trapezia showed a consistent
improvement with LVCA coefficient features, compared to PCA.
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Abstract. An ensemble of biological shapes can be represented and
analyzed with a dense set of point correspondences. In previous work,
optimal point placement was determined by optimizing an information
theoretic criterion that depends on relative spatial locations on differ-
ent shapes combined with pairwise Euclidean distances between nearby
points on the same shape. These choices have prevented such methods
from effectively characterizing shapes with complex geometry such as
thin or highly curved features. This paper extends previous methods for
automatic shape correspondence by taking into account the underlying
geometry of individual shapes. This is done by replacing the Euclidean
distance for intrashape pairwise particle interactions by the geodesic dis-
tance. A novel set of numerical techniques for fast distance computa-
tions on curved surfaces is used to extract these distances. In addition,
we introduce an intershape penalty term that incorporates surface nor-
mal information to achieve better particle correspondences near sharp
features. Finally, we demonstrate this new method on synthetic and
biological datasets.

1 Introduction

A well established method for performing statistics on an ensemble of shapes is
to compare configurations of corresponding landmarks placed on the individual
shapes. In recent years, several methods have proposed an automatic placement
of landmarks in a way that captures statistical properties of an ensemble [1,2].
The method of Cates et al [1] uses a formulation of ensemble entropy to deploy
a dense set of landmarks, or particles, which assign correspondences between
shapes within a population. The positions of the particles on the shape surfaces
are optimized using a variational framework that tries to find a balance between
model simplicity via minimum entropy, and geometric accuracy of the surface
representation. However, medical or biological objects shapes are often composed
of sharp features and regions of high curvature. In such cases, nearby particles
in the ambient space may be separated by a large distance on the object’s sur-
face (see Fig. 1). Thus, the Euclidean distance measure cannot capture correctly
the underlying local geometry and prevents the method from producing a faith-
ful shape representation. This limitation reflects a failure of Euclidean distance
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Fig. 1. Points near sharp features (left) are not able to achieve good distributions
with Euclidean distance, because they do not lie in the same tangent space, which is
necessary for movement that is constrained to the surfaces. Points may be nearby and
interact (center) even though they sample very different parts of the surface. Points
on nearby features (right) on different shapes (blue and green) can come into incorrect
correspondence if the system considers only distance.

to account for the intrinsic distances between points on the surface, suggesting
geodesic distance as a better choice. However, geodesic distances are generally
not computable in closed form, and interparticle interactions are part of the in-
ner loop of an interactive optimization process. Thus, the computational burden
of geodesics are prohibitive. This paper makes several contributions that enable
better modeling of ensembles composed of shapes with a complex geometric
structure. First, we incorporate geodesic distance measures into the framework
proposed by Cates, et al [1]. While accurate geodesic distance computation is
unwieldy for implicit surfaces, very fast methods exist to compute geodesic dis-
tances between vertices of 3D mesh representations of shapes. Thus, we propose
precomputing all pairwise distances on a somewhat fine 3D mesh of an input sur-
face and interpolate, as required, in the process of optimizing intrashape particle
interactions. To address mismatches of correspondences on highly curved features
across different shapes, we introduce an intershape penalty that accounts for the
behavior of normals on highly curved geometry. Hence, the second contribution
of our paper is to integrate this intershape penalty term into the variational
framework for model optimization given in [1] to improve particle correspon-
dences near sharp features. As a final contribution we demonstrate the use of a
correspondence-based method for the analysis of highly curved (or nonregular)
shapes—the left ventricle myocardium of the human heart—which has, so far
not feasible with point correspondences.

2 Background

In the following section we provide a brief overview the particle-system corre-
spondence optimization method as proposed in [1]. The general strategy of this
method is to represent correspondences as point sets that are distributed across
an ensemble of similar shapes by minimizing an objective function that quantifies
the entropy of the system. We also describe an efficient, fine-grained algorithm
for solving the eikonal equation on triangular meshes, as proposed by Fu et al [3]
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Correspondence Optimization. Let us define a surface as a smooth, closed
manifold of codimension one, which is a subset of R

d (e.g., d = 3 for volumes).
We sample the surface S ⊂ R

d using a discrete set of N points that are con-
sidered as random variables Z = (X1,X2, . . . ,XN )T ,X ∈ R

d drawn from a
probability density function (PDF), p(X). We denote a realization of this PDF
with lower case, and thus we have z = (x1,x2, . . . ,xN )T , where z ∈ SN . We
refer to the positions x as particles, and to a set of particles as a particle sys-
tem. The amount of information encoded in this random sampling is, in the
limit, the differential entropy of the PDF, given by H [X] = −E{log p(X)},
where E{·} is the expectation. Approximating the expectation by the sample
mean, we have H [X] ≈ − 1

Nd

∑
i log p(xi). To determine the probability of a

particle’s position, p(xi), [1] uses a nonparametric Parzen-window density es-
timation given by a mixture of multivariate, isotropic Gaussian kernels with
standard deviation σ that determines the strength of particles interaction with
N neighbouring particles within the defined window. An ensemble comprised of
M surfaces, E = z1, . . . , zM can be described by a Nd × M matrix of particle
positions P = (xk

j ), where k = 1, . . . ,M and j = 1, . . . , N . Let zk ∈ R
Nd be an

instance of a random variable Z, then, the combined ensemble and shape cost
function is defined by

Q = H(Z) −
∑

k

H(P k) (1)

This cost function is composed of two interacting terms. The first term pro-
duces a compact distribution of samples in shape space, while the second term
provides uniformly-distributed correspondence positions on the shape surfaces,
to achieve a faithful shape representation. The optimization process of this cost
function is defined via gradient descent as described in [1].

Fast Geodesic Distance Computation. The use of Euclidean distance be-
tween particles in the Parzen-window density estimation in [1] requires that
nearby particles interact in the local tangent plane of the surface. However, it is
not the case for thin structures with high curvature, such as the one illustrated in
Fig. 1 (left). To address this, we replace the Euclidean distance in the kernel by
the geodesic interparticle distance. However, this modification demands a large
number of pairwise geodesic distance computations. Such computations are not
feasible without the recent developments in fast, parallel algorithms for solving
hyperbolic partial differential equations (PDEs) as well as extremely fast SIMD
hardware in the form of graphics processors (GPUs). The distance between each
point a on the surface and every other point, is given by the solution to the
eikonal equation |∇u| = 1, as discussed in [4], using the boundary condition
u(a) = 0. The computation of distances to many thousands of points on large
ensembles of shapes is feasible only if the eikonal equation can be solved in a
small fraction of a second. The fast iterative method (FIM) [4] for regular grids
is not worst-case optimal, but is extremely efficient on parallel, SIMD archi-
tectures, such as GPUs. Here, we use an extension of the FIM for triangular
meshes [3]. This algorithm computes, for instance, distances between nodes on
a mesh with thousands of vertices in less than 30 seconds on a GPU.
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3 Methodology

The input to the shape correspondence system is a collection of implicitly de-
fined surfaces. For this paper, the input surfaces are binary segmentations, and
we use the preprocessing, initialization, and particle optimization pipeline de-
scribed in [1]. Here we describe the integration of the geodesic distance for inter-
particle interactions and the surface normal based penalty term for intershape
correspondence into the framework described in Sec. 2.

Particle Position Optimization using Geodesic Distances. A triangu-
lation of each input surface is generated using the algorithm described in [5].
An example triangulation is shown in Fig. 2(a) along with the corresponding
synthetic shape. The numerical technique for fast distance computation on 3D
triangulated surfaces described at the end of Sec. 2 is then used to precompute
geodesic distances between each vertex and all other vertices within a prescribed
distance, dmax. The parameter dmax is chosen to coincide with the limited range
of influence of the Gaussian kernels that control the range of influence of each
particle. This truncation results in a sparse, symmetric matrix of geodesic dis-
tances. The entries in this matrix are then converted into a fixed point format
and stored using a List of Lists (LIL) representation for efficient memory us-
age and fast access. We call this matrix MG such that DG(v1, v2) = MG[v1, v2],
where DG(v1, v2) is the geodesic distance between vertices v1, v2. Geodesic dis-
tances between particle positions on the implicit surface can now be computed
via a barycentric interpolation scheme described below.

(a) (b)

Fig. 2. (a) An example of a triangle mesh used for geodesic distance computations.
(b) Configuration for two-layered interpolation of geodesic distance between arbitrary
points: x and y are contained in triangles defined by vertices (x1, x2, x3) and (y1, y2, y3)
respectively. The geodesic distances between vertices for all shapes are precomputed
on a GPU.

To use this discrete set of distances between particles, which lie in the volume
and are constrained to lie on the implicit surface, we interpolate the mesh-
vertex distances to the faces of the triangles. This requires two layers of linear
interpolation on the faces of the mesh. Let the barycentric coordinates of a point
x in a triangle Tx defined by vertices (v1, v2, v3) be given by (α, β, γ) such that



372 M. Datar et al.

the location of x can be given as x = αv1 + βv2 + γv3 where α + β + γ = 1.
Consequently, any function of x can be interpolated as f(x) = αf(v1)+βf(v2)+
γf(v3) provided its value is known at all vertices in the mesh. For the case of
geodesic distances, the function f is the distance to another arbitrary point y,
which can be evaluated on each vertex using this same interpolation scheme
for the triangle Tx that contains y. To compute DG(x, y) in a fast and efficient
manner, we first determine the triangle faces on the mesh that contain points x
and y, by projecting them onto the nearest face in the mesh. Let these triangles
defined by vertices (x1, x2, x3) and (y1, y2, y3), as shown in Fig. 2. Since the
geodesic distance is a function defined between every pair of vertices in the
mesh, we can approximate the geodesic distance between points x and y as

DG(x, y) ≈ αDG(x1, y) + βDG(x2, y) + γDG(x3, y), (2)
DG(xi, y) ≈ αDG(xi, y1) + βDG(xi, y2) + γDG(xi, y3).

Each DG(xi, yi) is simply an entry in the matrix MG as described above. Thus,
using this two-layered interpolation scheme, we can approximate geodesic dis-
tances between particle positions on the implicit surface. The Gaussian forces of
repulsion governing the motion of particles can then be computed as a function
of these geodesic distances to improve sensitivity to the underlying geometry.

Correspondence Optimization with Surface Normals. The cost function
described in Eq. 1 relies on particle positions to find a balance between a com-
pact ensemble representation and a good distribution of particles on each surface.
However, with an ensemble containing highly curved or convoluted surfaces, like
those shown in Fig. 1, a reliance on only positional information may lead to in-
correct correspondences. To address this shortcoming, we propose the addition
of an intershape penalty term based on surface normals to disambiguate corre-
spondences near highly curved features. Thus, we associate with each particle
on each surface a pair of d-tuples (xi, ni) ∈ R

d ×S2, where S2 is the unit sphere.
We denote the total collection of N normals across M shapes as V . With the

assumption that N > M . Assuming a Gaussian model with a covariance Σ, we
can compute the entropy

H(V ) ≈ 1
2

log |Σ| ≈ 1
2

log |
∑

i

∑
k

n̂k
i · (n̂k

i )T | (3)

For the ith particle on the kth shape, n̂k
i = d(nk

i , n̄i), where n̄i is the Fréchet
mean defined in [6]. Since the normals are points on the Riemannian manifold
MεS2, n̂k

i = Logn̄i(nk
i ) [6]. In the tangent plane Tn̄iM, we have

n̂k
i = Logn̄i(n

k
i ) =

Pt(nk
i − n̄i) arccos(nk

i · n̄i)
1 − (nk

i · n̄i)2
(4)

where Pt is the idempotent projection matrix given by (I − n̄i · (nk
i )T ). Since Σ

will not have a full rank in practice, we implement a regularization similar to that
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described in [1] to introduce a lower bound on the eigenvalues. The optimization
problem in Eq. 1 can now be reformulated as

Q = H(Z) −
∑

k

H(P k) + H(V ) (5)

The Riemannian distances are functions of normals; n̂k
i = f(nk

i ), which in turn
are a function of position; nk

i = n(xk
i ), the gradient descent on H(V ) with respect

to particle position xi is given by the chain rule:

∂H(V )
∂xk

i

=
∂H(V )
∂n̂k

i

· ∂f(nk
i )

∂nk
i

· ∂n(xk
i )

∂xk
i

(6)

This incremental update gets projected onto the tangent plane of the surface, as
part of the algorithm described in Sec. 2, in order to maintain the constraint that
particles remain on the surface. As with the geodesic distances, the curvature,
∂nk

i /∂x
k
i , is precomputed. Here we use the formulation of curvature for the level

sets of the volume using finite differences (combined with a Gaussian kernel of
standard deviation 1.0). The means of the normals are updated after each full
iteration (one update for every particle on every shape).

4 Results and Discussion

This section details experiments designed to illustrate and validate the proposed
method. First, we present an experiment with synthetically generated coffee bean
shapes, that consist of an ellipsoid with a slot or indentation, creating a high-
curvature feature that would confound the previous approaches. We also present
an application to a study of group differences in the left ventricular myocardium.

Synthetic Data
Computational solid geometry methods were used to compute the intersection of
a small ellipsoid with axes a, b and c, and a larger ellipsoid with axes A, B and C,
to create a coffee bean shape. The slot was then moved and scaled stochastically,
to create a population of 10 coffee bean shapes. The position of the slot was
chosen from a uniform distribution in the range [−B/3, B/3], and its width was
sampled from a Gaussian distribution of μ = 8 and σ = 2. Both, the method
in [1] and the proposed method were applied to distribute 1024 correspondences
across the ensemble. Both methods identified two dominant modes of variation,
with significantly different amount of leakage into smaller modes. These modes
are illustrated in Fig. 3 for both the methods, to 2 standard deviations. The
proposed method lost 4% of the total variation into smaller modes, compared
to 16% lost by the original method. Thus, the proposed method was able to
characterize the variation in the population better than the original method,
while remaining faithful to the original shape representation (as seen from the
reconstructions in Fig. 3).

Application to Group Comparison. We applied the proposed methods to
study group differences in the left ventricular myocardium of ischemic patients
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-2.0 0.0 2.0 -2.0 0.0 2.0

Fig. 3. Mean shape computed from the proposed method (left) and the original method
(right), projected onto the first (top) and second (bottom) PCA modes, and ±2 stan-
dard deviations

Fig. 4. Visualizing mean differences between normal and ischemic groups (blue denotes
expansion and yellow denotes contraction) using [1] (top row) and the proposed method
(bottom row)

and non-ischemic controls, using segmented volumes of the left ventricular my-
ocardium at end diastole (ED) as inputs. The proposed method was used to
initialize and optimize 1024 correspondences across the ensemble of 21 (12 pa-
tients, 9 controls) shapes. We then used parallel analysis to project the corre-
spondences into a lower dimensional space determined by choosing an optimal
number of basis vectors from principal component analysis (PCA). A standard,
parametric Hotelling T 2 test was used to test for group differences, with the null
hypothesis that the two groups are drawn from the same distribution. In this
case, the hypothesis test results in a highly significant p-value of 0.005, with 7
PCA modes chosen by parallel analysis.

Fig. 4 (bottom row) shows the differences between the mean shape surfaces
for the normal and ischemic groups. To visualize the group differences driving
statistical results, we use the linear discriminant vector, rotated from PCA space
into the full dimensional shape space, and mapped onto the mean group shape
surfaces to give an indication of the significant morphological differences between
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groups. The above experiment was also conducted using the method described
in [1]. The resulting group differences, visualized in Fig. 4 (top row), were also
found to be statistically significant with a p-value of 0.005 using the Hotelling
T 2 test. However, the shape differences obtained using the proposed method are
found to be more consistent with previously published results presented in [7],
as compared to those obtained using [1].

5 Conclusion and Future Work

This paper extends the method given by [1] to improve particle distribution and
correspondences across an ensemble of highly convoluted surfaces. The first con-
tribution is the inclusion of geodesic distance to compute the intrashape particle
interactions, which results in improved sensitivity of the particle distribution to
the underlying surface geometry. The second contribution is the introduction of
an intershape penalty term based on surface normals, to improve correspondence
near sharp features. Results on synthetic and real data indicate that the pro-
posed method provides a practical solution to compute correspondence models
of ensembles of highly convoluted surfaces in an efficient and robust manner.
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Abstract. Genetic mapping of hippocampal shape, an under-explored
area, has strong potential as a neurodegeneration biomarker for AD and
MCI. This study investigates the genetic effects of top candidate sin-
gle nucleotide polymorphisms (SNPs) on hippocampal shape features as
quantitative traits (QTs) in a large cohort. FS+LDDMM was used to
segment hippocampal surfaces from MRI scans and shape features were
extracted after surface registration. Elastic net (EN) and sparse canonical
correlation analysis (SCCA) were proposed to examine SNP-QT associ-
ations, and compared with multiple regression (MR). Although similar
in power, EN yielded substantially fewer predictors than MR. Detailed
surface mapping of global and localized genetic effects were identified by
MR and EN to reveal multi-SNP-single-QT relationships, and by SCCA
to discover multi-SNP-multi-QT associations. Shape analysis identified
stronger SNP-QT correlations than volume analysis. Sparse multivariate
models have greater power to reveal complex SNP-QT relationships. Ge-
netic analysis of quantitative shape features has considerable potential
for enhancing mechanistic understanding of complex disorders like AD.

1 Introduction

Recent advances in brain imaging and high throughput genotyping techniques
enable new approaches to study the influence of genetic variation on brain struc-
ture and function. Existing imaging genetics studies employ summary statis-
tics (e.g., volume, thickness) [7] and detailed voxel-wise measures [8] as pheno-
types to discover genetic risk factors. Genetic mapping of hippocampal shape, an
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Table 1. Participant characteristics

Category HC MCI AD p-value

Gender (M/F) 91/75 184/103 68/61 0.041
Baseline Age (years; Mean±STD) 76.18±4.91 74.99±7.21 75.36±7.78 0.198
Education (years; Mean±STD) 16.20±2.63 15.71±2.98 15.07±3.04 < 0.005
Handedness (R/L) 155/11 260/27 121/8 0.411

under-explored area, has strong potential as a neurodegeneration biomarker for
Alzheimer’s disease (AD) and mild cognitive impairment (MCI). The present
study investigates genetic effects of top candidate single nucleotide polymor-
phisms (SNPs) on hippocampal shape features in a large cohort.

Massive univariate analyses are often used in imaging genetics [7,8], and can
quickly identify important associations between individual SNPs and imaging
quantitative traits (QTs). However, it treats SNPs and QTs as independent
units, and overlooks relationships in which multiple SNPs jointly effect multiple
QTs. In this work, two multivariate sparse models, the elastic net and sparse
canonical correlation analysis, are used to study genetic effects on hippocampal
shape and are expected to have greater power to reveal complex SNP-QT rela-
tionships. These models could enable discovery of a small set of relevant features
which may provide potential surrogate biomarkers for therapeutic trials.

2 Materials and Methods

Magnetic resonance imaging (MRI) and genotype data were obtained from the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) database [7]. ADNI is a
landmark investigation sponsored by the NIH and industrial partners designed
to collect longitudinal neuroimaging, biological and clinical information from
over 800 participants that will track the neural correlates of memory loss from
an early stage. Further information can be found at www.adni-info.org. 582 non-
Hispanic Caucasian participants (166 Healthy Control (HC), 287 MCI, 129 AD
participants) with segmented hippocampal data and quality controlled (QC)
genotype data were included in this study (Table 1).

Hippocampal Shape: Hippocampi were segmented from the baseline MRI
scans by applying probabilistic-based FreeSurfer and Large Deformation Diffeo-
morphic Metric Mapping (FS+LDDMM) [3]. This fully-automated segmenta-
tion pipeline first uses FreeSurfer subcortical labeling to provide information for
initialization, and then employs LDDMM to generate a diffeomorphic transfor-
mation so that anatomical structures can be mapped consistently and smoothly.
To remove size effect, total intracranial volume (ICV) was adjusted to a con-
stant (i.e., mean ICV of all HCs) and each hippocampus was scaled accordingly.
Rigid body transformation was then applied to register each hippocampus to a
template (defined as the mean of all HCs) in a least square fashion. Surface sig-
nals were extracted as the deformation along the surface normal direction of the
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template, and were adjusted for baseline age, gender, education, and handedness
using the regression weights derived from the HC participants (Table 1).

Candidate SNPs: The SNP data were genotyped using the Human 610-Quad
BeadChip (Illumina, Inc., San Diego, CA). We focused on top AD genetic risk
factors, including top 23 SNPs from the AlzGene database [1] as of 09/01/2010,
and a SNP from the TOMM40 gene adjacent to the APOE gene. The TOMM40
SNP was included because it was unclear whether the SNP played a unique role in
AD or served solely as an APOE marker. Four SNPs were excluded due to failed
imputation or quality check. Among the remaining 20 SNPs (Fig. 1(a)), 10 SNPs
were available from the ADNI data and 10 SNPs were successfully imputed using
MACH v1 [4] and IMPUTE v2 [6] software packages. The QC criteria for the
SNP data include (1) call rate check per subject and per SNP marker, (2) gender
check, (3) sibling pair identification, (4) the Hardy-Weinberg equilibrium test, (5)
marker removal by the minor allele frequency and (6) population stratification.
The selected 20 SNPs were numerically coded to test additive genetic effect, i.e.,
dose dependent effect of the minor allele.

Overall Strategy: For comparative analysis, multiple regression models were
fit using all 20 SNPs to predict the hippocampal volume (mean of left and right,
covaried for age, gender, education, handedness and ICV) and, in addition, the
surface signal at each location or vertex on the hippocampal surface. The elastic
net regression was then applied to identify a small set of relevant SNPs for
each surface location. Finally, sparse canonical correlation analysis was used to
examine more complex relationships between SNP sets and surface regions.

Multiple Regression: Under the additive model, the surface signals are linearly
related to the number of minor alleles. This implies, assuming no interactions
between SNPs, the multiple regression model Si,j = β0,j + β1,jSNPi,1 + · · · +
β20SNPi,20 + εi,j , where Si,j is the surface signal at vertex j for subject i. The
model utility F test was used to test the null hypothesis of no relationship
between Sj and the 20 SNPs for the j = 1, . . . , 13222 vertices. Gaussian random
field theory (RFT) methods [13], implemented in SurfStat [12], were used to
ensure the family-wise error rate did not exceed 0.05. While this procedure can
detect any linear relationship between Sj and the SNPs this flexibility comes at
the cost of reduced power to detect a relationship between a specific SNP and
Sj . Sparse regression methods, which seek to accurately predict the response
variable using a minimal number of predictors, address this and other regression
shortcomings by integrating variable selection and model estimation.

Elastic Net Regression: The ability of sparse regression methods to detect
and model genetic relationships was investigated by estimating the above model
at each hippocampal location using elastic net (EN). EN produces sparse solu-
tions by adding a coefficient magnitude penalty to the least squares objective
function [14]. More specifically, the EN coefficient estimates minimize the pe-
nalized least squares objective function ElNetj(β0, β1, ..., β20) =

∑n
i=1(Si,j −

Ŝi,j)2 + λPα(β1, . . . , β20), in which Ŝi,j = β0,j + β1,jSNPi,1 + · · · + β20,jSNPi,20
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and the penalty P̂α(β1, . . . , β20) = α
∑20

k=1 |βk| + (1 − α)
∑20

k=1 β
2
k is a convex

combination of the L1 lasso and L2 ridge penalties. This objective function has
two parameters: λ controls the amount of shrinkage; and α adjusts the trade-off
between lasso and ridge to capitalize on their strengths and minimize their weak-
nesses. The preceding regression analysis was duplicated using the Glmnet [2,9]
implementation of EN with α = 0.5 and λ chosen using 10-fold cross-validation.

Sparse Canonical Correlation Analysis: The surface signals represent sam-
ples of a smooth function defined on the hippocampus. Methods which capital-
ize on the resulting correlation between surface signals at neighboring vertices
by modeling the joint relationship between multiple surface signals and SNPs
should provide increased power to detect any relationships present [10]. To inves-
tigate this possibility for linear relationships, sparse canonical correlation anal-
ysis (SCCA) was used. Let Xi = (SNPi,1, SNPi,2, . . . ,SNPi,20)′ be the vector
of the 20 SNPs for subject i and Yi = (Si,1, Si,2, . . . , Si,m)′ be the vector con-
sisting of the surface signals at the m = 13, 222 vertices. Canonical correlation
analysis (CCA) produces linear combinations (canonical variates) Uj = A′

jY and
Vj = B′

jX, j = 1, . . . , 20, such that the correlation between Uj and Vj is maxi-
mized subject to orthogonality constraints. Two major weaknesses of CCA are
that it requires the number of observations n to exceed the combined dimension
of Y and X (here 13,242) and that it produces nonsparse Aj and Bj which are
difficult to interpret. The SCCA method employed here ameliorates these weak-
nesses using the penalized matrix decomposition approach [11]. This method
maximizes the correlation between U and V subject to the coefficient vector con-
straints P1(A) ≤ c1 and P2(B) ≤ c2. Here the L1 penalty P (A) =

∑p
k=1 |A(k)|

was used for both P1 and P2. Values for c1 and c2 were chosen using Witten and
Tibshirani’s permutation tuning procedure. The SCCA analyses were computed
using the R package PMA (Penalized Multivariate Analysis v.1.0.7.1).

3 Results

In the volumetric analysis of 20 SNPs, only APOE SNP (rs429358) has a signif-
icant (p ≤ 0.0004) effect on the hippocampal volume. The Pearson correlation
coefficient between the APOE SNP and hippocampal volume was -0.159.

Fig. 2(a) shows the map of F-statistics of multiple regression (MR). Regions
with F ≥ 3.0 and spatial extent ≥ 2.4 resels have a random field theory adjusted
p-value ≤ 0.05. Fig. 2(b) shows the mean of the absolute residuals (fitted errors)
over all subjects. The residual map of elastic net (EN) is almost identical to
Fig. 2(b), showing similar predictive power between EN and MR.

However, the predictors selected by EN are much more sparse than those of
MR (see Fig. 1(a-c)). Combining Fig. 1(c) with (a) and (b), we can extract the
coefficient map for a specific SNP and examine localized genetic effects on the
surface. Shown in Fig. 1(d-g) are examples of the APOE and TOMM40 SNPs,
which elucidate the benefit of sparsity achieved in EN compared to MR. While
MR indicates a global effect on the surface (f,g), EN identifies localized regional
effects (d,e) and yields useful information for biomarker discovery.
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Fig. 1. (a-c) Heat maps of regression coefficients for elastic net (a) and multiple regres-
sion (b), where the hippocampal surface location (bottom row in (a,b)) is color-coded
and mapped in (c). (d-e) Surface map of genetic effects of the APOE and TOMM40
SNPs estimated by elastic net (d,e) and multiple regression (f,g).
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Fig. 2. (a) F-map of multiple regression. (b) Mean of absolution residuals.

Fig. 3. (a-b) Weights of canonical vectors ordered by descending correlations between
surface signals (a) and SNPs (b). (c-e) Surface maps of the top three canonical vectors:
the first three rows in (a) are mapped onto the surface.

Fig. 3 shows the results of SCCA. Weights of 20 canonical vectors for vertex-
based surface signals (a) and SNPs (b) were color-coded as heatmaps. The top
three rows in (a) were mapped onto the hippocampal surface and shown in (c-e),
respectively. In (a-b), canonical vector pairs (i.e., corresponding rows in (a-b))
were ordered by descending correlation between surface signals and SNPs; and
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the correlation coefficients of all 20 pairs ranged from 0.26 to 0.17 in descending
order. This clearly demonstrated the increased power of shape analysis, since
the strongest correlation between each of 20 SNPs and hippocampal volume in
our volumetric analysis was between the APOE SNP and hippocampal volume
with a magnitude of 0.159. This was corroborated by the fact that the maximum
absolute correlation between the surface signal and APOE SNP was 0.20 among
all vertices and was 0.19 among the vertices with F ≥ 3.0.

In addition, the parameters for SCCA were automatically tuned by 100 per-
mutations to increase the sparsity and smoothness. As a result, the identified
surface locations, correlated with each SNP were more sparse than those for the
same SNP from EN (see Fig. 3(a-b) vs Fig. 1(a)). Interestingly, the sparsity was
maximized for SNPs, since each canonical SNP vector selected exactly one SNP
(Fig. 3(b)), yielding a simple model easy to interpret (i.e., multi-SNP-multi-
location associations became single-SNP-multi-location ones).

Fig. 3(c-d) show surface regions related with the APOE SNP (rs429358) at
different correlation levels. The correlated vertices in Fig. 3(c-d) have non-zero
weights as in Fig. 1(d,f), but they are localized to smaller regions in Fig. 3(c-
d). Fig. 3(e) shows surface regions related with the TOMM40 SNP (rs2075650).
All vertices with non-zero weights in Fig. 3(e) also have non-zero weights in
Fig. 1(e,g). However, compared to Fig. 1(e,g), vertices with non-zero weights in
Fig. 3(e) are highly sparse and spatially localized to smaller areas. These two
types of patterns are complimentary: the associations derived from EN are multi-
SNP-single-location, while those found in SCCA are single-SNP-multi-location.

Five-fold cross-validation of SCCA yielded equally sparse SNP-QT patterns.
The most consistent canonical component identified in all five trials is similar to
the top finding using the entire data: the genetic vector contains only APOE, and
the phenotype vector shows a pattern like Fig. 3(c). Training and testing corre-
lation coefficients are 0.279±0.017 (mean ± SD) and 0.175±0.068, respectively,
while the magnitudes of correlation coefficients between APOE and hippocampal
volume in the same data are 0.159 ± 0.012 and 0.163 ± 0.056, respectively.

4 Discussion

Detailed surface mappings of localized genetic effects were identified from our
hippocampal shape analysis. Different from existing massive univariate analy-
ses [7,8], this study is among the first to simultaneously use multiple response
variables with multiple predictors for analyzing real neurogenomic data [5,10]
and may be the first for studying genetic influences on hippocampal morphom-
etry using this paradigm. In our analyses, we combined two promising sparse
multivariate models with a typical morphometric method. Investigation of other
statistical models (e.g., [10]) and surface metrics, coupled with pathway analyses,
will be important future topics to potentially yield new discoveries. As the best
known AD genetic risk factor, APOE was the most prominent signal in all of
our analyses, which to some extent validated the efficacy of our methods. Repli-
cation in independent large samples will be important to confirm the imaging
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genetic findings. Genetic analysis of quantitative shape features has considerable
potential for examining disease mechanisms from a novel perspective that can
inform selection of imaging biomarkers for early detection and therapeutic trials.
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Abstract. This paper proposes a novel algorithm to extract feature
landmarks on the vestibular system (VS), for the analysis of Adolescent
Idiopathic Scoliosis (AIS) disease. AIS is a 3-D spinal deformity com-
monly occurred in adolescent girls with unclear etiology. One popular
hypothesis was suggested to be the structural changes in the VS that
induce the disturbed balance perception, and further cause the spinal
deformity. The morphometry of VS to study the geometric differences
between the healthy and AIS groups is of utmost importance. However,
the VS is a genus-3 structure situated in the inner ear. The high-genus
topology of the surface poses great challenge for shape analysis. In this
work, we present a new method to compute exact geodesic loops on the
VS. The resultant geodesic loops are in Euclidean metric, thus charac-
terizing the intrinsic geometric properties of the VS based on the real
background geometry. This leads to more accurate results than existing
methods, such as the hyperbolic Ricci flow method [13]. Furthermore,
our method is fully automatic and highly efficient, e.g., one order of
magnitude faster than [13]. We applied our algorithm to the VS of nor-
mal and AIS subjects. The promising experimental results demonstrate
the efficacy of our method and reveal more statistically significant shape
difference in the VS between right-thoracic AIS and normal subjects.

1 Introduction

In medical image analysis, surface-based morphometry has been commonly ap-
plied for disease analysis. For example, in human brain mapping, neuroscientists
are interested in detecting shape changes or abnormalities on brain cortical sur-
faces for analyzing various brain diseases. Hippocampal surface morphometry
has also been an active research area for the analysis of Alzheimer’s disease.

Although surface-based shape analysis has been extensively studied, most
existing methods can only deal with surfaces with simple topology. For exam-
ple, both the brain cortical surface and the hippocampal surface are of genus
0. Dealing with high-genus surfaces are apparently much more difficult, due
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to their complicated topology. One typical example of high-genus anatomical
structures is called the vestibular system (VS). The VS is a genus-3 structure
situated in the inner ear, which is responsible for detecting head movements and
sending postural signals to the brain. The morphometry of VS plays an impor-
tant role in the analysis of various diseases such as the Adolescent Idiopathic
Scoliosis (AIS) disease. AIS is a 3D spinal deformity which affects about 4%
schoolchildren worldwide. The etiology of AIS is still unclear but believed to
be a multi-factorial disease. One popular hypothesis was suggested to be the
structural changes in the VS that induce the disturbed balance perception, and
further cause the spinal deformity[1,4,9]. Some recent works have also revealed
the statistical difference in global morphology of the VS between right-thoracic
AIS and normal controls [8,13]. Hence, analyzing the shape of VS is crucial for
understanding AIS. However, since the VS has high-genus topology, it poses
great challenge for shape analysis, and an effective algorithm is thus needed.

In this work, we proposed a novel algorithm to effectively extract feature land-
marks on the VS, for the disease analysis of AIS. The basic idea is to compute
exact geodesic loops on the VS. The resultant geodesic loops are in Euclidean
metric, thus characterizing the intrinsic geometric properties of the VS based
on the real background geometry. This leads to more accurate results than the
existing methods, such as the hyperbolic Ricci flow method [13]. Furthermore,
our method is fully automatic and highly efficient, e.g., one order of magnitude
faster than [13]. To test the effectiveness of our proposed method, we applied the
algorithm to the VS of normal and AIS subjects. Experimental results demon-
strate the efficacy of our method and reveal more statistically significant shape
differences in the VS between right-thoracic AIS and normal subjects.

2 Related Work

Shi et al. [8] proposed to consider the radii of the canals for the global morphology
of the VS. The drawback was that the complete geometry of the surface has not
been fully analyzed. In [13], Zeng et al. proposed to extract the geodesic spectra
of the VS to compare geometric difference between the normal and unhealthy
groups. This algorithm requires the computation of uniformization metric, which
is computed by discrete Ricci flow or Yamabe flow [5]. Since both curvature flows
are highly non-linear PDEs, the computational costs are very high. It is known
that embedding surfaces of genus g ≥ 2 onto the hyperbolic space H

2 could
be error prone due to the numerical truncation, the input meshes must come
with good quality (i.e., the vertices are distributed uniformly over the surface)
and contain small number of vertices (usually a few thousands). Compared to
this approach, our method is computationally efficient and numerically stable.
Furthermore, the computed geodesic of [13] was based on the hyperbolic metric
and hence it was not reflecting the real background geometry of the VS.

In this paper, we suggest computing 2g characteristic geodesic loops and use
their lengths for the purpose of AIS disease analysis. A discrete geodesic on
a polyhedral surface in R

3 is defined to be a polyline that is locally shortest
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everywhere [7]. In detail, Mitchell et al. [6] pointed out the requirements of a
discrete geodesic l: 1) For each face f , the intersection between f and l must be
empty or a line segment; 2) For each edge that l intersects, the entry angle must
equal to the departure angle; and 3) For each vertex that l passes through, the
two angles passed through by l must be no less than π.

Closed geodesics are also called geodesic loops. Though defined on polygonal
meshes, discrete geodesics may pass through the face interior, rather than re-
stricted on mesh edges. They are intrinsic to geometry and insensitive to the
mesh tessellation and resolution. Therefore, the resultant spectra depend on the
actual geometry of the input VS geometry, independent of the triangulation.

To our knowledge, very few algorithms are known for the geodesic loop prob-
lem. Wu and Tai [11] proposed the discretized geodesic curvature flow (dGCF) to
compute geodesic loops on triangle meshes using a level set formulation. Later,
Zhang et al. [14] improved dGCF to FGCF (fast geodesic curvature flow) by re-
ducing the problem dimension. Both dGCF and FGCF require numerical solvers
and the computation result is sensitive to the user specified parameters (e.g., con-
vergence tolerance). In sharp contrast, our geodesic loop algorithm is parameter-
free and does not require any numerical solver. Furthermore, it can deform an
arbitrary curve into exact geodesic loop within finite steps. The experimental
results show that our method is much faster than dGCF [11] and FGCF [14].

3 Our Algorithm

In this section, we present the algorithm for computing 3 tunnel loops and 3
handle loops for the VS models, which can be paired into (ai, bi), i = 1, 2, 3. The
spectrum determined by their lengths can be used for AIS detection purpose.
The exact description of tunnel loops and handle loops is available in [2].

Overview. Given a vestibular system modeled by a triangular mesh of genus
g(= 3), we compute the geodesic tunnel and handle loops, which form the homol-
ogy basis, and then the geodesic spectra with the following steps (see Figure 1):
Step 1: For every mesh vertex vi, we compute a system of loops:
Li = {l1i , l2i , ..., l2g

i }; and then we obtain 2gn loops.
Step 2: Sort the loops of L by length in the ascending order;
Step 3: Find 2g representative loops l1, l2, · · · , l2g from L such that they form
a homology basis;
Step 4: Evolve l1, l2, · · · , l2g into exact closed geodesic loops l̂1, l̂2, · · · , l̂2g;
Step 5: Match l̂1, l̂2, · · · , l̂2g into g pairs and compute the geodesic spectra.

Computing a system of loops restricted on mesh edges. Given a closed,
oriented surface M of genus g, the system of loops [10] is a set of 2g simple
loops sharing a common base point. By cutting along a system of loops, M is
topologically equivalent to a disk. Erickson and Whittlesey [3] devised an efficient
O(n log n)-time algorithm for an 1-skeleton of a surface, i.e., the graph of edges
embedded in the polyhedral surface (n is the number of mesh vertices). Given a
source vertex s, we compute a system of loops rooted at s by (see Figure 2):
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1. Using Dijkstra’s algorithm on the embedded graph G, we obtain a shortest
path tree T that encodes parent-child relationships rooted at s. Then we set
a flag “STOP” for edges on T and a flag “PASS” for other edges.

2. We take each face as a node and define two faces f1, f2 to be neighbors if
they share a “PASS” edge e = v1v2. At the same time, we set the weight
between f1 and f2 to be ‖e‖ + d(v1) + d(v2), where d(vi) is the shortest
distance from s to vi, i = 1, 2. This induces a weighted connected graph G∗.

3. We compute the maximum spanning tree of G∗, say T ∗, in O(n log n) time.
4. There are 2g mesh edges that are in neither T nor T ∗. For each edge e = v1v2

that belongs to neither T nor T ∗, we compute a loop:

Πv1v2 = Π(s, v1)
⋃

v1v2

⋃
Π(v2, s),

where Π(s, v1) and Π(v2, s) are the shortest paths, from s to v1 and v2,
respectively, computed by Dijkstra’s algorithm.

Identifying handle and tunnel loops. After finding a group of closed curves
L, serving as generators, from the loop set L, we extract 2g curves that can be
matched into g pairs. Then, we need to differentiate handle and tunnel loops.
Checking homotopic curves. Among the 2gn loops, many are not homotopic to
each other. To efficiently check if two curves are not homotopic, we have the
following observation: Let C1 and C2 be two non-self-intersecting closed curves
restricted on mesh edges and they do not intersect. Let f : V → R be a smooth
function defined on the VS mesh vertices. Then df : E → R is a one-form defined
on each oriented edge. If the given two curves C1 and C2 are homologous, then
C1 − C2 bounds a surface patch, say ∂D = C1 − C2. As a result,

∫
C1

df − ∫C2
df =∫

C1−C2
df =

∫
∂D df =

∫
D ddf = 0. The last two equations come from the Stoke’s

theorem and the fact that d ◦ d = 0. Thus, if
∫
C1

df �= ∫C2
df , the two curves are

not homologous, which implies that they are not homotopic either.

Fig. 1. Algorithm pipeline. Taking a mesh model of a vestibular system as the input
(see (a)), we compute a system of loops for each mesh vertex (see (b) and (c) for
two examples). As a result, we obtain 2gn loops L, where n is the number of mesh
vertices and g = 3 the genus of VS. In an incremental manner, we compute the optimal
homology basis L∗ ⊂ L with 2g loops by gradually adding the loops from short to long
(d-f). Finally, we evolve each curve in L∗ into an exact geodesic loop (i). The close-up
views in (g) and (h) reveal the difference between a curved loop and an exact geodesic
loop, where the latter has minimal length.
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Fig. 2. A system of loop rooted at a given vertex: (a) and (b) show the front and back
views of the shortest path tree and the dual graph. (c) shows an example system of
loops with 2g curves sharing a common base point. (d) shows the close-up view.

Fig. 3. The two blue loops in (a) are homotopic since one curve can be continuously
deformed to the other along the red path (see (b) for the close-up view). The red
loop in (c) can be reduced by the three green loops. (d) Our algorithm can deform an
arbitrary closed curve (in pink) into an exact geodesic loop (in red) within finite steps.
The intermediate results are shown in the close-up view.

The above test can efficiently eliminate a large number of cases where two
curves are not homotopic. For curves that pass this test, we use the following
approach to test whether they are homotopic. Let P(C1, C2) be the shortest
path (restricted on mesh edges) between C1 and C2

1 Clearly, if the surface
patch generated by C1

⋃ C2

⋃P(C1, C2) is a topological disk, then C1 and C2 are
homotopic, and thus, we can continuously transform one curve into the other.
Curve reduction. For two homotopic closed curves, we say the longer loop
can be reduced by the shorter one; see Figure 3 (a). If the composite loop
la
⋃

lb
⋃P(la, lb) is homotopic to a loop lc and ‖lc‖ < ‖la‖, we say that la can

be reduced into lc by lb, where P(la, lb) is the shortest path connecting la and
lb. Generally, we can try to reduce a new loop li by existing loops lj(1 ≤ j < i)
in order. The goal of curve reduction is to transform the new loop such that
it is not homotopic to any one of the existing loops and as short as possible.
Figure 3 (c) shows an example where the red loop can be completely reduced by
the three green loops (in any reduction order).

Generators and homology basis. We first sort the loops in L by length, extract the
shortest one, say l1, and append it into an empty set L. For the second shortest
loop l2, we try to reduce it by the existing loops in L (l1 in this case). If l2 cannot
be reduced by any loop in L, we append it into L. In an incremental style, we
can extract a group of closed curves from L that serve as generators that has
2g closed curves. We observe that for geometrically simple models, the resulting
1 The “multi-source-all-destination” Dijkstra’s algorithm is applied to find the shortest

path between C1 and C2 (see Figure 3 (a)).
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Fig. 4. Comparison to geodesic spectra under hyperbolic metric [13]. (a) and (c) show
result of [13]. (b) and (d) show our result. The boxes highlight the difference.

generators computed in such a greedy scheme are exactly an optimal homology
basis with g pairs that satisfy (1) each pair of loops has a common point; (2) loops
in different pairs have no common points; and (3) the total length is minimum
in the 1-skeleton of the input mesh. For complicated geometric models, universal
covering space [13] should be considered.
Handle and tunnel loops. A closed oriented surface M embedded in R

3 partitions
R

3 into interior sub-space I and exterior sub-space O. Tunnel and handle loops
are special homology basis that span a surface in the complement space of the
input surface. Specifically, a handle loop (tunnel loop) is null-homologous in I
(O) but not in O (I). So we can differentiate handles and tunnels by shrinking
the loops a little bit and check if they are inside the mesh.

Deforming loops by shortening the length. Given a closed curve C re-
stricted on mesh edges, we will deform it into an exact geodesic loop (generally
not restricted on mesh edges) that is locally shortest on the polyhedral surface.
The two key operations are 1) computing a shortest loop restricted on a closed
face sequence and 2) updating the edge sequence. Note that the deformation
proceeds on the surface (including the face interior), rather than only on mesh
edges. The detailed algorithm is as follows:

1. Find the closed edge sequence Γ that contains C and build a loop set L̄ = ∅;
2. Cut Γ along one edge e = v1v2 ∈ Γ into an open face sequence Γ ′ and unfold

it onto a 2D plane;
3. Since Γ ′ encloses a simple polygon G, we can find the shortest path, inside G,

between v1 and its image point v′1, and then add the path into L̄. Similarly,
we add the shortest from v2 into L̄, as well as the image point of v2 .

4. By traversing all edges in Γ , we can add more loops into L̄;
5. Replace the loop C with the shortest loop C′ in L̄. (Note: C′ is shorter than C.)
6. If C′ passes through some vertex v in Γ , then update Γ from one side of v

to the other side to test whether the new edge sequence can give a shorter
loop, and go to Step 2; otherwise, output the resultant loop.

It is clear that the resultant loop is a closed polyline through an alternative
sequence of edges and vertices, and it can be proved that the resultant loop is
locally shortest everywhere and shorter than the initial loop. The algorithm is
highly efficient and outperforms previous algorithms; see [12] for detail.
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4 Experimental Results

Image acquisition and Segmentation of VS: Experiments were done on
11 girls with right-thoracic AIS (mean age 15 years old with variance 1.7 years
old); (mean Cobb’s angle 27.27 degrees with variance 15.62 degrees) and 11 age-
matched healthy girls. VS surface meshes were extracted from the T2-weighted
MRI scanning of the inner ears using the 1.5T MR Scanner (Sonata, Siemens,
Erlangen, Germany) with a quadrature head coil.

Computation of Exact Geodesic Loops: Our proposed algorithm can de-
form any closed loop to an exact geodesic loop within finite number of steps;
we experimented it with a large number of 3D models and the statistical re-
sults showed that the complexity is roughly linear to the number of vertices in-
between the initial and resultant loops. For the given VS meshes with roughly
13K triangles, our entire algorithm (including computation of the systems of
loops, identification of 2g homology basis, and deforming them into geodesic
loops) takes less than 1 second on a workstation with an Xeon 2.66GHz CPU
and 4GB RAM. The hyperbolic Ricci flow approach [13], in sharp contrast, is a
highly non-linear PDE with high computational cost. Our results show that our
method is at least one magnitude order of faster than [13] (see also Figure 4).

Exact Geodesic Loops for the Morphometry of VS: We have computed
the exact geodesic loops on the VS of the healthy and AIS groups. Figure 5 shows
some examples, where the upper row are some normal VS models while the lower
row are some AIS VS models. The statistics of the geodesic loops (ai, bi)’s on
the VS from each groups are also as shown in Table 1. The statistical difference
in the geodesic loops between groups are also evaluated using t tests. Basically, a
larger ai means the canal is longer, whereas a larger bi means the canal is thicker.
Notice that the exact geodesic loops are computed based on the real background
(Euclidean) metric. It is different from [13] in which the lengths of features are
computed based on the hyperbolic metric. Hence, our algorithm describes the
actual geometry of the VS. From the statistics, AIS tends to have larger ai’s
(hence longer canals) and smaller bi’s (hence thinner canals) than the normal
groups. In particular, AIS tends to have larger a1 and a3 with very high statistical
significance (both with P-value < 0.02). This implies the lateral and superior
canals are generally longer for AIS subjects. The ratio a1/b1 and a3/b3 also tend
to be larger in the AIS group with high statistical significance (P = 0.0083 and
P=0.0321). It means the conformal modules of the lateral and superior canals
are significantly different between groups. This implies once again that the shape
in the lateral and superior canals tends to be significantly different between the
two groups. Compared to [13], our new algorithm can detect more geometric
differences between groups with high statistical significance. Also, the P-value
for the detected shape differences is much smaller than that in [13]. It means
our extracted feature curves can conclude shape differences with much higher
statistical significance. We also ran a multiple-comparison test. The results in
the test agree with our findings that the shape in the lateral and superior canals
tends to be different more significantly between the AIS and healthy groups.
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Fig. 5. More results. Row 1: normal subjects; Row 2: AIS subjects

Table 1. Statistics on the exact geodesic loops between the normal and AIS groups

Combination Mean(Normal) Mean(AIS) P-value

a1 8.7835 ± 1.2119 9.8544 ± 0.6469 0.0177
a2 16.4447 ± 1.3652 17.1932 ± 0.9952 0.1573
a3 14.8008 ± 1.2991 16.2392 ± 1.1075 0.0112
b1 3.8099 ± 0.3643 3.4912 ± 0.5146 0.1092
b2 3.0688 ± 0.4108 2.8679 ± 0.3759 0.2455
b3 3.4521 ± 0.4980 3.2118 ± 0.3699 0.2135

a1/b1 2.3185 ± 0.3543 2.8882 ± 0.5390 0.0083
a2/b2 5.4207 ± 0.6631 6.1018 ± 0.9580 0.0668
a3/b3 4.3743 ± 0.7917 5.1234 ± 0.7322 0.0321

a1 + a2 + a3 40.0290 ± 2.7322 43.2868 ± 2.2105 0.0060
b1 + b2 + b3 10.3309 ± 0.8356 9.5710 ± 0.8810 0.0510

a1 + b1 + a2 + b2 + a3 + b3 50.3599 ± 3.2353 52.8578 ± 2.6241 0.0606

5 Conclusion

This work proposes an effective method that extracts exact geodesic loops on
high-genus surfaces to support analysis of feature landmarks on the VS. The
extracted loops are computed using the Euclidean metric, and hence can be
used as geometric features to detect shape differences between genus-3 VS. Our
proposed method is fully automatic and highly efficient. We applied it to the VS
of normal and right-thoracic AIS subjects; experimental results reveal geometric
differences in the two groups with high statistical significance.
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Abstract. This work presents a statistical model of both the shape
and Bone Mineral Density (BMD) distribution of the proximal femur for
fracture risk assessment. The shape and density model was built from a
dataset of Quantitative Computed Tomography scans of fracture patients
and a control group. Principal Component Analysis and Horn’s parallel
analysis were used to reduce the dimensionality of the shape and density
model to the main modes of variation. The input data was then used
to analyze the model parameters for the optimal separation between the
fracture and control group. Feature selection using the Fisher criterion
determined the parameters with the best class separation, which were
used in Fisher Linear Discriminant Analysis to find the direction in the
parameter space that best separates the fracture and control group. This
resulted in a Fisher criterion value of 6.70, while analyzing the Dual-
energy X-ray Absorptiometry derived femur neck areal BMD of the same
subjects resulted in a Fisher criterion value of 0.98. This indicates that
a fracture risk estimation approach based on the presented model might
improve upon the current standard clinical practice.

1 Introduction

With the rapid advancement of medical imaging technologies, the development
of image analysis methods has progressed in accordance. Specifically statistical
models have received a great deal of interest and have been used in a wide range
of fields for the diagnosis of diseases and detection of symptoms.

Research on statistical models for orthopaedics have mainly focused on model-
ing the bone shape for reconstructions, which are to be used in therapy planning,
and not so much for analysis and diagnosis. In Schuler et al. [1], a method is
presented to estimate the fracture load using statistical appearance models. This
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gives an estimation of the femur strength, which could potentially be used to
derive a fracture risk. In current clinical practice, Dual-energy X-ray Absorp-
tiometry (DXA) derived femur neck areal Bone Mineral Density (BMD) is used.
This measure however is limited by its two-dimensionality while it has been
shown that the 3D distribution of the BMD greatly influences the fracture risk
[2]. In Li et al. [3], a statistical model was constructed of the proximal femur by
image registration and the principal components of this model were evaluated for
their discriminatory power. This work however only uses statistical information
about the BMD distribution, while it has been shown that also the shape has
an influence on fracture risk [4].

In this work, we propose a statistical model of the BMD distribution as well
as the shape, whereby, by analyzing the input data consisting of Quantitative
Computed Tomography (QCT) scans of fracture patients and a control group,
the variation that influences the fracture risk most is determined. This in turn
can be used to derive a fracture risk for an unseen patient. The underlying
shape and density model is constructed using an intensity based registration
process on the QCT scans. Principal Component Analysis (PCA) results in a
dimensionality reduction whereby Horn’s parallel analysis [5] determines the
number of modes of variation to be used for further analysis. As a result, each
subject in the model can be said to have a specific set of shape and density model
parameters. Using the Fisher criterion, the parameters that best separate the
fracture and non-fracture group were determined. Over these parameter values,
Fisher Linear Discriminant Analysis (FLDA) was applied, which determined the
direction in the feature space that best separates the two classes. The resulting
variation is analyzed and compared with previous findings on the shape and
BMD distribution with respect to the fracture risk. Finally, the class separation
resulting from FLDA was compared to the class separation using the femur
neck areal BMD of the same subjects, which is the measurement used in clinical
routine to assess the fracture risk.

2 Method

2.1 Registrations

The model construction depends on accurate intensity based registrations of the
QCT volumes. In order to prevent the pelvis area from resulting in misalignments
in the registration process, the pelvis area is semi automatically removed from
the volumes. In addition, a thresholding is applied, which removes the soft tissue
structures that can negatively affect the registration process.

Figure 1 depicts the model construction pipeline. First, a reference volume is
chosen based on its regular shape and BMD quality. In this volume, the bone
is manually segmented and a regular mesh is constructed from this segmenta-
tion. All volumes are subsequently registered to this reference volume by an
intensity based similarity registration. This is followed by a multi-scale intensity
based Thin Plate Spline (TPS) registration using the mesh vertices as the con-
trol points on the reference image. In order to reduce the computation load of
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Fig. 1. Model construction pipeline

the TPS registration, the registration is restricted to the region of interest by
specifying a mask of the bone boundary in the reference volume (Figure 1). The
TPS registrations result in the corresponding landmark locations on the target
volumes and thus provides the surface mesh for all similarity aligned volumes.
All similarity aligned meshes are subsequently scaled to their original size using
the uniform scale value resulting from the similarity transform.

To remove some of the bias from the reference selection, the reference volume
(and mask) are deformed to the average of the similarity aligned meshes using a
TPS transformation defined by the vertices. In a second iteration, the volumes
are then registered onto this updated reference while using the average shape
for the TPS registrations.

2.2 Shape and Density Model

The registrations results in the set of aligned patient specific surface meshes with
a vertex correspondence between them. PCA is then applied to the vertices and
a new shape s can be expressed as the average shape s and a linear combina-
tion of the first m eigenvectors corresponding to the main modes of variation:
s = s +

∑m
i=1 piai. Here pi is the i-th eigenvector resulting from the singular

value decomposition of the covariance matrix and ai the corresponding scalar
coefficient referred to here as the shape model parameter.

To model the BMD distribution, a final iteration of the registration process
is performed to deform all volumes to the same average bone shape, whereafter
the resulting similarity and TPS transformation is applied to the unprocessed
QCT volume for each subject. This results in shape normalized volumes with
a voxel correspondence between them. Since the TPS transformation is defined
by landmarks on the bone surface only, the TPS interpolation preserves the
internal BMD distribution. PCA is then applied to the voxel densities inside the
bone so that a new volume v can be expressed as the average volume v and the
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Fig. 2. The mean and the first three modes of variation of the shape model (left) and
projections of the density model (right), varying 3 standard deviations (σ)

first n eigenvectors: v = v +
∑n

i=1 qibi. Here qi is the i-th eigenvector and bi

the corresponding density model parameter. To determine the number of shape
model parameters m and density model parameters n to retain, Horn’s parallel
analysis was used.

2.3 Fisher Linear Discriminant Analysis

After the construction of the shape and density model, the model parameter
vectors of the femora in both fracture and control group are used as input for
FLDA in order to determine the vector in the feature space that best separates
these two groups.

Not all parameters resulting from the dimensionality reduction will contribute
to a good class separation. Therefore, first a feature selection based on the Fisher
criterion is performed. The Fisher criterion for feature k is defined as: F (k) =
Sk

B

Sk
W

, where Sk
B and Sk

W are the k-th diagonal element of SB and SW , respectively.
Here SB and SW are the between-class and within-class scatter matrices and
are defined as SB = (m1 − m)(m1 − m)T + (m2 − m)(m2 − m)T and SW =∑

x∈C1
(x−m1)(x−m1)T +

∑
x∈C2

(x−m2)(x−m2)T . C1 and C2 are the feature
sets of the fracture and non-fracture group, m1 and m2 are their respective
means and m the overall mean. Each feature is analyzed for their class separation
by calculating this Fisher criterion. The features are subsequently sorted and the
features beyond the converging point (nearing zero) are discarded.

FLDA is applied to the remaining features to determine the vector that best
separates the fracture and control group. FLDA finds the vector w that max-
imizes the total scatter while minimizing the within scatter of the two classes.
This is achieved by maximizing the Rayleigh quotient: J(w) = wT SBw

wT SW w .
The resulting direction in the feature space is visualized by generating an

instance of the model at the two extremes of this vector corresponding to 3
and -3 standard deviation from mean. Three standard deviations are chosen to
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constrain them to statistically valid instances. For both this high and low fracture
risk extreme, the density model instance is deformed towards the shape model
instance, again using a TPS transformation defined by the shape vertices. These
visualizations allow for the assessment of the combined variations of shape and
BMD distribution that influences the fracture risk, and these are subsequently
compared to current knowledge of hip fracture predictors.

2.4 Data

A dataset of CT scans of the pelvis area of 58 fracture patients was collected
at the Universitätsklinik für Radiodiagnostik in Innsbruck using the GE Light-
Speed VCT Multi Slice CT device (GE Healthcare, Chalfont St. Giles, UK). The
patients were all female with an average age of 79±10 years and all had suffered
a proximal femur fracture. From this set the contralateral un-fractured femurs
were taken, which can be justified by research on proximal femur symmetry[6],
and this set defined the high fracture risk group. In addition, the European fore-
arm phantom [7] was included into every scan acquisition to convert the CT
scans to QCT volumes.

Besides the fracture group, a group of 58 (all female) patients was collected at
the CETIR Medical Center (Barcelona, Spain) using the Philips Gemini GXL 16
system (Philips Healthcare, Best, The Netherlands). These patients had a lower
average age of 55 ± 12 years, to represent a control group with a low fracture
risk and a normal BMD distribution. The CT scans were calibrated using the
Mindways calibration phantom (Mindways Software Inc., Austin, TX, United
States).

Different studies have shown that the scan device has little influence on the
density calibration [8]. However, the European forearm phantom calibrates the
volumes to a hydroxyapatite (HA) density, whereas the Mindways phantom is
constructed of K2HPO4. Previous research shows that one calibration material is
highly correlated to another and can be converted using a linear transformation
[9]. To get the conversion formula for the phantoms in this work, both phantoms
were scanned together using the Siemens scanner. This resulted in the following
conversion formula: y = 1.1053x−17.788 (R2 = 0.9998). This way, the scans with
the European forearm phantom were calibrated to relate to K2HPO4 densities.

Femur neck BMD measurements were performed on the DXA scans of all
subjects. For the fracture group patients, the Hologic Discovery W bone densit-
ometry system (Hologic Inc., Bedford, MA, United States) was used while for
the control group the scans were performed using the GE Healthcare’s Lunar
iDXA scanner (GE Healthcare, Chalfont St. Giles, UK). The femur neck areal
BMD values were subsequently converted to standardized BMD (sBMD) [10].

3 Results

Figure 2 shows the first three modes of variation of the resulting shape and
density model. Horn’s parallel analysis resulted in 10 shape model parameters
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Fig. 3. A bar graph of the features with the corresponding Fisher criterion value,
sorted in descending order. The gray bars indicate the features selected for further
analysis while the features with the black bars were discarded.
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Fig. 4. The histograms corresponding to the femur neck areal sBMD (left) and the
values resulting from FLDA (right) for both fracture and control group.

and 16 density model parameters to form the feature space. The feature selection
method using the Fisher criterion resulted in 3 shape model parameters and 6
density model parameters to be used, as shown in Figure 3. Applying FLDA
to the values of these parameters of the subjects in the model resulted in a
class separation with a Fisher criterion value of 6.70. In comparison, the femur
neck areal sBMD values separates the fracture and control group with a Fisher
criterion value of 0.98.

For each subject in the model, the corresponding shape and density model
parameters can be projected onto the vector resulting from FLDA. This rep-
resents a single value measure for the fracture risk. In Figure 4, the histogram
corresponding to these values are shown for both fracture and control group. The
same histogram is given for the femur neck areal sBMD values as a comparison.

In Figure 5, the high and low fracture risk extremes with respect to the mean
are visualized, which show the difference in shape and BMD distribution between
high and low fracture risk femurs as described by the model.
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Fig. 5. Model instances at the low fracture risk (top) and high fracture risk (bottom)
extreme. From left to right: the projection, the coronal cross section, the femur neck
cross-sectional area (CSA), the shape model instance and the intertrochanteric CSA.

4 Discussion and Conclusions

This work presents a shape and density model of the proximal femur for frac-
ture risk estimation. A dimensionality reduction and feature selection method is
used to extract the shape and density model parameters that best separate the
fracture and control group. FLDA is subsequently used to find the direction in
this parameter space of greatest separation.

In Figure 5 it can be seen that the volumetric BMD and the cortical thickness
is one of the main discriminators between fracture and non-fracture femora ac-
cording to the presented model, which is in accordance with recent findings [2].
The visualization of the femur neck and intertrochanteric cross-sectional area
(CSA) also reflects previous observations where a significantly smaller cortical
CSA, and a larger trabecular CSA is associated with a higher fracture risk [4].
Regarding the shape, a larger hip axis length is associated with a higher fracture
incidence [4], which is also reflected in the presented model. The neck-shaft an-
gle has been shown to be significantly larger for fracture patients [4], and this is
captured by the model through the second shape model parameter (Figure 2 and
3). These similarities indicate that the presented model captures the differences
in shape and BMD distribution between high and low fracture risk subjects and
can thus be used in a computer aided diagnosis system.

The Fisher criterion value resulting from FLDA shows that the proposed
model better separates the fracture and control group than DXA derived femur
neck areal sBMD with a value of 6.70 as opposed to 0.98. The improved class
separation can also be seen in the histograms of Figure 4. This indicates that a
model-based fracture risk estimation approach might improve upon the current
standard clinical practice.
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Estimation of Smooth Growth

Trajectories with Controlled Acceleration
from Time Series Shape Data
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Abstract. Longitudinal shape analysis often relies on the estimation of
a realistic continuous growth scenario from data sparsely distributed in
time. In this paper, we propose a new type of growth model parame-
terized by acceleration, whereas standard methods typically control the
velocity. This mimics the behavior of biological tissue as a mechanical
system driven by external forces. The growth trajectories are estimated
as smooth flows of deformations, which are twice differentiable. This dif-
fers from piecewise geodesic regression, for which the velocity may be
discontinuous. We evaluate our approach on a set of anatomical struc-
tures of the same subject, scanned 16 times between 4 and 8 years of
age. We show our acceleration based method estimates smooth growth,
demonstrating improved regularity compared to piecewise geodesic re-
gression. Leave-several-out experiments show that our method is robust
to missing observations, as well as being less sensitive to noise, and is
therefore more likely to capture the underlying biological growth.

1 Introduction

The study of time dependent shapes is an emerging field in Computational
Anatomy, with potential applications to early brain development, aging studies,
or the analysis of evolving pathologic structures. As longitudinal data becomes
more widely available, the need for computer models of anatomical evolution
becomes increasingly important. Two approaches have been followed so far: the
first consists in computing a realistic growth scenario from cross-sectional time-
series data, like in [4,10,6,3]. The second approach involves estimating several
individual growth trajectories and combining them with a framework for 4D reg-
istration between growth trajectories or 4D atlas construction, to statistically
analyze the growth variability within a population, like in [13,8,14,7,9].

In any case, the methods rely greatly on the estimation of growth models from
time series data, which are sparsely distributed in time. Growth models provide
a tool to generate shapes at any instant in time (within the interval defined by
the data), offering us the opportunity to continuously measure shape properties.
This is in contrast to using sparse measurements such as volume or circumference
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for 1D regression absent the shape information. The problem can be stated as
“temporal shape regression” and can be solved by purely descriptive statistical
methods like the extension of kernel regression to Riemannian manifolds [4], or
by generative statistical models which define a parameterized family of realistic
growth models and the one which best fits the actual data is estimated based on
a regularized least-square criterion [8,7,2]. We favor this last approach, since it
makes explicit the assumptions which drive the estimation of growth trajectories
and therefore enables the inclusion of realistic biological priors to constrain the
estimation.

The growth model in [7] is based on a continuous flow of diffeomorphisms, with
piecewise geodesics interpolating between shapes. This method estimates con-
tinuous non-linear growth between shapes, but does not guarantee differentiable
growth as the speed of evolution is discontinuous at observation time-points.
Our work is motivated by the assumption that the evolution of biological tissue
is inherently smooth in time. If we consider the growth of biological tissue as a
mechanical system driven by external forces, then the evolution of any particle
on an anatomical surface is continuous with continuous derivative and there-
fore does not change direction instantaneously, as observed in the growth model
estimated from [7].

Temporal smoothness can be enforced via smooth interpolation between 3D
deformations estimated at discrete time-points, using B-splines or polynomial
interpolation as in [11,1]. However, these approaches are not based on the in-
ference of a generic growth model, which captures the dynamics of the shape
changes over time.

Based on these considerations, we propose a new growth model parameterized
by acceleration, rather than velocity as in the large deformation setting of [12].
The estimated acceleration could be considered an indication of the forces which
drive the growth of the anatomical structures. From this parameterization, we
gain one order of differentiability and guarantee that shape evolution is smooth
in both space and time. We further deviate from the large deformations frame-
work by introducing a new regularization term which accounts for the total
amount of acceleration. As a consequence, our model does not constrain the
flow of deformation between shapes to be geodesic, or close to a geodesic path.
By contrast, the approach in [16] estimates twice differentiable trajectories as
random perturbations of geodesic paths.

The evaluation of our new methodology on real anatomical surfaces reveals
the differences between our approach and piecewise geodesic regression. Our re-
gression yields a twice differentiable evolution with improved regularity, thus dis-
carding more noise from the data to fit a more realistic growth trajectory. Also,
we demonstrate that volume measurements taken out of our 3D shape regression
are compatible with a 1D regression of these measurements, whereas piecewise
geodesic regression appears to overfit. Lastly, we show via leave-several-out ex-
periments that our method better interpolates between data and is therefore
more robust to missing observations. This suggests a greater ability to capture
the underlying growth of the anatomical structures.
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2 Shape Regression Parameterized by Acceleration

The problem of longitudinal shape regression involves inferring a continuous
shape evolution from a discrete set of shapes Sti observed at time ti. Shape
evolution is modeled as the continuous deformation of a baseline shape S0, for-
mally defined as Rt = φt(S0) where Rt corresponds to S0 having undergone
the transformation φt with t varying continuously within the time interval. The
time-varying deformation φt is a general transformation from RN to RN with
φ0(S0) = S0. The baseline shape is deformed over time to closely match the
observed shapes (Rti ∼ Sti) while the rigidity of the deformation is controlled
via a regularity term. This leads to a variational problem in the form of a trade
off between fidelity to data and regularity. For measuring shape similarity, we
follow the work of [15], modeling shapes as currents.

We define the acceleration field a(x, t) at point x and time t as a vector field
of the form

a(x, t) =
N∑

i=1

KV (x, xi(t))αi(t) (1)

where xi are the shape points carrying a point force vector αi, and KV (x, y) =
exp(−‖x− y‖2 /λ2

V ) is a Gaussian kernel of dimension mass−1 with standard
deviation λV controlling the spatial extent at which the acceleration field varies.

The time-varying point force vectors αi(t) parameterize a flow of deformation
φt(xi(t)) by the integration of the 2nd-order ODE φ̈t(xi(t)) = a(xi(t), t) with
initial position xi(0) and initial velocity ẋi(0). The initial positions of the particle
are assumed to be fixed at the vertices of the baseline shape, while the initial
velocity of the particles have to be determined by the algorithm.

Let x(t), a(t), and α(t) be the concatenation of the xi(t)’s, ai(t)’s, and the
αi(t)’s. This parameterization leads to the specific regression criterion

E(ẋ(0),α(t)) =
∑
ti

‖φti(x(0)) − x(ti)‖2
W∗ + γ

∫ T

0

‖a(t)‖2
V dt (2)

where ‖·‖W∗ is the norm on currents and regularity is defined as ‖a(t)‖2
V =

α(t)KV (x(t),x(t))α(t), interpreted as the ‘total amount of acceleration’, mea-
sured using the norm in the reproducing kernel Hilbert space defined by the
interpolating kernel [5].

3 Description of the Algorithm

We implement an adaptive step size gradient descent algorithm. The gradient of
the criterion (2) with respect to force vectors and initial velocity is written as

∇αi(t)E(t) = 2γαi(t) + ηẋ
i (t) and ∇ẋi(0)E = ηẋ

i (0) (3)

where variables ηx
i (t) and ηẋ

i (t) satisfy coupled ODEs shown in Appendix A.
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Fig. 1. a) and b) Shape evolution from baseline (solid) to final configuration (trans-
parent) using a model based on piecewise geodesics (a) and our method (b) with point
trajectories for selected particles displayed as black lines. c) The path of a point on the
forebrain is decomposed into coordinates. Growth is estimated using 15 target shapes,
highlighting the speed discontinuities present in the piecewise geodesic evolution.

During each iteration of gradient descent, the trajectories of shape points are
computed by solving the 2nd-order ODE φ̈t(xi(t)) = a(xi(t), t) using a Verlet
integration scheme. The auxiliary variables ηx

i (t) and ηẋ
i (t) are computed using

an Euler method with prediction/correction. Eventually we compute the gra-
dients given in equation (3). The algorithm may be started with zero initial
velocity and force, though we notice faster convergence when initial velocity is
determined by geodesic diffeomorphic registration between the baseline and first
target shape as in [15].

4 Experiments

To evaluate our method, we use longitudinal image data from a child that has
been scanned 16 times between four and eight years of age. The MRI data is first
rigidly aligned to establish a common reference frame. The intracranial volume
and lateral ventricles are segmented from each image using an EM based tissue
classification algorithm and a level-set based active contour segmentation tool.

We estimate the evolution of the intracranial surface using a regression model
based on the piecewise geodesic flow of diffeomorphisms as in [7]. The standard
deviation of the Gaussian kernel controlling deformation is set to 50 mm, roughly
30% of the diameter of the baseline intracranial surface. For the scale of cur-
rents we use 20 mm, with a regularity weight of 0.1. Finally, time is discretized
in increments of 0.0425 years. We also produce a growth trajectory using our
proposed method with the same parameter settings as above except we weight
regularity by 0.01 (the two weighted terms cannot be compared since they have
different ‘physical’ dimension). The parameters were tuned empirically to pro-
duce regressions of comparable quality with both methods.
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Fig. 2. Volume measurements derived from our growth model are consistent with a
kernel regression (σ = 0.5) performed on the sparse volume measurements. Our model
describes the continuous evolution of shape and volume is measured after regression.

Shape evolution is considerably smoother using our proposed regression model
as compared to the piecewise geodesic model. This is particularly evident in the
trajectories of the shape points across time, a subset of which are shown in Fig. 1.
It is an important distinction that the trajectories estimated by our method are
not a smoothing of the piecewise geodesic method. Rather, the trajectories are
the result of fundamentally different assumptions on the underlying model which
results in a more realistic estimation of growth.

The smoothness constraints imposed by our model limit the shape variation
we can capture over short time periods. Consequently, we investigate the ac-
curacy of our model by examining how closely we match the target data: our
estimated growth scenario decreases the initial sum of squared residual by 148%,
compared to a 153% decrease from the piecewise geodesic method. While our
method does not come as close to matching the target data, this suggests that
our method is less sensitive to noise and less likely to overfit.

Next, we investigate the application of our model to the study of measure-
ments derived from shape. Here we obtain a continuous non-linear model of
volume, shown in Fig. 2. The results are consistent with a 1D regression model,
such as kernel regression, applied to the sparse volume measurements. However,
we have focused our modeling efforts on capturing the evolution of shape, with
continuous volume measurements resulting naturally from the estimated growth.
In addition, the piecewise geodesic method appears to be overfitting, producing
unrealistic volume measurements, further suggesting that our method is more
robust in the presence of noisy data.

Finally, we consider the evolution of the lateral ventricles, which exhibit con-
siderably more complexity than the intracranial surface. The horns of the seg-
mented lateral ventricles are as thin as a few millimeters, making regression
particularly challenging. As with the intracranial volume, ventricle growth is es-
timated using a piecewise geodesic model and our acceleration based model. The
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Fig. 3. Left: Snapshots from a continuous shape evolution of lateral ventricles esti-
mated by our regression model. Acceleration vectors are displayed on the surface, with
color denoting magnitude. Right: The impact of the number of target shapes on R2.

scale of deformation is set at 6 mm, the scale of currents to 2 mm, and regularity
is weighted by 0.1 and 0.01, respectively.

The impact of missing data is examined by performing leave-several-out ex-
periments, the results of which are summarized in Fig. 3. In all experiments,
selected target shapes were chosen as uniformly across time as possible. Our
method demonstrates robustness with respect to the number of target shapes,
with only minimal increase in the coefficient of determination R2 when using
more than 3 targets. This suggests that our method captures the underlying
growth with limited data, as additional target data does not greatly alter the
estimation. In contrast, piecewise geodesic regression is more influenced by ad-
ditional target data and is therefore likely to overfit.

5 Conclusion

We have introduced a new 2nd-order regression model for estimating smooth
evolution from a collection of time dependent shape data. This is based on a
new way of parameterizing growth based on acceleration rather than velocity.
We show on real anatomical data that, compared to the standard piecewise
geodesic model, our method is less sensitive to noise introduced during segmen-
tation and is robust to missing data, and is therefore more likely to characterize
the underlying biological growth. The evolution of volume extracted after shape
regression was shown to be compatible with a 1D regression on the observed
volume measurements. Our method may be improved by additionally solving
for initial positions of the shape points as in [7], to address the apparent under-
estimation of initial volume in Fig. 2.

Note that the new concept introduced in this paper has been implemented
for 3D-surface data modeled as currents but can be easily adapted to a variety
of other data and metrics. Future work will focus on the interpretation of the
estimated acceleration in terms of external forces exerted on the biological tissue.
This will enable the addition of more biological and mechanical priors.
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A Differentiation of the Regression Criterion

Using matrix notation, we denote the current state of the system of shape points
by the vector X(t) = (x(t), ẋ(t))t concatenating position and velocity of every
point. The state of the system is evolved by the following differential equation:

Ẋ(t) = F (X(t),α(t)) =
(

ẋ(t)
ẍ(t) = K(x(t),x(t))α(t)

)
(4)

with initial condition X(0) = X0 = (x0, ẋ0)t.
We now rewrite (2) as E(X(t)) =

∑
ti
A(X(ti)) + γ

∫ T

0
L(X(t), α(t))dt. Let

δE be a variation of the criterion E with respect to a variation δα(t) of the
impulse vectors α(t), which induces a variation of the state variable X(t):

δE =
∑
ti

(
dX(ti)Ai

)
δX(ti) + γ

∫ T

0

(∂X(t)L(t))δX(t) + (∂α(t)L(t))δα(t)dt (5)

The ODE in (4) shows that these variations δX(t) satisfy a linear inhomoge-
neous ODE. The method of variation of parameters gives the solution

δX(t) = R0tδX0 +
∫ T

0

Rut∂α(u)F (u)δα(u)1{u≤ti}du (6)

where Rut = exp
(∫ t

u ∂X(s)F (s)ds
)

and 1{t≤ti} = 1 if t ≤ ti and 0 otherwise.
Plugging this equation into (5) leads to:

∇αE(t) = ∂α(t)L(t)t + ∂α(t)F (t)tη(t) and ∇X0E = η(0) (7)

where we denote the auxiliary variable η(t) as

η(t) =
∑

i

∇Xti
Ai1{t≤ti} +

∫ T

t

∂XL(u)t + ∂XF (u)tη(u)du (8)

From now on, we decompose the vectors into 2 blocks (the x-component and
the ẋ-component). Due to the definition of A, L and F , we have ∇X(ti)Ai =
(∇xiAi 0)t, ∂XL = (γαt(∂1 + ∂1)(K(x,x)α) 0)t, ∂αL = 2γαtK(x,x), ∂XF =(

0 1
(∂1 + ∂2)K(x,x)α 0

)
and ∂αF x = (0 K(x,x)).

Therefore, the gradient of the regression criterion with respect to the L2 metric
given in (7) is now equal to: ∇αE(t) = K(x(t),x(t))

(
2γα(t) + ηẋ(t)

)
, where we

have decomposed the auxiliary variable η into η = (ηx,ηẋ).
The matrix K(x(t),x(t)) is precisely the Sobolev metric induced by the kernel

on the set of L2 functions, so the gradient is given in coordinates as in (3).
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Abstract. In this paper we present a new population-based method
for the design of bone fixation plates. Standard pre-contoured plates are
designed based on the mean shape of a certain population. We propose a
computational process to design implants while reducing the amount of
required intra-operative shaping, thus reducing the mechanical stresses
applied to the plate. A bending and torsion model was used to measure
and minimize the necessary intra-operative deformation. The method
was applied and validated on a population of 200 femurs that was further
augmented with a statistical shape model. The obtained results showed
substantial reduction in the bending and torsion needed to shape the new
design into any bone in the population when compared to the standard
mean-based plates.

Keywords: Orthopaedic implant design, population-based analysis, bone
fixation plate.

1 Introduction

Bone fixation plates are commonly used in orthopaedic surgeries to preserve,
maintain, and help restore the original anatomy of a diseased or fractured bone.
The success of reconstructive and corrective interventions heavily relies on the
proper design and application of the implants. Current trends tend to offer fix-
ation plates that are pre-contoured to the specific target location in which they
are supposed to function [1,2]. Pre-contouring is commonly based on the average
anatomy of the target population, or on a template bone considered as a rep-
resentative of that population. To date, the available pre-contoured plates are
not capable of providing an optimal fit to all operated patients. This is mainly
due to the differences in morphology of the human skeleton between and within
different populations. Factors such as age, gender, and ethnic origin play an
important role in defining the morphology of the bones [3].
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Furthermore, fixation plates are manually shaped during the surgery in order
to adapt them to the patient-specific anatomy, a delicate and time-consuming
procedure that is prone to high inaccuracies [4]. Such procedures require wide ex-
posure of the bone [2] and longer surgical time, thus increasing the risks and costs
of the intervention. The development of locked internal fixators and anatomically
pre-shaped plates reduced the need of plate bending [1,2,5,6], however, accurate
patient-specific implant pre-contouring is still not accessible.

In [7], the authors propose a method to design plates by searching through
the parametric space of a statistical shape model of the bones. They search for
the most significant population-specific shape variability patterns that affect the
fit of the fixation plate using criteria based on surface-to-surface distances. They
finally propose manual changes to the current design and prove that the new
plate fits more bones from the population according to the same design criteria.

In this paper, we present a new population-based automatic approach to the
design of orthopaedic fixation plates. We propose a design that minimizes the
maximum amount of intra-operative manual bending and torsion that are to be
applied to the plate. The proposed deformation model and metrics go in agree-
ment with the type of deformation the surgeon applies during the intervention.
The design criteria are more clinically significant than those used in [7]. The ben-
efit of such method is two-fold. Explicitly, less mechanical stresses are applied
to the plate and therefore a better long-term mechanical stability is expected.
Whereas the lesser required shaping implicitly indicates a better pre-operative
surface-to-surface fit.

2 Methods

2.1 Experimental Data

A population of 200 segmented computed tomography (CT) datasets with vary-
ing image parameters and scanners was used in this work. Point distribution
models (PDM) of the left femur were generated and aligned. Dense point-to-
point correspondence was computed using an image-based log-domain demons
registration with a polyaffine regularization [8].

Two patches of interest have been selected, outlined, and extracted from the
initial datasets by an experienced orthopaedic surgeon. The patches are located
on the distal medial and the distal lateral sections of the femur. Fig. 1a-b shows
these two patches.

Using the pre-established point-to-point correspondence, the vertices of the
chosen patches were propagated throughout the PDM in order to obtain 200
samples of each type of patch that are subsequently realigned. In the present
case, each distal medial patch is composed of 1,343 surface points whereas its
lateral counterpart is composed of 1,625 points. These patches are considered
as both bone surfaces and potential new designs of the contact surface of the
fixation plate. The two terms plates and patches will be used interchangeably
throughout the rest of this paper.
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Fig. 1. Selection of the (a) medial and (b) lateral distal patches of the femur. (c) Intra-
operative bending of a fixation plate. (d) Example of how the plate can be divided into
discrete sections. A plane is fitted to each individual section and represented by its
normal vector. (e) Illustration showing the directions of bending and torsion.

Fig. 2. Illustration of how the method computes the bending and torsion angles re-
quired to shape one patch (Pa) into another (Pb). Both components are measured
relative to the main axis of the patches, assuming the main axis is aligned with the
y-axis of the coordinate system. In this example, the bending component is the angle
between the projections of the normals onto the yz-plane, whereas the torsion compo-
nent is the angle between the projections of the normals onto the xz-plane.

2.2 Plate Discretization and Representation

We propose to first represent the contact surface of a fixation plate (or the
bone patch) by dividing it into discrete sections lengthwise and fitting a plane
to each section. The number of sections depends on the size of the implant
and anatomical location. It should be small enough to capture the anatomical
features, but large enough not to be affected by local noise in the surface. The
size of the individual sections should also be within the operational limits of the
common shaping tools (see Fig. 1c). Each plane is then represented by a vector
normal to it. An example of how the plate can be divided is shown in Fig. 1d.
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Algorithm 1. Computation of bending and torsion
In: Two sets of normal vectors N and V to the planes

constituting the bone patches Pa and Pb

Out: Maximum bending and torsion angles, DΩ and DΘ,
needed to shape Pa into Pb

1: Initialize Ω0
Pa,Pb

= 0; Θ0
Pa,Pb

= 0; R0
Ω = 0; R0

Θ = 0
2: for each section i ∈ [1 to n]
3: Ωi

Pa,Pb
← αNi

yz ,Vi
yz

−Ri
Ω

4: Θi
Pa,Pb

← αNi
xz,Vi

xz
−Ri

Θ

5: for each j ∈ [(i + 1) to n]
6: Rj

Ω ← Rj
Ω + Ωi

Pa,Pb

7: Rj
Θ ← Rj

Θ + Θi
Pa,Pb

8: end for
9: end for

10: DΩ (Pa, Pb) ← max
{
Ωi

Pa,Pb
| i = 1 . . . n

}
11: DΘ (Pa, Pb) ← max

{
Θi

Pa,Pb
| i = 1 . . . n

}

2.3 Measurement of Bending and Torsion

The key formulation of our solution is to examine the effect of shaping each
section of the implant on the rest of the sections and compute the amount of
deformation needed to shape one patch to another based on currently available
shaping tools. The angles between two corresponding normals to the planes
are split into two independent components, namely bending and torsion, both
relative to the main axis of the patch. Fig. 2 illustrates how the patches are
discretely represented by a set of normal vectors and how the bending and torsion
angles are measured.

The method used to measure how much bending (DΩ) and torsion (DΘ) are
required to shape one patch into another is formulated in Algorithm 1, where
n is the number of sections per patch, α is an angle between two vectors, Ω
and Θ are the vectors of bending and torsion angles, and RΩ and RΘ are the
vectors of residual bending and torsion angles, both respectively. Letting Pa be
the patch to be contoured to Pb, the algorithm starts from one end of the patches,
say the proximal end, and sequentially goes along the main axis until the other
end is reached. This process is analogous to drum pressing the plate against a
template until it acquires its shape. It also mimics what the surgeon would do
during the intervention. It starts by initializing the angles to zero, indicating an
alignment of the first normals without any deformation of the patch or plate
(line 1). The algorithm then proceeds by iterating over two main steps. The first
computes the bending and torsion required to align two corresponding normal
vectors while taking into account residual angles from previous steps (lines 3-4).
The second is an update step that computes the vector of residual angles and
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consecutively assigns its elements to the remaining normal vectors in the chain
of sections along the patch (lines 6-7). This update step describes the effect of
applying a local deformation on the rest of the plate. Our interest is to compute
the maximum needed local deformation. Thus the highest values in the lists of
bending and torsion are extracted and stored for later processing (lines 10-11).
These values are to be later minimized since they are the maximal forces that a
plate design will undergo during the surgery.

2.4 Finding the Optimal Template from a Population

By applying the analysis described above to the whole population, one is able to
measure pair-wise maximal bending and torsion angles needed to shape any one
patch into another. Our goal is to find the patch that simultaneously minimizes
both components among the studied population. Consistent with the notation
presented in Algorithm 1, we propose to optimize our metrics using Eq. (1)
through Eq. (3). In Eq. (3), NewDesign is the index of the patch that requires
the least amount of physical shaping, and p the size of the population. The
weighting factors ωΩ and ωΘ are used to impose optional non-equal significances
on both components. In our experiments, we used unity weights indicating equal
contribution of bending and torsion to the design criterion.

da
Ω = max {DΩ (Pa, Pb) | b = 1 . . . p} ; (1)

da
Θ = max {DΘ (Pa, Pb) | b = 1 . . . p} ; (2)

NewDesign = argmin
a

{√
ωΩda

Ω
2 + ωΘda

Θ
2 | a = 1 . . . p

}
. (3)

2.5 Further Optimization

In order to avoid falling into local minima and to ensure that the method finds
the optimal plate design, we further examined the three best ranked patches
from the previous steps. We generated a statistical shape model [9] of the initial
populations and retained the first 42 principal components capturing 99% of
the natural shape variability. The parameters of the three patches within the
statistical space were recovered using a least-squares approximation c = Q+y,
where c is the vector of shape parameters, Q the matrix of eigenvectors scaled
by the corresponding eigenvalues, and y the vector of coordinates of the surface
points. Latin hypercube sampling [10] was used to generate 100 instances in
the statistical vicinity of each of the best choices. Latin hypercube sampling
was preferred over uniform or random dense sampling since it offers a similar
space coverage with a substantially lower number of samples. The same search
described earlier was applied again to the augmented populations.

2.6 Finding an Adequate Number of Sections

The number of sections per plate or bone patch is a fundamental parameter in the
design process. Care must be taken while defining this parameter since it directly
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Fig. 3. Reduction in the maximum bending and torsion angles needed to shape the
proposed design to any instance in the population, for lateral (left) and medial (right)
plates. The reduction is relative to the results obtained for the standard design and
plotted against the number of sections used to divide the bone patches or plates. The
average curve has its peak at seven sections for the lateral case, whereas five sections
resulted in a higher improvement for the medial dataset.

affects the quality of the final design. For each one of the considered anatomical
sites, we tested the algorithm above using a varying number of sections per plate.
We recorded the amount of improvement1 over the standard mean-based designs.
Ideally, the goal is to pick the number that yields the highest improvement
in both bending and torsion components. We used the average values of both
components as a selection criterion.

3 Results

The method described above was separately applied to the sets of bone patches
extracted from the medial and lateral distal femur. The first step was to iden-
tify the optimal number of sections that divide each instance of the population.
Fig. 3 shows the results of the corresponding tests, where seven and five divid-
ing sections yielded the highest improvement for the lateral and medial cases,
respectively.

Following the initial step, the configuration of the discretization pattern that
yielded the best improvement was retained and applied to the whole popula-
tion as well as to the standard design. Fig. 4 plots the obtained results and
highlights the difference between the maximum required deformation for the
standard plates and that for the enhanced designs. Table 1 shows a compar-
ison between the standard plates and the proposed improved design. It also
compares the highest pre-operative mean surface distances (MSD) measured for
every case. The results indicate that the intra-operative deformation required
1 Improvement is measured as the percent reduction in maximum bending and torsion

from the values recorded for the standard design.
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Fig. 4. Maximum bending and torsion required to shape any instance of the population
(−) to all other instances, for lateral (left) and medial (right) plates. The new design
(�) resulted in lower bending and torsion angles than the standard design (�).

to fit the standard plate to any potential patient exceeds that required by the
new design. Consequently, this implies that it is easier to contour the new plate
design to the patient-specific anatomy.

4 Discussion

In this paper we presented a novel population-based method to design pre-
contoured orthopaedic fixation plates. The method minimizes the maximum
deformation (bending and torsion) required to fit an implant to the patient-
specific anatomy. The presented deformation model is consistent with the actual
intra-operative deformation and complies with the current shaping tools. The
results indicate that the population mean is not the optimal design, neither the
MSD is the optimal design metric. The highest possible pre-operative MSD (pre-
ceding intra-operative shaping) between the plate and any bone surface is also
reduced (medial) or almost unchanged (lateral) with the new design. The three-
dimensional surface representation of the bone patch designated as NewDesign
can be used as a template to manufacture better pre-contoured implants.

We intend to apply the method presented herein to populations of different
anatomical sites. Different population characteristics can also be included in the
analysis such as gender, race, age group, etc. This would divide the population

Table 1. Comparison between the standard mean-based design and the new design
proposed in this paper. The values refer to the highest measured angles and distances.

Lateral Plate Medial Plate
Bending Torsion MSD Bending Torsion MSD

Standard Design 37.25◦ 19.74◦ 23.15mm 13.07◦ 17.41◦ 17.03mm
New Design 25.27◦ 14.00◦ 23.22mm 11.74◦ 13.22◦ 14.36mm

Improvement 32.16% 29.08% -0.30% 10.18% 24.07% 15.68%
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into subgroups that can be used to design population-specific implants. The
population could also be divided using clustering methods based on the presented
design metrics (and possibly others) to generate multiple more specific designs.
We also propose to further extend this method and develop a simple guidance
system that can be integrated into the manufactured implants. It should indicate
the different sections and the way and amount by which the surgeon must deform
the plate. An image-guided system that does not require the development of
sophisticated shaping tools is an ultimate goal that is brought within reach by
the methods and representation presented in this paper. It would allow for a
smooth transfer from the design workbench to the operating theater. We also
plan to carry out mechanical tests to assess the weighted contribution of bending
and torsion to the design criteria and the impact of screw holes deformation.

Acknowledgments. This work was carried out within the frame of the National
Center of Competence in Research, Computer-Aided and Image-Guided Medical
Interventions (NCCR Co-Me), supported by the funds of the Swiss National
Science Foundation (SNSF).
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Abstract. Statistical atlases of bone anatomy are traditionally con-
structed with point-based models. These methods establish initial point
correspondences across the population of shapes and model variations in
the shapes using a variety of statistical tools. A drawbacks of such meth-
ods is that initial point correspondences are not updated after their first
establishment. This paper proposes an iterative method for refining point
correspondences for statistical atlases. The statistical model is used to
estimate the direction of ”pull” along the surface and consistency checks
are used to ensure that illegal shapes are not generated. Our method is
much faster that previous methods since it does not rely on computation-
ally expensive deformable registration. It is also generalizable and can be
used with any statististical model. We perform experiments on a human
pelvis atlas consisting of 110 healthy patients and demonstrate that the
method can be used to re-estimate point correspondences which reduce
the hausdorff distance from 3.2mm to 2.7mm and the surface error from
1.6mm to 1.4mm for PCA modelling with 20 modes.1

1 Introduction

Statistical atlas modelling is a popular tool for analysis of several types of medical
images. Applications range from modelling of anatomical variations within shape
populations to pathological anomaly detection. Shape atlases are typically built
by selection of a representation such as points [1,2,3], curves [4] or level sets [5]
followed by modelling using various statistical techniques [6]. In this paper, we
address the application of statistical bone atlases. Traditionally, bone (and other
rigid body) atlases are modelled using dense point-based methods coupled with
linear statistical models. A set of shapes are first represented as either surface
meshes or volumetric tetrahedral meshes. Subsequently, vertex correspondences
are established using a template mesh. These vertices are then used to represent
the shapes as high dimensional vectors which can be statistically analyzed for
shape variation and other applications.

One drawback of this approach is that point correspondences are established
beforehand and never updated once the model is built. As a consequence, the
error and uncertainty of this initialization is propagated through the model.
Chintalapani et al [2] propose a solution for updating the model with a bootstrap-
ping method which employs the intensity values of voxels. However, this method
1 Supported by NIH with Grant 1-R01-EB00683 and JHU internal funds.
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is computationally very expensive since it requires multiple passes through an
intensity-based deformable registration algorithm. Secondly, in some cases, the
3D intensity data may not be available. In more recent work, Davies et al [3] pro-
pose a minimum description length framework for optimizing a PCA based shape
model. Although this method implicitly disallows generation of illegal shapes, it
is also computationally very expensive. Secondly, their method is specific to PCA
based modelling. In this paper, we propose an iterative bootstrapping method
for improving point correspondences without any outside information with the
use of any statistical model. A set of initial point correspondences are established
(just as in most prior work) to estimate a statistical model, which is then used
to re-estimate point correspondences. This iterative procedure can be repeated
until convergence. We describe the method for the re-estimation with a PCA
based model. However, our method can be applied to any generic statistical
model. Leave-out validation and comparison of the vertex error, surface error
and volume difference is carried out. Results show that our method is able to
improve modelling performance with all these metrics.

2 Methods

We begin with a set of N surface meshes described as: S = {Si = (T, Vi)|i =
1 . . .N}, where Vi ∈ RPX3 contains the P vertices of the shape and T is the set of
triangles. The set V = {V1 . . . VN} contains initial point correspondences, ie: the
nth vertices of each shape correspond. The objective is to generate a statistical
model of this point (vertex) based representation and then improve the initial
point correspondences. In the next few sections, we define a few preliminaries
before describing the general algorithm.

2.1 Preliminaries

Given the set V , we select one test sample Vi. The rest of the samples form a set
V ′

i which is used to generate a PCA model consisting of a mean shape M̄ and
the modes of variation Y . Vi can now be represented by a set of mode weights
λ, computed as: λ = Y T (Vi − M̄). The mode weights can be used to reconstruct
the test sample as: V rec

i = M̄ +
∑n

i=1 λiYi. This type of leave-out modelling and
reconstruction can be performed for all Vi ∈ V . Figure 1(a) shows an example
of an original shape and some points on it in red (Vi). The grey points are those
that are reconstructed using the model (V rec

i ).
Reconstruction with leave-one-out modelling produces an estimate of the

points on the left out shape using a model generated by all the other shapes.
For each vertex point, the vector relating the original point to the reconstructed
points has two components: an out of surface component dout and an along
surface component dalong(Figure 1(b)). In order to ensure point correspon-
dence update only along the surface, we can compute the closest point on
the original surface to the reconstructed point (Figure 1(a)). This now gives
us the direction that the statistical model ”pulls” the original points along
the surface. Carrying this out for all vertex points in Vi generates a set of
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(a) Original surface with a few
points marked (Red), Surface re-
constructed with PCA with points
marked (Grey), Closest Points (Blue)
and direction of closest point from
original point

(b) Out of Surface and Along Surface
Components of vector between origi-
nal and reconstructed point

μ

(c) Fractional Update of Points: The
point is moved in the direction of the
closest point at a scale of μ and then
projected onto the surface to gen-
erate the updated point (correspon-
dence).

Fig. 1. Explanatory figures for
preliminaries

vertices V closest
i . In some cases, the clos-

est point may move very far away from
the original point. Update with the clos-
est point could therefore generate large
amounts of distortion in the shapes and
collapsing of triangles. Instead of perform-
ing a closest point update, we can now
move the original point in the direction of
the closest point along the surface by ap-
plying a scale factor μ. μ = 1 generates the
closest point itself. However, this may not
always correspond to a consistent shape.
Hence, we can select a μ which does satisfy
this requirement. Once μ is selected, the
point can be moved by the vector μdalong

and then projected back onto the surface
(closest point to the surface) to generate
the updated points V updated

i (Figure 1(c)).
In the experimental section, we show how
the fractional updates preserve consistency
and reduce shape distortion for improved
point correspondences. Modifying the
vertices of a surface mesh can affect the
consistency of the reconstruction. In par-
ticular, we are interested in avoiding gen-
eration of illegal shapes. For mesh based
representations, comparison of the normals
of the triangles in the original and updated
shapes gives a quantitative measure of il-
legal shapes (flipped triangles) generation.
Given a surface Si = (Vi, T ) and the new
surface Supdated

i = (V updated
i , T ), the nor-

mals of all triangles of Si and Supdated
i can

be computed to generate the sets Ni and
Nupdated

i respectively. The dot products of
normals of corresponding triangles can be
computed. If a triangle has been flipped,
the dot project will be negative.

2.2 Algorithm Summary

Algorithm 1 and Figure 2 outline the procedure. Initial set of point correspon-
dences are iteratively updated until convergence. In each iteration, the input set
of surfaces is Supdated which was generated by the previous iteration. Closest
points are always computed to the original set of surfaces S in order to maintain
the shape of the surfaces.
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Algorithm 1. Point Update Algorithm
1: Input: S = {(Vi, T )|i = 1 . . . N}, Stepsize s
2: for all Si = (Vi, T ) ∈ S do
3: Generate V ′

i and compute PCA model ⇒ (M̄, Y ).
4: Reconstruct Vi with M̄ and Y ⇒ V rec

i

5: Compute closest points to Si. ⇒ V closest
i

6: Compute direction vector dalong for every vertex
7: Set μ = 1 and compute fractional update ⇒ V updated

i

8: while V updated
i is not consistent do

9: μ = μ − s
10: Compute fractional update V updated

i

11: end while
12: end for
13: Output: Supdated = {(V updated

i , T )|i = 1 . . . N}

Fig. 2. Algorithm outlining the procedure for iteratively updating points in shape
model: A surface is described with a set of vertices and triangles. Vertices are recon-
structed using leave out reconstruction. Closest surface points are then computed and
a fractional update is applied in the direction of the closest point to generate new
vertices. This procedure repeated till convergence.

3 Experimental Results

3.1 Data Acquisition and Validation

We experiment with a pelvis atlas consisting of 110 male patient samples. The
data was collected by a physician and anonymized before we performed any
processing. Each sample is a segmented 512x512x256 CT volume. Surface meshes
(11663 points, 23414 triangles) were extracted for each volume. All meshes were
rigidly registered to a template sample to establish initial point correspondences -
Iteration 0 set. For validation, we performed leave-20 out cross-validation for all
the data. We computed the mean vertex error (Distance between original points
and reconstructed points), mean surface error (Distance between reconstructed
points and original surface) and mean volume error (Sum of surface error and
distance from original points to the reconstructed surface (Hausdorff distance)).
We also report the standard deviations for all folds of validation.
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3.2 Results

We first performed leave-20 out cross-validation using initial point correspon-
dences (iteration 0) by varying the number of modes. The black lines in Figure
3 show the average vertex, surface and volume errors for reconstruction with
1-90 modes. Next, we performed the point update (Algorithm 1). The number
of modes selected for reconstruction in step 4 was 30 modes since the black line
in Figure 3 flattens out after 30 modes. The reconstructed points (step 4) and
closest points (step 5) were used to compute the vertex error, the average along
surface distance and the average out of surface distance. The maximum and min-
imum vertex errors were 5.8mm and 2.3mm. The maximum and minimum along
surface distances were 5.1mm and 1.4mm. The maximum and minimum out of
surface distances were 3.1mm and 0.6mm. Figure 5 shows an example of point
update with this first iteration. The full pelvis on top shows the target (original)
shape, which is the mesh generated by initial point correspondences for one of
the instances. The figures at the bottom show zoomed versions of the some of
the regions. The zoomed view on the left shows regions on the target shape and
the zoomed view in the middle shows the same mesh with point correspondences
updated with the closest points computed. A lot of distortion can be observed
by this step. Secondly, some of triangles are flipped with this point update. In
order to deal with both of these problems, we performed the adaptive selection
of μ starting with μ = 1 and a step size of s = 0.1. This gives us a μ value of
0.3 which is the largest value of μ for generating a consistent dataset. We then
performed the leave-20 out cross-validation of these samples just as in Iteration
0. The average vertex, surface and volume errors and the error bars are shown in
blue in Figure 3. We then demonstrate the effect of μ on these metrics as follows.
We generated datasets for μ < 0.3 (consistent datasets) at step sizes of 0.1. This
gave us two more datasets at μ = 0.1 and μ = 0.2. In addition, we also generated
one more dataset for μ = 1. This dataset was not consistent (at least 30 out of
the 23414 triangles were flipped in the meshes). Leave-20 out cross-validation
was performed on these three extra datasets. The average vertex, surface and
volume errors and error bars are plotted in Figure 3. The red curves correspond
to μ = 0.1. The green curves correspond to μ = 0.2 and the black dashed
curves correspond to μ = 1. Thus, we observe that the increase of μ affects

Table 1. Vertex, Surface & Volume
Errors, leave-20-out validation, 20
modes

Vertex Surface Volume

Error(mm) Error(mm) Error(mm)

Iter 0 4.0 1.6 3.2
Iter 1 2.9 1.5 2.9
Iter 2 2.4 1.4 2.8
Iter 3 2.1 1.4 2.7

these metrics consistently towards μ = 1.
Following this, we performed two more it-
erations of the leave out reconstruction.
Again, we used 30 modes for the recon-
struction and μ was adaptively selected
at each subsequent iteration. In iteration
2, μ was selected as 0.3 and at itera-
tion 3, μ was selected as 0.4. Leave-20
out cross-validation was then performed for
the same 20 samples and the three metrics
are plotted in Figure 4. With validation at
20 modes, the average vertex error drops
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Fig. 3. Graphs showing the Vertex er-
ror, Surface error and Volume error
with error bars from Leave-20 out cross-
validation for Iteration 1 with vary-
ing fractional updates. Leave out recon-
struction was performed with 30 modes
and values of the fractional updates are
μ = 0.1, 0.2 and 0.3.

Fig. 4. Graphs showing the Vertex er-
ror, Surface error and Volume error
with error bars from Leave-20 out cross-
validation for three iterations. Leave out
reconstruction was performed with 30
modes. μ = was adaptively selected as
0.3, 0.3 and 0.4 in iterations 1,2 and 3
respectively.
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Fig. 5. Top: Original Mesh of a pelvis instance, Bottom: Zoomed view of mesh in two
regions. The left most views show the region on the original pelvis, the middle view
shows the region with updates using the closest points in iteration 1 (Black dashed
curve in Figure 3), the right most views show the region after iteration 3 with adaptive
fractional updates (Pink curve in Figure 4). Note that although the metrics are similar,
there is a lot more shape distortion in the closest point reconstruction of iteration 1.
This shows that the fractional update method is also limiting the shape distortions.
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from 4.0mm to 2.1mm, the average surface error drops from 1.6mm to 1.4mm
and the average volume error drops from 3.2mm to 2.7. Table 1 shows these
values for all iterations. We also note that the difference between these errors
in the last two iterations is very small, showing convergence of the procedure.
Finally, we compare the reconstruction of the adaptive fractional updates with
the reconstruction with the closest points in iteration 1. By inspection of the
graphs in Figures 3 and 4, we note that the closest points in iteration 1 gener-
ate the black dashed curve in figure 3 and iteration 3 of the adaptive fractional
updates generate the pink curve in Figure 4. The metrics are comparable for
these two curves. Figure 5 shows a comparison of the original shape and these
two types of point updates. We note that the adaptive fractional update not
only maintains consistency of the shape but also reduces the amount of shape
distortion.

4 Discussion

We have presented a general iterative method for refinement of point 3D point
correspondences for statistical atlas modelling. This method is non-specific to
the statistical method and does not use outside information to update the point
correspondences. Instead, the statistical model’s estimate is used to drive the
direction of point update. Since our method explicitly computes reconstructions
based on the statistical model and then uses the reconstruction to update the
points, this method could can be generalized to the use of any statistical model. It
is also much faster than previous methods which use intensity based deformable
registration or complex optimization procedures. In our experiments, we show
that with leave-20 out validation with 20 modes, the vertex error can be reduced
from 4mm to 2.1mm, the surface error can be reduced from 1.6mm to 1.4mm
and the volume error can be reduced from 3.2mm to 2.7mm. We also note that
the fractional update algorithm not only maintains consistency but also reduces
the amount of shape distortion. One of the drawbacks of the current procedure
is that no intensity information is used at all. Thus, although the shapes are
consistent, it is possible that some of the detail may be lost. The work so far
has addressed only one specific atlas. In future work, we plan to extend the
evaluation of the applicability of our method to other types of statistical atlases.
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References

1. Cootes, T.F., Taylor, C.J., Cooper, D.H., Graham, J.: Active shape models their
training and application. Comput. Vis. Image Underst. 61, 38–59 (1995)

2. Chintalapani, G., Ellingsen, L.M., Sadowsky, O., Prince, J.L., Taylor, R.H.: Sta-
tistical atlases of bone anatomy: Construction, iterative improvement and valida-
tion. In: Ayache, N., Ourselin, S., Maeder, A. (eds.) MICCAI 2007, Part I. LNCS,
vol. 4791, pp. 499–506. Springer, Heidelberg (2007)



Iterative Refinement of Point Correspondences 425

3. Davies, R.H., Twining, C.J., Cootes, T.F., Taylor, C.J.: Building 3-d statistical
shape models by direct optimization. IEEE Trans. Med. Imaging 29(4), 961–981
(2010)

4. Joshi, S.H., Cabeen, R.P., Sun, B., Joshi, A.A., Gutman, B., Zamanyan, A.,
Chakrapani, S., Dinov, I., Woods, R.P., Toga, A.W.: Cortical sulcal atlas construc-
tion using a diffeomorphic mapping approach. In: Jiang, T., Navab, N., Pluim,
J.P.W., Viergever, M.A. (eds.) MICCAI 2010. LNCS, vol. 6361, pp. 357–366.
Springer, Heidelberg (2010)

5. Osher, S.J., Fedkiw, R.P.: Level Set Methods and Dynamic Implicit Surfaces, 1st
edn. Springer, Heidelberg (2002)

6. Bishop, C.M.: Pattern Recognition and Machine Learning (Information Science
and Statistics). Springer-Verlag New York, Inc., Secaucus (2006)



A New Shape Diffusion Descriptor for Brain

Classification

Umberto Castellani1, Pasquale Mirtuono1, Vittorio Murino1,2,
Marcella Bellani3, Gianluca Rambaldelli3, Michele Tansella3,

and Paolo Brambilla4,5

1 VIPS lab, University of Verona, Italy
2 Istituto Italiano di Tecnologia (IIT), Italy

3 Department of Public Health and Community Medicine, Inter-University Center for
Behavioural Neurosciences (ICBN), University of Verona, Italy

4 Department of Experimental Clinical Medical Sciences (DISM), Inter-University
Center for Behavioral Neurosciences, University of Udine, Italy

5 Scientific Institute IRCCS “E. Medea”, Udine, Italy

Abstract. In this paper, we exploit spectral shape analysis techniques
to detect brain morphological abnormalities. We propose a new shape
descriptor able to encode morphometric properties of a brain image or
region using diffusion geometry techniques based on the local Heat Ker-
nel. Using this approach, it is possible to design a versatile signature,
employed in this case to classify between normal subjects and patients
affected by schizophrenia. Several diffusion strategies are assessed to ver-
ify the robustness of the proposed descriptor under different deformation
variations. A dataset consisting of MRI scans from 30 patients and 30
control subjects is utilized to test the proposed approach, which achieves
promising classification accuracies, up to 83.33%. This constitutes a dras-
tic improvement in comparison with other shape description techniques.

1 Introduction

Brain morphology techniques using Magnetic Resonance Imaging (MRI) are
playing an increasingly important role in understanding pathological structural
alterations of the brain [1,2]. A typical approach is to investigate the presence of
morphological differences of selected brain structures between neuropsychiatric
patients and healthy controls [2]. To this aim, methods for shape analysis can
be exploited in order to extract the geometric information which provides the
best statistical performance in separating the two populations (i.e., healthy and
non-healthy people)[3]. Classic approaches evaluate volumetric variations [2] to
explain atrophy or dilation due to such kind of illnesses. Nevertheless, more ad-
vanced shape analysis techniques have been proposed aiming at exploiting new
aspects of the shape such as spectral [4,5] or local geometric properties [6]. A
typical methodology consists of encoding such geometric properties into a de-
scriptor which compactly represents the shape. In this fashion, the comparison
between shapes can be carried out by measuring the descriptors’ similarities in
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the descriptor space. Thus, the effectiveness of shape descriptors can be evalu-
ated in terms of discriminativeness and robustness against shape variations due
to noise or deformations.

In this paper, we propose a new shape descriptor based on advanced diffusion
geometry techniques. Local geometric properties are encoded by the so-called
Heat Kernel [7] which exploits heat diffusion characteristics at different scales.
The general idea consists of capturing information about the neighborhood of a
point on the shape by recording the dissipation of heat over time from that point
onto the rest of the shape. In this way, local shape characteristics are highlighted
through the behavior of heat diffusion over short time periods, and, conversely,
global shape properties are observed while considering longer periods [7,8]. So
doing, simply varying a single parameter (the time), it is possible to characterize
the properties of a shape at different scales. Therefore, local heat kernel values
observed at each point are accumulated into a histogram for a fixed number of
scales leading to the so-called Global Heat Kernel Signature (GHKS).
The method is inspired by [7] which proposed the Heat Kernel signature (HKS)
for a single vertex of a mesh. Here, we extend the HKS for the whole shape for
both surface mesh (i.e., external surface) and volumetric representation. The pro-
posed descriptor has several nice properties which are shared with very few other
work. GHSK allows for shape comparisons using minimal shape preprocessing,
in particular, no registration, mapping, or remeshing is necessary. GHKS is ro-
bust to noise since it implicitly employs surface smoothing by neglecting higher
frequencies of the shape. Finally, GHKS is able to encode isometric invariance
properties of the shape [7] which are crucial to deal with shape deformations.

The proposed descriptor has been tested in the context of the analysis of the
schizophrenia illness. A Region-of-Interest (ROI)-based approach [1] is employed
by studying the left-thalamus, which is known to be impaired by such disease
[2]. Experiments, carried out on a dataset of 30 patients and 30 controls, lead
to promising classification results in distinguishing between the two populations
also in comparison with other methods.

2 Related Work

Several work has been proposed for detecting alterations of the brain structure
by using advanced shape analysis techniques [4,6]. A common approach con-
sists of capturing global shape information from the (shape-)spectral domain
[5,4]. In [5], geometric properties are encoded by computing spherical harmonic
descriptors (SPHARM) on brain surfaces. Although results are interesting, the
method is not invariant to surface deformations and therefore it requires shapes
registration and data resampling. This pre-processing is avoided in [4], where
the so called Shape-DNA signature has been introduced by taking the eigenval-
ues of the Laplace-Beltrami operator as region descriptor for both the external
surface and the volume. Although global methods can be satisfying for some
classification tasks, they do not provide information about the localization of
the morphological anomalies. To this aim, local methods have been proposed.
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In [6] the so called feature-based morphometry (FBM) approach is introduced.
Taking inspiration from feature-based techniques proposed in computer vision,
FBM identifies a subset of features corresponding to anatomical brain structures
that can be used as disease biomarkers. Other approaches are able to combine
both global and local information. More specifically, a recent and important class
of methods has been introduced for generic object analysis which employs heat
diffusion procedures on 3D shapes [7,8,9,10]. In this class of techniques, global
information is provided by the spectral parameters of the Laplace-Beltrami oper-
ator employed on 3D data, and local information is defined by the heat diffusion
at small scales. In [7], Sun et al. have proposed the so called Heat Kernel Sig-
nature(HKS): the main idea was to describe the diffusion from a point to itself
at several time instants. The HKS provides a natural and efficiently computable
multi-scale way to capture information about neighborhoods of a given point.
A similar approach has been proposed in [8] by introducing the so called Auto
Diffusion Function (ADF). The idea and formulation is the same as in [7], but
the procedure has been applied for object segmentation and skeleton extraction.
In order to obtain a global signature from local measures two main strategies
has been proposed [10,9]. In [9] the well known Bag-of-features approach is em-
ployed starting from the HKS value at each point of the shape. Coversely, in [10]
the global shape is captured by computing the distribution of diffusion distances
among the points of the shape. In [9], a study on isometry-invariance property of
the geometric diffusion process is proposed in order to highlight the differences
between volume-isometry and boundary-isometry. In the former case, the diffu-
sion is computed at voxel level, whereas in the latter the diffusion is computed
only on the external surface.
Our approach extends the use of heat kernel on MRI data for classification pur-
poses on medical domain. The method proposed improves [5] since our descriptor
is isometry invariant. Moreover, differently than [4], our approach implements a
multi-scale analysis to increase the discriminativeness properties of the descrip-
tor. Finally, the main idea of the heat kernel signature[7] to describe the diffusion
from a point to itself at different scales has been revised to work on global shape.

3 The Heat Diffusion Process

Given a shape M as a compact Riemannian manifold, the heat diffusion on
shape1 is defined by the heat equation:

(ΔM +
∂

∂t
)u(t, x) = 0; (1)

where u is the distribution of heat on the surface, ΔM is the Laplace-Beltrami
operator which, for compact spaces, has discrete eigendecomposition of the form
ΔM = λiφi. In this fashion the heat kernel has the following eigendecomposition:

kt(x, y) =
∞∑

i=0

e−λitφi(x)φi(y), (2)

1 In this section, we borrow the notation from [7,9].
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where λi and φi are the ith eigenvalue and the ith eigenfunction of the Laplace-
Beltrami operator, respectively. The heat kernel kt(x, y) is the solution of the
heat equation with point heat source at x at time t = 0, i.e., the heat value
at point y after time t. The heat kernel is isometric invariant, it is informative,
multi-scale, and stable [7]. In order to estimate the Laplace-Beltrami and the heat
kernel in discrete domains several strategies can be employed [9]. In the following
we describe the cases of surface meshes and volumetric representations.

Heat kernel on surface meshes. In the case of surface mesh only the bound-
ary of the shape is considered. In order to work on a discrete space, we estimate
the Laplace-Beltrami operator by employing linear Finite Elements Methods
(FEM) [4]. More in detail, given a triangular mesh composed by v1, · · · , vm ver-
tices, with linear finite elements the generalized eigendecomposition problem [4]
becomes:

AcotΦ = −ΛBΦ, (3)

where Λ is the diagonal matrix of the Laplace Beltrami eigenvalues λi, and Φ
is the matrix of corresponding eigenfunctions φi. The matrices Acot and B are
defined as:

Acot(i, j) =

⎧⎪⎨⎪⎩
cotαi,j+cotβi,j

2 if (i, j) ∈ E,

−∑k∈N(i) Acot(i, k) if i = j,

0 otherwise.

(4)

B(i, j) =

⎧⎪⎨⎪⎩
|t1|+|t2|

12 if (i, j) ∈ E,
−∑k∈N(i) |tk|

6 if i = j,

0 otherwise.

(5)

where E is the set of edges of the triangular mesh, αi,j and βi,j are the two angles
opposite to the edge between vertices vi and vj in the two triangles sharing the
edge (i, j), |ti| is the area of the triangle ti, and t1, t2 are the triangles that
shares the edge (i, j). Indeed, the heat kernel can be approximated on a discrete
mesh by computing Equation 2 and retaining the k smallest eigenvalues and the
corresponding eigenfunctions.

Heat kernel on volumetric representations. In the case of volumetric rep-
resentations, the interior part of the shape is also considered. The volume is
sampled by a regular Cartesian grid composed of voxels, which allows the use of
standard Laplacian in R3 as the Laplace-Beltrami operator. We use finite differ-
ences to evaluate the second derivative in each direction of the volume. The heat
kernel on volumes is invariant to volume isometries, in which shortest paths be-
tween points inside the shape do not change. Note that in real applications exact
volume isometries are limited to the set of rigid transformations [9]. However,
also non-rigid deformations can faithfully be modelled as approximated volume
isometries in practice. Moreover, differently from spectral surface representation,
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volumetric approach is able to capture volume atrophy. It is worth noting that,
as observed in [7,9], for small t the heat kernel kt(x, x) of a point x with itself is
directly related to the scalar curvature s(x) [9]. More formally:

kt(x, x) = (4πt)−3/2(1 +
1
6
s(x)). (6)

Note that in the case of surface meshes s(x) can be interpreted as the Gaussian
curvature [7]. In practice, Equation 6 states that heat tends to diffuse slower at
points with positive curvature, and viceversa. This gives an intuitive explanation
about the geometric properties of kt(x, x) an leads the idea of using it to build
a shape descriptor [7].

4 The Proposed Method

The proposed approach is composed of three main phases: i) data gathering, ii)
estimation of descriptors, and iii) classification.

Data Gathering. Quantitative data collection and processing in MRI based
research implies facing several methodological issues to minimize biases and dis-
tortions. The standard approach to deal with these issues is following well es-
tablished guidelines dictated by international organizations, such as the World
Health Organization (WHO), or codified by respected institutions, such as lead-
ing universities. In this work we employ a ROI-based approach [1]: only a well
defined brain subpart has been considered. Specifically, we focus our analysis on
the left-Thalamus whose abnormal activity is already investigated in schizophre-
nia. Regions have been manually traced by experts, according to well defined
medical protocols.

Global Heat Kernel Signature. Once data are collected, a strategy to encode
the most informative properties of the shape M can be devised. To this end,
a global shape descriptor is proposed, which is inspired by the so-called Heat
Kernel Signature(HKS) defined as:

HKS(x) = [kt0(x, x), · · · , ktn(x, x)]. (7)

where x is a point of the shape (i.e., a vertex of a mesh or a voxel) and
(t0, t1, · · · , tn) are n time values. To extend this approach to the whole shape,
we introduce the following global shape descriptor:

GHKS(M) = [hist(Kt0(M)), · · · , hist(Ktn(M))], (8)

where Kti(M) = {kti(x, x), ∀x ∈ M}, and hist(·) is the histogram operator.
Note that our approach combines the advantages of [10,9] since it encodes the
distribution of local heat kernel values and it works at multiscales. Figure 1
shows a schema of the proposed descriptor. Each point of the shape is colored
according to kti(x, x). Such values are collected into a histogram for each scale
ti. Finally, histograms are concatenated leading to the global signature.
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Fig. 1. GHKS: Each point of the shape is colored according to kti(x, x). Such values
are collected into a histogram for each scale ti. Finally, histograms are concatenated
leading to the global signature.

Support Vector Machine Classification. These descriptors are simply eval-
uated using a Support Vector Machine (SVM), which is one of the most powerful
classifier for object recognition [11]. SVM constructs a maximal margin hyper-
plane in a high dimensional feature space, by mapping the original features
through a kernel function. Here, the input of the SVM are the set of GHKS
descriptors extracted for each subject. A learning by example approach is intro-
duced by adopting leave-one-out cross-validation procedure2.

5 Results

The proposed shape classification method is employed for Schizophrenia detec-
tion in Thalamic region. A dataset composed of 30 male patients and 30 male
controls has been evaluated. MRI scans were acquired using a 1.5 T Siemens
Magnetom Symphony Maestro Class, Syngo MR 2002B. After manual extrac-
tion of the ROIs both mesh surfaces and volumetric representations have been
recovered. The Laplace-Beltrami operator has been computed as described in
Section 3, for both representations, and the heat kernel has been computed. In
this work, we have used k = 200 eigenvalues, and we have scaled the tempo-
ral domain logarithmically in n = 10 time values, as suggested in [7]. Finally,
the GHKS is computed by fixing 100 bins for each histogram. Therefore, for each

2 A single sample is used as validation data, and the remaining samples as training
data. The procedure is repeated such that every sample in the dataset is used once
as validation data.
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Table 1. Classification rates. The accuracy is computed by Leave-One-Out cross-
validation. Three kernels are evaluated and two methods are compared. Both surface
and volumetric representations are considered.

Method Linear-SVM Polynomial-SVM RBF-SVM

Surface GHKS 65.00% 66.67% 71.67%
Volumetric GHKS 81.67% 80.00% 83.33%

Surface ShapeDNA 50.00% 66.67% 70.00%
Volumetric ShapeDNA 50.00% 71.67% 73.33%

subject the final dimension of the GHKS is 10 · 100 = 1000. The classification
procedure is employed as described in Section 4. Several kernels have been eval-
uated, namely linear, polynomial (degree=3), and radial basis function (RBF).
We compare our descriptor with the so called ShapeDNA descriptor, recently
proposed by Reuter et al. [4]. As mentioned above, the ShapeDNA has similar
properties of our GHKS descriptor since it encodes the intrinsic properties of
the shape. Conversely, ShapeDNA does not deal with multiple scales and takes
into account of only global information. Table 1 shows the classification per-
formance of the considered approaches. The proposed GHKS descriptor clearly
outperforms the ShapeDNA descriptor3. Specifically, a drastic improvement is
observed when the volumetric approach is employed. In fact, volumetric GHKS
reaches the best accuracy (i.e., 83.33%), and it is stable by varying the type
of kernel employed. It is worth noting that also in the case of ShapeDNA, bet-
ter performances are observed with the volumetric procedure. Therefore, from
this study we can argue that volumetric approach is more suitable to deal with
natural shape variations that raise on brain subparts of different subjects. The
computational cost of the proposed GHKS descriptor is not high and effective:
the Laplace-Beltrami transform can be employed in around 10 seconds for a
mesh of about 3000 vertices. The same eigendecomposition on our volumetric
data of 21 × 37 × 29 voxels takes around 25 seconds. Then, the computation of
final GHKS takes around a second for both the approaches4.

6 Conclusions

In this paper, a new shape morphometry approach is introduced to improve the
classification between normal subjects and patients affected by schizophrenia.
Our GHKS descriptor combines local shape properties into a global signature by
exploiting geometric diffusion procedure on MRI data. The approach proposed
outperforms previous work, namely ShapeDNA, it is easy to be implemented
and efficient. Both volumetric and surface approaches have been evaluated by
showing that in our study neuroanatomical variations between different subjects
are well modelled by volume isometries. From our experiments, we can highlight

3 The same number of eigenvalues have been employed.
4 We used a laptop at 1.66Ghz. The code is written in Matlab with some parts in C.
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the discriminativeness property of the thalamus by confirming the importance
of this region to figure out mental disorders, especially in schizophrenia. Future
work will address the localization of the disease on both surface and volume by
further exploiting the local properties of the heat kernel on MRI data.
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Abstract. Despite the growing interest in regression based shape esti-
mation, no study has yet systematically compared different regression
methods for shape estimation. We aimed to fill this gap by compar-
ing linear regression methods with a special focus on shapes with land-
mark position uncertainties. We investigate two scenarios: In the first,
the uncertainty of the landmark positions was similar in the training and
test dataset, whereas in the second the uncertainty of the training and
test data were different. Both scenarios were tested on simulated data
and on statistical models of the left ventricle estimating the end-systolic
shape from end-diastole with landmark uncertainties derived from the
segmentation process, and of the femur estimating the 3D shape from
one projection with landmark uncertainties derived from the imaging
setup. Results show that in the first scenario linear regression methods
tend to perform similar. In the second scenario including estimates of
the test shape landmark uncertainty in the regression improved results.

1 Introduction

Shape estimation by linear regression has been applied in a great variety of prob-
lems, including 3D shape estimation from digitized point cloud [10] and projec-
tion images [15], neighboring shape prediction [8,11,14], organ motion prediction
based on a few time-points [9,7,1], healthy shape prediction for disease quantifi-
cation [4], and remaining shape variation prediction from partial field of view
[3,2].

The shapes used to construct the regression model are segmentations of images
with noise, artifacts, low contrast, etc. Therefore, landmark positions always
inhabit a certain amount uncertainty, which may be estimated from the images,
imaging setup, segmentation method, etc. Regression methods that are currently
applied for shape prediction do not incorporate this additional information.

Studies in chemometrics literature compared the performance of linear regres-
sion methods in noisy environments concluding that including data uncertainty
may improve prediction in certain situations [12]. These conclusions can not di-
rectly be generalized to shape regression, as they apply to single variable outcome
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cases with low dimensional input and a large training set. Shape regression on
the other hand is characterized by high dimensional input and output variables,
and a very small training set.

Therefore, we addressed the following questions: (1) Is there a preferred linear
regression method for shape regression? (2) In what context is it beneficial to
incorporate landmark position uncertainties in the regression?

We answer these questions by comparing several linear regression methods
with and without incorporation of uncertainties. We differentiate two scenarios:
In the first, uncertainties of the landmark positions are similar in the training
and test dataset, whereas in the second uncertainties of the training and test
data are different. We evaluate the performances in simulation experiments pro-
viding a controlled setup with a Gaussian shape and uncertainty model and
known ground truth, and in a real-world dataset for each scenario. First, the
end-systolic left ventricle shape is predicted from end-diastole with landmark
uncertainties derived from the segmentation process, and second, the 3D femur
shape is estimated from one projection with landmark uncertainties derived from
the imaging setup.

2 Shape regression

Shape representation. Each training shape consists of landmark points, which
are in correspondence across all shapes. After rigid alignment each shape can
be represented by its concatenated landmark coordinates as a high dimensional
point. The set of training shapes in this high dimensional space is commonly
assumed to be Gaussian distributed with lower intrinsic dimensionality.

Regression techniques. In this paper we describe shape regression where
both input x and output y are shapes. We focus on linear regression methods,
as in low sample size high dimensionality problems non-linear methods tend to
over-fit the training data [6]. Ordinary least squares (OLS) is the best unbiased
linear estimator. It minimizes the sum of squares prediction error requiring an
over-determined system, and often inhabiting large prediction variance1. Due to
the small sample size and the lower intrinsic dimensionality shape regression is
typically under-determined, and OLS is not directly applicable. We compared
biased methods as they both reduce prediction variance, and are applicable for
under-determined problems.

Standard biased regressions not including landmark uncertainty are principal
component regression (PCR) applying OLS on a sub-space calculated by prin-
cipal component analysis; partial least squares regression (PLS) optimizing the
underlying lower dimensional spaces of input and output to maintain the most
covariance between them2; and ridge regression (RR) applying a norm constraint
on the regression coefficients. See [6] for more detailed descriptions.

1 With multivariatex andy OLS is termed multiple outcome multiple linear regression.
2 We used the SIMPLS algorithm for PLS.
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Maximum likelihood (ML) PCR includes uncertainties of both test and train-
ing data by performing OLS on the input subspace A, that is optimal in the
ML sense for a given set of samples with known Gaussian uncertainties. A sam-
ple x with uncertainty Ψ is represented as r = (ATΨ−1A)−1ATΨ−1x in this
subspace. We defined a minimum uncertainty for all dimensions to maintain sta-
bility. Furthermore to cut computational costs, we used an efficient alternating
algorithm with independent noise approximation and no intercept optimization
[13]. MLPCR has not been used in shape regression before.

To include uncertainty in the test sample only, we used maximum a-posteriori
(MAP) ridge regression, proposed in [2]. With known test uncertainty Ψ one
obtains the coefficient matrix BMAPR = ΣY X(ΣXX + Ψ + λI)−1, where ΣXX

and ΣY X are the input covariance and cross-covariance matrices, I is the identity
matrix, and λ is a regularization constant.

Suitable values for the percentage of variance retained with PCR, number of
modes of PLS and MLPCR, and regularization constant for ridge and MAP ridge
regressions have to be assessed from the training set. We used cross-validation
on the training set to estimate the regularization.

3 Simulation Study

Framework description. To evaluate shape regression with different noise
patterns, we simulated data that resembles real world shapes, i.e. (1) the data
forms a low-dimensional Gaussian distribution with variance outside this sub-
space being Gaussian noise; (2) noise of neighboring dimensions is correlated; (3)
the variance of modes drops quickly and then smoothly converges to a constant;
(4) sample dimensionality greatly exceeds the training set size; and (5) the input
only partially predicts the output.

The data was generated with intercepts x0 and y0 as follows

xi = x0 + Φinαi + δi
in , yi = y0 + Φout(Wαi) + δi

out (1)

where αi is the din dimensional representation of the i-th training input xi, and
is sampled per dimension from a Gaussian distribution with decreasing variance.
The matrices Φin and Φout contain random orthonormal vectors, and W is the
random orthogonal linear regression coefficient matrix of size din × dout. The
noise δi

in and δi
out is sampled from a Gaussian distribution with covariance

Σδ = ζ [Σcommon + ΣsampleSpec] = ζ
[
ΘTΓΘ + STS

]
, (2)

where ζ regulates the amount of noise. Noise consists of Σcommon producing a
shared noise structure, and a sample specific term ΣsampleSpec. The first is cal-
culated from a random low dimensional space spanned by the columns of Θ with
a magnitude defined by the diagonal of Γ , while the second is calculated from
a random matrix S consisting of uniform gaussian samples, except of a diago-
nal band exhibiting larger variance. Such noise models the common uncertainty
structure shared by all samples, such as a larger error along the shape surface
than perpendicular to it as well as the smoothness of real shapes making noise
highly correlated in a neighborhood.



Comparison of Shape Regression Methods 437

Experiments and results. We conducted experiments with 200 dimensional
input and output of intrinsic dimensionality din = 5, dout = 3. We chose ζ such
that the noise magnitude was 10% of the real data variation. Training set size
was 30, unless stated differently. For the first two experiments the exact noise
covariance was used as sample uncertainty estimate. We used the root mean
squared (RMS) distance of the predicted output and the noise-free test output
for evaluation. The reported results are averages of 100 random realizations.

The first experiment simulates applications where training and test shapes
are produced with the same segmentation method and imaging protocol. This
scenario is most common in real shape regressions. For this simulation training
and test input and output is given same amount of noise. Results for different
training set sizes shown in Fig. 1 indicate only small differences between regres-
sion methods. Results of 2-sample t-tests on the pooled training set sizes are
shown in Tab. 1. The same experiment with 50% noise gave similar results.
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Fig. 1. Error as function of training set size
for different regression methods, when noise
in training and test data is similar (Simu-
lation experiment 1)

Table 1. Significance table: The up-
per triangle summarizes results when
training and test data are similar (S1
- simulation 1, H - Heart). The lower
triangle summarizes experiments with
different training and test data (S2
- simulation 2, F - femur 2D-3D).
The arrows point to the significantly
outperforming method (5% confidence
level).

S1 H S1 H S1 H S1 H

RR ↓ 0 ← ← 0 ← ← ←
→ → MAPR ← ← ← ← ← ←
↑ ↑ ↑ ↑ PLS ↓ 0 ↓ ↓
0 ↑ ↑ ↑ → ↑ MLPCR 0 ↓
0 ↑ ↑ ↑ → 0 0 → PCR

S2 F S2 F S2 F S2 F

The second experiment simulates applications where the training shapes are
created from a different modality or with a different method than the test data,
e.g. training shapes from CT and test data from X-ray [15]. They exhibit thus
different noise structure. We simulated the training set with 10% noise, while
test sample noise varied between 5% and 100%. Results are shown in Figure 2
and Table 1.

In the third experiment we assessed the effect of wrongly estimated amount of
test uncertainty. We used the setup of the previous experiment with 10% training
set noise, and twice as large test noise, and varied the estimated magnitude of
the test uncertainty. Note, that the covariance structure of the test uncertainty
stayed the same, only the magnitude varied. Results are shown in Figure 3.
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Fig. 2. RMS error for different regres-
sion methods as function of the ratio
between test and training set noise mag-
nitude (Simulation experiment 2)
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Fig. 3. RMS error for different regression
methods as function of the ratio between
estimated and actual test noise magni-
tude (Sim. experiment 3)

4 Real World Datasets

Left ventricle prediction. Estimation of a patient-specific 4D beating heart
model is useful for integration of pre-operative 3D CTA in X-ray guided coronary
angioplasty procedures [9]. We investigated the accuracy of predicting the end-
systolic left ventricle shape from end-diastole as a real world example for the
scenario of similar test and train uncertainties.

We extracted 150 end-diastolic and end-systolic left ventricle (LV) shapes from
4D cardiac CTA segmentations, derived by atlas segmentation at end-diastole
and subsequent 4D registration as proposed by [9]. The atlases contained 5899
landmark points denoting the LV endo- and epi-cardium. The end-diastolic seg-
mentations were obtained by averaging the landmark points of the eight reg-
istered atlases. The spread of these points was used to estimate the landmark
uncertainty. Example segmentations with color-coded uncertainty magnitude per
landmark are shown in Fig. 4).

The RMS point-to-point (P2P) distance between predicted and segmented
end-systolic shape was evaluated in leave-one-out experiments. The regular-
ization parameters in PCR, PLS and RR were optimized via 15-fold cross-
validation, and MLPCR was assigned the same number of modes as PCR. Due
to the high dimensional input, MAPR was performed in the data subspace, and
was optimized per test sample. Results for the different regression methods are
shown in Fig. 6 with Table 1 indicating statistical significance.

2D-3D femur reconstruction. Estimation of 3D patient specific bony
anatomy from one or more X-Ray images would be beneficial to minimize acqui-
sition costs and radiation dose. Regression based reconstruction after rigid align-
ment and 2D-3D correspondence generation was proposed by Zheng et al.[15].
We focused on the reconstruction step assuming known projection parameters,
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Fig. 4. Two end-diastolic left ventricle
shapes with color-coded landmark uncer-
tainty, derived from CTA data by multi-
atlas segmentation

Fig. 5. The 2D-3D uncertainty structure.
The 3D position of a projected 2D silhou-
ette point is highly uncertain in the pro-
jection direction.
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Fig. 6. Box plots showing RMS errors
between estimated and reference LV sys-
tolic shape. The blue star marks the mean
RMS error.
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Fig. 7. Box plots showing RMS errors be-
tween estimated and reference 3D femur
shape for two projection directions

optimal pose, and perfect 2D-3D correspondence. This is an example of the
scenario when training and test uncertainty differs.

The regression coefficient matrix was calculated with as input the 3D silhou-
ette landmarks and as output the entire 3D shape. The test input was generated
from the 2D projected silhouette landmarks as the 3D point on the projection
ray, which is closest to its corresponding landmark of the mean shape. There-
fore, the test input was given a large uncertainty along the projection rays, and
a small one perpendicular to it, as shown in Fig. 5. The training shapes were
rigidly aligned based on the silhouette landmark points only, as proposed in [2].
We performed leave-one-out experiments to estimate the 3D distal femur shape
from one projection.

The femur model was created from semi-automatic segmentations of 29 pa-
tient CTs and 13 cadavers from both sexes with varying ages. Point correspon-
dence was generated with the GAMES algorithm [5]. The resulting shape model
contained 33 modes of variations with 95% retained variance.
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We compared the regression methods based on the RMS P2P distance be-
tween predicted and test output. Results for the Anterior-Posterior (AP) and
the Lateral-Medial (LM) projection directions are shown in Fig. 7 with signifi-
cance indication in Table 1.

5 Discussion and Conclusions

Despite the growing interest in regression based shape prediction, no study had
before systematically compared different regression methods for shape analysis.
We aimed to fill this gap by comparing several linear regression methods with
a special focus on landmark position uncertainties. We defined two uncertainty
scenarios.

In the first scenario test and train uncertainties were similar. Simulation exper-
iment 1 and the LV prediction experiment (Fig. 1, Fig. 6, and Table 1) showed
little differences between different linear regression methods. Uncertainty in-
corporation via MLPCR did not improve results. A similar phenomenon was
reported in [12] for MLPCR without intercept optimization. Results might im-
prove without the simplifications of independent noise and no intercept, but the
high computational requirements make it currently impractical for shape regres-
sion. Including uncertainty of the test sample via MAPR marginally improved
predictions in the simulations, but did not improve upon RR on the heart data.
While the regularization constant of MAPR depends on the test uncertainty,
and has to be re-optimized for every new test sample, the optimization of the
standard regression methods is solely based on the training data, can thus be
precomputed. We observed that the average cross-validation curve used to chose
the shrinkage parameter was smooth for RR, and spiky for PCR and PLS due to
the discrete inclusion of directions, and the false correlation magnitudes in case
of a small and noisy training set. This might be one reason why RR slightly but
consistently outperformed PCR and PLS. Overall, in this scenario we found RR
to perform slightly better than to other linear regression methods.

In the second scenario training and test uncertainties differ largely. Simula-
tion experiment 2 and the 2D-3D femur reconstruction experiment (Fig. 2, Fig. 7
and Tab. 1) consistently showed that including knowledge of the test uncertainty
in the prediction via MAPR significantly improves results. The practical gain
depends on the difference in uncertainty and on how well the assumed nor-
mal distribution fits the shape variability and the noise. Real world data might
therefore produce a smaller gain with MAPR. Estimation errors of the noise
magnitude with the correct covariance structure are, however, tolerable within
a large interval (simulation 3, Fig. 3). The performance of RR,PLS,PCR and
MLPCR did not change from scenario 1. Therefore, we conclude that in such
situations including landmark uncertainty of the test sample may be beneficial.

In our comparison the predicted shape is the end result. Our work could be
naturally extended to include the remaining variance of the prediction.

We believe that the presented comparison study gives insights for researchers
working on shape prediction in various domains, and helps in the selection of a
suitable regression method for future applications.
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Abstract. A new type of deformable model is presented that merges meshes 
and level sets into one representation to provide interoperability between 
methods designed for either. The key idea is to use a constellation of triangular 
surface elements (springls) to define a level set. A Spring Level Set (SpringLS) 
can be interpreted as a mesh or level set and used in place of them in many 
instances. There is no loss of shape information in the transformation from 
triangle mesh or level set into SpringLS. As examples, we present results for 
joint segmentation/spherical mapping of a human brain cortex and atlas/non-
atlas segmentation of a pelvis. 

Keywords: mesh, level set, deformable model, segmentation, active contour.  

1   Introduction 

Deformable models are geometric representations of objects that deform (change 
shape) due to forces applied at their boundary. Deformable models are applicable to a 
broad range of problems in image analysis and computer vision including: 
reconstruction, non-rigid registration, image segmentation, atlasing, and motion 
tracking. There are two major model representations: meshes [1] and level sets  [2, 3]. 
Deformable model methods usually favor a particular representation (i.e. meshes for 
2D/3D registration and level sets for image segmentation). However, large systems 
that use a mixture of methods are forced to transform one representation into another 
in order to use the preferred representation for each method. This strategy leads to 
loss of information and less flexibility in design of the system. For examples of 
systems that use a mixture of representations, see Tosun et al. [4] and Wand et al. [5]. 

The Spring Level Set (SpringLS) representation merges meshes and level sets into 
a single geometric representation that preserves the strengths of both. SpringLS can 
be interpreted as a mesh or level set, and no shape information is lost in the 
transformation from triangle mesh or level set into SpringLS. SpringLS is intended 
for methods that employ a mixture of mesh and level set techniques, but is applicable 
to almost all deformable model methods. As examples, we apply SpringLS to joint 
segmentation/spherical mapping of a human brain cortex and atlas/non-atlas 
segmentation of a pelvis.  
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2   Background 

Meshes. Meshes were the earliest representation for deformable models [1]. In this 
framework, the model is deformed by perturbing mesh vertices. The model's 
boundary is explicitly tracked by remembering the trajectory of each vertex. As a 
section of the mesh expands or contracts, sharp creases, edges, self-intersections, or 
triangle flips can develop. Sharp edges and other mesh artifacts violate a common 
material property that most objects represented by deformable models are smooth and 
plastic. To reduce artifacts, the mesh must be regularized and re-sampled (remeshed) 
periodically. Because mesh triangles must be connected to form a watertight model, 
remeshing is non-trivial [6] and interferes with vertex tracking. Remeshing becomes 
more of a nuisance if the mesh is not allowed to self-intersect or is allowed to change 
topology. For these reasons, triangle meshes have become unpopular for applications 
where the model 1) undergoes large non-rigid deformations that require remeshing; 2) 
the model is expected to change topology; 3) the model is likely to self-intersect. 

Level Sets. The level set method  [2, 3] represents a deformable model as a 3D image 
where the image intensity at each voxel is a distance measurement to the surface of 
the object. Distance measurements are signed: negative values are inside and positive 
values are outside the object. A triangle mesh can be extracted by computing the iso-
surface corresponding to the zero level set of the image. The level set representation 
has several advantages over deformable meshes: 1) no need for self-intersection 
removal; 2) topology change is easy; 3) no need to remesh. These properties have 
made level sets the popular choice for image segmentation and fluid-like non-rigid 
deformation.  

Level sets are difficult to use for registration and tracking tasks because there's no 
innate ability to track vertices as in the mesh deformation framework. The surface 
only exists when an iso-surface is extracted from the level set. Furthermore, the level 
set is stored as an image that is re-sampled at each time step. Re-sampling an image 
acts as a low-pass filter that results in feature loss as a function of the number of time 
steps, even if the motion is rigid (i.e. global registration) or divergence free (i.e. 
incompressible fluid flow).  

Hybrid Representations. Attempts have been made to unify deformable model 
representations with varying success [7-13]. Of these, the Marker Level Set (MLS) 
[11] is closest to this work. The MLS method maintains a set of particles located on 
the level set’s zero iso-level. Since particles lie exactly on the zero iso-level, they can 
be used for tracking the model’s boundary. After each level set and particle advection 
step, the level set is corrected so that particles continue to lie on the level set’s zero 
iso-level. Particles are added to cover the zero iso-level and deleted to prevent over-
sampling. The MLS method associates a color with each particle and interpolates the 
color for new particles based on their neighbors.  

The philosophical difference between SpringLS and MLS is that springl surface 
elements define the model’s level set, whereas MLS use particles to correct errors in 
the level set. MLS requires the deformation method to have an equivalent level set 
and parametric interpretation in order to deform both representations. Movement of 
the auxiliary level set with SpringLS is passive and independent of the deformation 
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ങങ ሺtሻ ൌ λఘሬሬԦߩ൫ሺݐሻ൯  λఙ࣌ሬሬԦ൫ሺݐሻ൯  λ௧௦ۯሺࡿሻሺݐሻ, and (1)

 డ,డ௧ ሺtሻ ൌ λఘሬሬԦߩ൫ሺݐሻ൯  λఙ࣌ሬሬԦ൫ሺݐሻ൯  λ௧௦ۯሺࡿሻݍ,ሺݐሻ. (2)

After each advection step, particles are fixed and the shape/orientation of each springl 
is adjusted through a relaxation process. The purpose of relaxation is to orient surface 
elements so their normals point outward. Motion is dictated by forces that attract 
neighboring vertices to the edges of nearby triangles. The force (ݒ,ሬሬሬሬሬሬሬሬԦሻ acting on a 
vertex due to its ݇ closest points on nearby triangle edges  ݍ,,߳Թଷ is as follows: ݒ,ሬሬሬሬሬሬሬሬԦ ൌ หܿ,ሬሬሬሬሬሬሬሬԦห൯ߣ௩tanh൫ߣ ܿ,ሬሬሬሬሬሬሬሬԦ หܿ,ሬሬሬሬሬሬሬሬԦหൗ , where 

(3)

ܿ,ሬሬሬሬሬሬሬሬԦ ൌ ∑ atanh൫௪,,ೖ൯ ,,ೖି,ห,,ೖି,ห , and (4)

,,ݓ ൌ ோషభ൫ห,,ೖି,หିଶ൯. (5)

The resultant force due to the spring attached to the vertex is 

݂ ൌ ൫݈ߢ െ หݍ, െ ห൯, (6)

where ߣ௩ ൌ 0.05 is the max force, ߣ ൌ 4 is the kernel smoothness, ݈ ൌ 0.1 voxels is 
the spring rest length, ߢ ൌ 0.08 is the spring constant, ݎ ൌ 0.05 voxels is the vertex 
radius, and ܴ ൌ 0.6 voxels is the nearest-neighbor range. The rotational moment due 
to forces applied on the vertex is ݉,ሬሬሬሬሬሬሬሬሬሬԦ ൌ ,ሬሬሬሬሬሬሬሬԦݒ ൈ  ,ሬሬሬሬሬሬሬԦ, whereݏ

(7)

,ሬሬሬሬሬሬሬԦݏ ൌ ൫ݍ, െ ൯ หݍ, െ หൗ . (8)

After summing moments, the resultant moment ݉ሬሬሬሬሬԦ indicates the amount and axis of 
rotation, described by the 3x3 matrix ࡹ. The tanh / atanh weighting functions in eq. 
(3) and eq. (4) dampen rotational motion that can lead to instability in a surface 
element’s orientation. The final update equation is ݍ,௧ାଵ ൌ   ࡹ ቀݍ,௧ െ   ,ሬሬሬሬሬሬሬሬԦݒ,ሬሬሬሬሬሬሬԦ൫ݏ · ,ሬሬሬሬሬሬሬԦݏ  ݂൯ቁ. (9)

The relaxation process (Relax) in eq. (9) is repeated for 20 iterations (see 
Algorithm 1). Parameter choices express a tradeoff between minimizing the number 
of springls needed to cover the zero iso-level while minimizing gap formation. 
Parameters were selected based on a small number of examples apart from the 
experiments presented in this paper and have not been changed in these or any 
subsequent experiments. 
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Relaxation helps insure that the union of all springl capsules covers the zero iso-
level of the signed level set. If springls are unable to cover the zero iso-level through 
relaxation, gaps must be filled by adding more springls in a subsequent step 
(FillGaps) to prevent the model from tearing. When a zero-crossing of the level set 
is exposed, a springl is added to cover the zero-crossing. Zero-crossings are computed 
from the centroids of triangles generated from the signed level set’s iso-surface.  
These triangles are reused to fill the hole with a springl in the same shape and 
position.  

The level set is updated at each time step to track the particles (Evolve). This is done 
by constructing an unsigned level set ߱ሺࢄሻ (eq. (10)) that is the clamped minimum 
distance to all springls. The signed level set ߮ሺࢄሻ is evolved to minimize the energy 
function in eq. (11). The free parameter ߣ controls the model’s smoothness. A springl is 
destroyed if after evolving the signed level set, a springl's particle is more than ሺ1 ߝሻ݀௫  from the zero iso-level (Contract). We choose ߝ ൌ 0.25 in all cases.  ߱ሺࢄሻ ൌ minሼ݀௫, ݀ଵሺࢄሻ … ݀ேሺࢄሻሽ, and (10)

ܧ  ൌ නሺ߱ሺࢄሻ  (11) .ࢄሻሻ݀ࢄሺ߮ሺߜሻ|ሻࢄሺ߮|ߣ

For large parametric deformations where the CFL number exceeds 1, it is usually 
faster to convert the unsigned level set to a signed level set [15, 16] than to evolve the 
signed level set with active contour methods. We perform the conversion by growing 
the background region and then negating the unsigned level set in the foreground 
region. This can be done robustly with a coarse-to-fine strategy [16] to prevent the 
background region from leaking through gaps between springls. 

Springls are re-sampled every ܯ ൌ 5 iterations to regularize the sampling 
distribution and triangle quality (Resample). Triangles are split along their longest 
edge if the length of that edge exceeds a threshold (1.5 voxels). If a triangle’s angles 
fall outside a tolerable range ሾ20°, 160°ሿ, then the springl is removed. Removing poor 
quality triangles reduces unstable rotation of springls in the relaxation phase.  

Springls maintain a mapping from each particle to the centroid of a triangle on the 
original model. The initial mapping is an identity mapping (ܽ ൌ  ሻ. When a springl
is split, the mapping is duplicated and when a springl is added, the mapping is chosen 
to be the average point mappings for neighboring springls. This method produces 
mappings that lie slightly off the original surface. To prevent correspondence points 
from drifting from the original surface, correspondence points are moved along the 
gradient of the distance (߮) to the original surface until convergence (eq. (12)).  ܽሺݐ  1ሻ ൌ ܽሺݐሻ െ ሻ൯. (12)ݐ൫ܽሺ߮ሻ൯ݐ൫ܽሺ߮ߣ

The model deformation process (Deform) is outlined in Algorithm 2. 
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Algorithm 1. Relax 
foreach springl ݊ do 
foreach vertex ݉ do 

foreach neighbor ݇ of vertex ݉ do 
Compute ݓ,, 
Accumulate  ܿ,ሬሬሬሬሬሬሬሬԦ 

Compute ݏ,ሬሬሬሬሬሬሬሬԦ, ݒ,ሬሬሬሬሬሬሬሬԦ, and ݉,ሬሬሬሬሬሬሬሬሬሬԦ 
Accumulate ݉ሬሬሬሬሬሬԦ  

foreach vertex ݉ do 
Compute ݍ,௧ାଵ 

Algorithm 2. Deform 
for ݇ ൌ 1:  do ܭ

Advect 
Relax 
if ݇ mod ܯ ൌൌ 0 then 

Contract 
Resample 
Relax 
Evolve 
FillGaps 

else Evolve 

4   Results 

SpringLS was applied to active contour image segmentation [17] of objects driven 
under pressure forces from image intensities. It was implemented as a mixture of Java 
and OpenCL for the CPU on a PC with Dual 2.53GHz Intel Xeons and 12GB of 
RAM. Parameter settings and grid size (256 ൈ 256 ൈ  256) were fixed for all 
experiments. Reported segmentation errors are measured as the average minimum 
distance from mesh vertices on the segmented mesh to target iso-surface. Experiments 
not initialized with an atlas were repeated with 4 different initializations (Fig. 2a).  

Fig. 2b,c shows simultaneous segmentation of a T1 MRI image and spherical 
mapping of a human brain cortex, which are two important tasks in cortical surface 
analysis [18]. The MRI image was pre-processed with TOADS to produce WM/GM 
soft-membership images [19]. Spherical mapping was accomplished by initializing 
the segmentation with a sphere and then explicitly tracking the surface with springls 
to find the WM/GM surface in the WM membership image. The model was then 
evolved outward to find the Pial surface in the WM+GM membership image. The 
resulting reconstruction has a mapping from each point on either surface to a location 
on the sphere. Table 1 reports runtime statistics and compares SpringLS to an 
equivalent level set implementation in terms of surface-to-surface distance measured 
from the SpringLS iso-surface and DICE coefficient between level set segmentations. 

Table 1.  Results comparing SpringLS to an equivalent level set method. Algorithm terminated 
when the DICE coefficent between successive resampling cycles exceeded a threshold. 

Experiment Surface Distance DICE Iterations Springls Triangles Time 
Pelvis 0.14±0.20 mm 0.9993 290-390 50K-55K 200K-217K 15-19 min 
Pelvis \w atlas 0.25±0.32 mm 0.9994 110 39K 149K 4 min 
WM/GM 0.18±0.21 mm 0.9985 280-370 116K-118K 366K-372K 19-30 min 
Pial 0.16±0.16 mm 0.9989 60 112K-113K 306K 5-6 min 

 
Fig. 3a shows segmentation of a pelvis from a CT image when initialized with a 

cube and highlights SpringLS’s ability to change topology. Initializing the 
segmentation process with a cube or other object shown in Fig. 2a causes over 
segmentation of the pelvis to include the femurs and spine as well. To mitigate this  
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problem, we incorporate an atlas based approach. A PDM statistical atlas of the pelvis 
was constructed with the method from Seshamani et al. [20]. Analogous statistical 
atlas methods have been developed for level sets [21], but these representations are 
not equivalent.  

   

(a) (b) (c) 

Fig. 2. Ray-cast renderings of SpringLS showing springls projected onto iso-surface. (a) Initial 
shapes. (b) WM/GM surface and (c) Pial surface segmentations when initialized with a sphere.  

 

(a) (b) (c) 

Fig. 3. (a) Pelvis segmentation when initialized with a cube. Atlas based segmentation showing 
(b) registered PDM and (c) final segmentation. 

The segmentation result in Fig. 3a can be improved by combining level set 
techniques with a parametric atlas. The atlas was registered (rigid + global scale) to 
the CT image. The first 10 mode weights were optimized in increasing order to reduce 
the average distance from the atlas to target iso-surface in CT. Because the initial 
registration was fairly good (1.56±1.36 mm), optimizing the mode weights modestly 
improved the segmentation result to 1.40±1.32 mm. The registered mesh was then 
treated as a constellation of springls and advected towards the target iso-level with an 
external velocity field produced by Gradient Vector Flow (GVF) [22] and pressure 
forces, reducing the error to 0.95±1.02 mm. This atlas based method produces a better 
pelvis segmentation (Fig. 3c) than the non-atlas approach and provides a mapping 
from each springl back to the atlas, enabling transfer of region labels on the atlas to 
the segmented pelvis. This technique is also significantly faster than the non-atlas 
based approach (see Table 1).   
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5   Conclusion 

Spring Level Sets (SpringLS) merge meshes and level sets into a single representation 
to provide interoperability between methods designed for either. The key idea is to 
use triangular surface elements to define a level set. Insisting the surface elements be 
triangle shaped insures no shape information is lost in the transformation from 
triangle mesh into SpringLS. One may choose not to relax or resample a subset of 
springls to preserve sharp features or tracking information. Because SpringLS uses 
disconnected surface elements, the object can change topology, track points, and 
undergo parametric deformations. The auxiliary level set provides a watertight 
representation of the model’s boundary that cannot self-intersect, and simple rules 
have been described for adding and destroying surface elements based on the level set 
representation. We have demonstrated that image segmentation with SpringLS 
produces results very similar to an equivalent level set implementation, and a 
registered PDM atlas can be converted into a SpringLS and deformed to produce a 
better segmentation than without an atlas. SpringLS is open source and distributed as 
part of the Java Image Science Toolkit (http://www.nitrc.org/projects/jist) to 
encourage the development of new image analysis systems that are true mixtures of 
mesh and level set methods. 
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Abstract. Appearance and shape are two key elements exploited in
medical image segmentation. However, in some medical image analy-
sis tasks, appearance cues are weak/misleading due to disease/artifacts
and often lead to erroneous segmentation. In this paper, a novel de-
formable model is proposed for robust segmentation in the presence of
weak/misleading appearance cues. Owing to the less trustable appear-
ance information, this method focuses on the effective shape modeling
with two contributions. First, a shape composition method is designed to
incorporate shape prior on-the-fly. Based on two sparsity observations,
this method is robust to false appearance information and adaptive to
statistically insignificant shape modes. Second, shape priors are modeled
and used in a hierarchical fashion. More specifically, by using affinity
propagation method, our deformable surface is divided into multiple par-
titions, on which local shape models are built independently. This scheme
facilitates a more compact shape prior modeling and hence a more robust
and efficient segmentation. Our deformable model is applied on two very
diverse segmentation problems, liver segmentation in PET-CT images
and rodent brain segmentation in MR images. Compared to state-of-art
methods, our method achieves better performance in both studies.

1 Introduction

In various applications of medical image segmentation, deformable model has
achieved tremendous success, which should be contributed to its joint employ-
ment of shape and appearance characteristics. While appearance features pro-
vide low level clues of organ boundaries, shape imposes high level knowledge
to infer and refine deformable model. However, in some medical image analy-
sis, appearance cues are relatively weaker or even misleading (Fig. 1). In those
cases, the best “guess” of the organ boundaries can only come from shape pri-
ors, which should be effectively modeled from training shapes. However, effective
shape modeling is confronting these challenges, 1) shape variation is complex and
cannot always be modeled by a parametric probability distribution; 2) a shape
instance derived from image appearance cues (input shape) may have gross er-
rors; and 3) local details of the input shape are difficult to preserve if they are
not statistically significant in the training data. Traditional deformable model,
e.g., Active Shape Model its extensions [1,6], can not tackle them uniformly.
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Fig. 1. Middle: whole body low-dose CT data. Left:
zoom in of the liver and lung. In the marked region the
boundary between the liver and the kidney is hardly
observed. The appearance cue is weak because of the
low contrast around the boundary. Right: zoom in of
the spleen and lung. In the marked region, there is ar-
tifact induced by breath. It is part of the lung. Since
the image information is misleading here, segmenta-
tion methods solely relying on appearance cue may
accidentally include this region as spleen.

In this paper, we propose
a deformable model aim-
ing to achieve robust seg-
mentation in the presence
of weak/misleading appear-
ance cues. In particular,
two novel methods are de-
signed for robust and
effective shape prior model-
ing. First, instead of assum-
ing any parametric model of
shape statistics, we propose
to incorporate shape priors
on-the-fly through sparse
representation. More specif-
ically, we have two spar-
sity observations: 1) Given
a large shape repository of
an organ, a shape instance
of the same organ can be
approximated by the com-
position of a sparse set of
instances in the shape repository; and 2) gross errors from local appearance
cues might exist but these errors are sparse in spatial space. Incorporating these
two sparsity priors, our deformable model becomes robust to gross errors and can
preserve shape details even they are not statistically significant in the training
repository. This shape composition method benefits both the model initializa-
tion and refinement. Second, instead of modeling global shape priors, we propose
to decompose the deformable surface to multiple parts and build shape models
on them independently. The partition is accomplished by affinity propagation
method [4] based on image and geometry features. Since the shape statistics
of local structures often has more compact distribution than global structures,
this strategy facilitates better shape modeling and increases algorithm runtime
efficiency.

2 Methodology

Segmentation Framework: To achieve generality, our segmentation frame-
work is designed in the spirit of “data-driven”. Fig. 2 shows the workflow of
our segmentation system, which consists of offline learning and runtime segmen-
tation stages. In offline learning, 3D volume images along with the manually
labeled ground truths are employed to learn the appearance and shape charac-
teristics of the organ under study. More specifically, methods proposed in [10,9]
are used to learn landmark detectors and a set of spatially adaptive boundary
detectors. Meanwhile, organ surfaces are stored in a shape repository, which will
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be exploited to derive shape priors during runtime. Runtime segmentation starts
from the initialization of the model surface (represented by a triangular surface)
based on automatically detected landmarks and shape priors. The surface then
deforms under the guidance of both image appearance cues and shape priors.
More specifically, two steps are performed iteratively until convergence. First,
the surface model deforms to local places where the learning-based boundary
detectors generate higher responses. Next, the locally deformed surface is refined
by the shape priors derived from the shape repository.

As discussed before, although learning-based landmark/boundary detectors
can tackle reasonable appearance variations [10,9], they might generate wrong
responses in the presence of severe imaging artifacts/diseases, and hence mislead
the deformable model. In this scenario, shape prior is the only information source
to initialize/correct the deformable surface. (Note that shape priors are employed
in both landmark-based model initialization and shape refinement in Fig. 2.)
Therefore, the effective modeling of shape priors becomes extremely critical to
achieve a robust segmentation. Due to page limits, we will focus on the modeling
of shape priors in the remainder of this paper.

Shape Prior Modeling via Sparse Composition: Instead of assuming any
parametric probabilistic distributions of the shape statistics, our shape prior
model is based on two observations: 1) After being aligned to a common canon-
ical space, any shape can be approximated by a sparse linear combination of
other shape instances in the same shape category. Approximation residuals might
come from inter-subject variations. 2) If the shape to be approximated is de-
rived by appearance cues, residual errors might include gross errors from land-
mark/boundary detections. But such errors are sparse as well. Accordingly, we
aim to incorporate shape priors on-the-fly through shape composition, i.e., a
shape derived by appearance cues is refined by the approximation of a set of
annotated shape instances following the two sparsity observations. It is worth
mentioning that sparsity has been adopted in segmentation algorithms in differ-
ent manners, such as the sparse information models [3], which reconstruct a 3D
surface from sparse subcomponents.

Landmark Detectors

Image Data + 
Manual GT

Offline learning

Boundary Detectors

Runtime Segmentation
New 

Image
Model 

Initialization
Iterative Deformation and 

Shape Refinement
Final 

Segmentation

Shape repository

Fig. 2. The workflow of our segmentation framework
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In this work, a shape is represented by a triangle mesh which consists of a set
of vertices. Denote the input shape as v, where v ∈ R3N is a vector concatenated
by 3D coordinates of its N vertices. (In the remainder of this paper, any shape
instance is defined as a vector in the same way and has the same dimensionality.)
Assume D = [d1,d2, ...,dK ] ∈ R3N×K is a large shape repository that includes
K accurately annotated shape instances di. Note that {di, i = 1, 2, 3, ...,K} are
pre-aligned using generalized Procrustes analysis [5,1].The approximation of v
by D is then formulated as an optimization problem:

argmin
x,e,β

‖T (v, β) −Dx − e‖2
2, s.t.‖x‖0 < k1, ‖e‖0 < k2, (1)

where T (v, β) is a global transformation operator with parameter β, which aligns
the input shape v to the common canonical space of D. The key idea of our shape
prior modeling lies in the two constraints of (1). In the first constraint, x ∈ RK

denotes the coefficient/weights of linear combination. The L0-norm of x ensures
that the number of nonzero elements in x is less than k1. In other words, only a
sparse set of shape instances can be used to approximate the input shape, which
prevents the overfitting to errors from missing/misleading appearance cues. In
the second constraint, e ∈ R3N is a vector that models the large residual errors.
The sparsity constraint is imposed on e to incorporate the observation that gross
errors might exist but are occasional.

(1) is a NP hard problem owing to the non-convex L0 norm. Thanks to the
recent proof of the sparse representation theorem [2], L1 norm relaxation can
be employed to make the problem convex while still preserving the sparsity
property. However, to solve (1), we still need to simultaneously optimize multi-
ple variables and deal with the nonlinearty if T (v, β) is modeled as a rigid or
similarity transformation. Our solution is to use an Expectation-Maximization
(EM) style algorithm (or alternating minimization) to solve (1). It is divided into
two sub-problems: 1) estimate the transformation parameter β and 2) efficiently
minimize the simplified linear inverse problem with the aligned shape. In the
“E” step, β is estimated using Procrustes analysis, which aligns the shape v to
the canonical space as v′ = T (v, β). In the “M” step, the following simplified
problem is minimized:

arg min
x,e

‖v′ −Dx − e‖2
2 + λ1‖x‖1 + λ2‖e‖1, (2)

Since (2) now becomes a typical linear inverse problem, it can be solved using
existing solvers. The “E” and “M” steps are iteratively performed until x, e and
β converge. Dx is then computed as a refined version of the input shape, which
imposes the shape priors on-the-fly.

Multi-resolution Shape Refinement and Local Shape Priors: It has been
widely accepted that multiresolution/hierarchical scheme should be employed
to improve the efficiency and robustness of deformable segmentation [7]. In a
multiresolution scheme, only a small set of sparsely distributed vertices are used
as driving vertices to estimate a rough segmentation of the initial stages. As the
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iterations increase, more and more vertices join the driving set to gradually reach
accurate segmentation. Our sparse shape composition method naturally supports
this scheme by estimating a sparse linear combination from an incomplete input.
Assume vsub = Sv is a subset of all vertices in shape v, where S is a binary
diagonal matrix which indicates if the ith vertex is in the subset (Sii = 1). (1)
can then be naturally extended as:

argmin
x,e,β

‖T (vsub, β) − SDx − Se‖2
2, s.t.‖x‖0 < k1, ‖e‖0 < k2, (3)

(3) can be solved using the same EM optimization. The only difference is that
the optimized x will be finally applied on the full space of D, such that the entire
input shape is refined.

One extreme situation of (3) is that S becomes very sparse and only includes a
few vertices (usually with the most distinctive appearance/geometry characteris-
tics). In this situation, (3) indeed becomes the formula of landmark-based surface
initialization, which is the first step of our runtime segmentation system. Again,
by incorporating shape priors with the assumption of “sparse gross errors”, our
initialization method becomes robust to erroneous landmark detections due to
severe diseases/imaging artifacts.

The merit of (3) is actually beyond the support of multiresolution deforma-
tion scheme. In practice, many 3D deformable models include many thousands
of points to give an accurate description of organ shapes. The optimization of
(2) thus has high computational complexity. In addition, since local shape statis-
tics often lie in a more compact space than global ones, shape priors built on
sub-surface are expected to improve the performance. To achieve this goal, we
propose a “mesh partitioning” method, which can also be seamlessly incorpo-
rated in our sparse shape composition formula. Affinity propagation clustering [4]
is employed to divide the model shape into multiple partitions. Since one-to-one
correspondences are already constructed among all shapes, affinity propagation
only needs to perform once for the model shape. The similarity used in the
affinity propagation is defined as the combination of the image similarity and
geodesic distances between vertices [9].

In our implementation, each divided partition is further “dilated” for several
levels to produce overlaps with neighboring partitions. Finally, partitions are
converted to a set of indication matrices S1,S2, ...,Sp used in (3). The opti-
mization problem defined on the entire surface is thus decomposed to a set of
sub-problems. Each partition is refined independently but the refined partitions
are averaged in these overlapping regions to guarantee the smoothness of the
entire surface.

The computational complexity of an existing solver (e.g., interior point
method) is O(N3), where N is the number of vertices of the whole surface.
After dividing the whole surface into p partitions with about N

p vertices in each
partition. The computational complexity is decreased to only 1

p2 of the original
one, which highly improves the efficiency.
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3 Experiments

Fig. 3. Initialization results (1st row) and defor-
mation results (2nd row) from the corresponding
initialization. Results from PA (1st column) and
our method (2nd column) and ground truth (right-
most figure). PA incorrectly includes part of the
lung because of the artifacts inducing by breath (see
arrows).

Liver Segmentation from
Low-dose CT: We evalu-
ate the segmentation perfor-
mance of our system, using
3D low-dose CT data from
PET-CT. In wholebody PET-
CT scan, CT images usually
have low dose and large slice
thickness, which result in low
contrast and fuzzy boundaries
between organs. Hence, organ
segmentation in PET-CT be-
comes more challenging than
traditional CT. In our exper-
iment, the 3D ground truth
of low-dose CT is manually
segmented by multiple clini-
cal experts. 40 out of 67 CT
scans are used to train the
landmark detector and also
used to construct the shape repository D. The other 27 are left for testing. To
obtain the one-to-one correspondence for vertices among all shapes, we choose
one shape as a reference and register it to all the others using adaptive-focus
deformable model (AFDM) [8]. The shape has around 1, 000 vertices, and 20
are selected as landmarks for model initialization. The proposed method is com-
pared to three popular algorithms: 1) PA: Procrustes Analysis [5] is used to find
a similarity transformation to fit a mean shape to detected landmarks. There is
no shape refinement during deformation. 2) SMS: It is the Shape Model Search
module in ASM [1], which employs the PCA method to learn shape statistics and
refine the input shape. 3) SI-NN: k-nearest neighbors method, which uses nearest
neighbors to find the closest prototypes in the expert’s structure annotations. For
a fair comparison, same landmark/boundary detectors and deformation strat-
egy are used in all methods. They only differ in model initialization and model
refinement, which involve shape priors.

Fig. 3 compares the landmark detection based initialization. Since the image
contrast of low-dose CT is very low and there are breathing artifacts in the
lung region, the landmark detector may easily fail to locate correct positions.
Our method is less sensitive to such errors. Its initialization result is already
very close to the object boundary. We also compare the deformation results
starting from different initializations. A better initialized model also benefits
the deformation performance.

To quantitatively evaluate the 3D segmentation accuracy, we report the mean
value and standard deviation of the distances between shape surfaces in Tab. 1.
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Table 1. Quantitative comparisons of
the mean values and standard devia-
tions of the distances (voxel) between
surfaces. 1st column compares initial-
ization results. Note that SMS and PA
uses the same initialization.

Method Fig. 3(Init) All data
PA 2.26 ± 1.72 3.96 ± 3.21

SMS 2.26 ± 1.72 2.16 ± 1.68
SI-NN 4.88 ± 3.61 3.82 ± 3.12
Ours 1.31± 0.95 1.13± 0.83

Our proposed framework achieves the best
performance. The standard deviations in
Tab. 1 show that our method also achieves
the best stability among all methods. To
evaluate the benefit of mesh partitioning,
the surface mesh is divided into 30 re-
gions. The shape refinement step takes
several minutes when applied to the whole
surface directly. Using mesh partitioning,
it significantly improves the efficiency and
only takes 2-3 seconds. The whole system
takes around 20 seconds (a Python im-
plementation on a PC with 2.4GHz In-
tel Quad CPU) to segment liver in a
512x512x300 CT volume. Note that the shape refinement module not only im-
proves the robustness of the deformable model, but also decreases the iteration
times of deformation since it helps avoid local minima of image information.

Rodent Brain Structure Segmentation from MRI: In this study, we use
the proposed method to segment rodent brain structures in MR images. In our
experiments, 58 data are delineated by clinical experts. 40 are used as training
data, and the rest 18 are used as testing. We focus on the 3D segmentation of
the cerebellum (Fig. 4). This task is challenging in two aspects. First, there are
complex textures and high gradient values inside of the cerebellum region, which
adversely affect the deformation module. Second, rodent cerebellum contains two
protruding parts, which are easily to be falsely “smoothed out” by traditional
shape prior modeling. The visual comparison of the segmentation results is shown
in Fig. 4. With regular shape constraint, the protruding parts are shrunk, and

Fig. 4. Segmentation results of the rodent cerebellum. The 1st row is from the proposed
method. The 2nd row is from the same framework but without shape prior constraint.
The rightmost figure is one slice of the MR image with cerebellum highlighted.
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the whole shape is attracted by the high internal gradient. Most regions are
under-segmented. The error is 5.86 ± 3.68, in terms of voxel distance. These
problems are well tackled by the proposed method. The protruding parts are
well preserved, and the global shape are properly constrained. It achieves better
segmentation results, with error 1.31 ± 0.91.

4 Conclusions

In this paper, we proposed a deformable model aiming to robustly segment
organs in the presence of weak/misleading appearance cues. A sparse shape
composition method is proposed to model and incorporate shape priors on-
the-fly. It is able to tackle three challenges in a unified framework and natu-
rally supports multi-resolution deformation scheme. Furthermore, we use the
affinity propagation method to partition the surface shape local shape pri-
ors. Besides a more efficient shape prior modeling, this strategy also dramat-
ically increase run-time efficiency. The majority of the work was carried out
when Shaoting Zhang was a research intern at Siemens Medical Solutions, USA.
http://www.research.rutgers.edu/∼shaoting/research/siemens2010/project.htm
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Pattern Based Morphometry
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Abstract. Voxel based morphometry (VBM) is widely used in the neu-
roimaging community to infer group differences in brain morphology.
VBM is effective in quantifying group differences highly localized in
space. However it is not equally effective when group differences might
be based on interactions between multiple brain networks. We address
this by proposing a new framework called pattern based morphometry
(PBM). PBM is a data driven technique. It uses a dictionary learning
algorithm to extract global patterns that characterize group differences.
We test this approach on simulated and real data obtained from ADNI .
In both cases PBM is able to uncover complex global patterns effectively.

Keywords: machine learning, pattern based morphometry, voxel based
morphometry.

1 Introduction

VBM[4] is widely used in the neuroimaging community to quantify structural and
functional group differences in the brain using 3D and 4D images. VBM involves
mapping image data to a standard template space. This is followed by application
of voxelwise statistical tests on deformation maps. However, VBM has several
weaknesses which are discussed at length in [7] and [5]. For example, VBM
fails to account for multivariate group differences, such as interactions between
several voxels. Secondly, VBM uses mass univariate testing so that one has to
correct for multiple testing. We address these issues by proposing a multivariate
morphometric framework called pattern based morphometry(PBM).

PBM is based on K-SVD[3]. K-SVD is a dictionary learning algorithm that
has been successfully applied to problems in computer vision [8]. The driving
principle behind K-SVD is that it can represent a large set of images as a sparse
linear combination of a small set of ’basis images’.

The rest of the paper is structured as follows. Section 2 gives a brief introduc-
tion to K-SVD and details how we apply K-SVD to explore group differences.
Section 3 describes the results obtained by applying our technique on simulated
and real data. We conclude the paper in Section 4 with a discussion of applica-
tions and potential avenues for further development of this algorithm.

2 Pattern Extraction Methodology

Our algorithm consists of three steps: 1) Generation of images that represent
the difference between two groups(e.g. patients and controls); 2)Application of

G. Fichtinger, A. Martel, and T. Peters (Eds.): MICCAI 2011, Part II, LNCS 6892, pp. 459–466, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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K-SVD to obtain a dictionary of patterns which can represent these difference
images in a sparse way; 3)Ranking and normalization of these patterns. We now
describe each step in detail.

2.1 Step 1: Generating Difference Images from Data

Recall that we wish to identify patterns that represent group differences. Our
driving assumption here is: Any image generated by subtracting an image in
Group 1 from its neighbor in Group 2 can be expressed as a linear combination
of a dictionary of image patterns that distinguish the two groups. Our objective
is to discover this dictionary of image patterns.

To do this, a large set of difference images is generated by subtracting every
image in Group 1 from its neighbors in Group 2. From here on we assume all
images to be vectors. Let us denote Group1 by S = {S1, ..., Sn} and Group 2
by Z. For every element Si ∈ S we first compute the r-nearest neighbors in Z
using a Euclidean metric. Let us denote these by {Z1, ..., Zr} ⊂ Z. Subsequently
we subtract these r images from Si to obtain difference vectors Dij

Dij
.= Si − Zj ∀ i ∈ {1, ..., n} and ∀ j ∈ {1, ..., r} (1)

We collect these difference vectors into a matrix X = {D11, ..., Dnr} where
X ∈ IRd×nr, d is the number of voxels in the image(usually d >> nr).

2.2 Step 2: K-Singular Value Decomposition

For our approach, K-SVD solves a matrix decomposition problem to extract a
dictionary of K patterns from X . The patterns in this dictionary can be combined
to reconstruct any element of X . We want the image patterns discovered to be
as global as possible. This is enforced in K-SVD by using the sparsity constraint
which, prohibits the disintegration of large global image patterns into smaller
local ones. Formally K-SVD decomposes the matrix X into a basis matrix B ∈
IRd×K and a sparse loadings matrix C ∈ IRK×nr such that X ≈ BC. Hence,
K-SVD attempts to solve:

minB,C ||X −BC||2F subject to ∀i, ||ci||0 ≤ T (2)

where ci are columns of the matrix C ,T ≤ K is an integer that controls sparsity,
||.||F is the Frobenius matrix norm and ||.||0 is the L0 vector norm. The columns
of B are the discriminative morphological patterns extracted from data. The
loadings matrix C is used to rank the extracted patterns according to their
importance. K-SVD uses an iterative two stage approach to solve (2). In the
first stage, the ci are computed for the current estimate of B. This is done
by solving nr separate minimization problems using the orthogonal matching
pursuit [13] algorithm. Note that each ci corresponds to the column xi of X :

∀i ∈ {1, 2, ..., nr} minci{||xi −Bci||22} subject to ||ci||0 ≤ T (3)
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where ||.||2 denotes the L2 norm. In the second stage the algorithm updates B
one column at a time. For each column of B, denoted by bk, the corresponding
error matrix Ek is computed as:

Ek = X −
K∑

j 
=k

bj c̃j (4)

where bj are the columns of B and c̃k are the rows of C. This error matrix
quantifies the estimation error that would result from the removal of bk. Next
the basis vector bk is updated by solving:

minbk
||Ek − bkc̃k||2F (5)

This is solved using singular value decomposition (SVD). The bk obtained by
minimization of (5) is used in the computation of bk+1 . When the entire matrix
B is computed the algorithm returns to stage 1 and iterates. A finite number of
iterations are run to generate the basis set B whose columns are the high dimen-
sional morphological patterns representing group differences. For more details on
K-SVD we consult the readers to [3].

2.3 Step 3: Ranking and Normalization of the K-SVD Bases

The larger the value of the L2 norm of the row c̃k the more prominently is the
pattern represented by bk expressed in the difference images. For instance if there
existed only two patterns in the data then we would expect only two rows of C
to contain non zero values. If the kth pattern was more prevalent than the ith

one, then c̃k would contain more(and possibly larger) non zero numbers than c̃i.
Hence we use the L2 norm of the row c̃k to rank the basis bk. A higher L2 norm
of ck assigns a higher rank to the pattern represented by the basis bk.

3 Results

The results of our experiments on simulated and real datasets are presented in
the following section. The simulated data as well as real data was obtained from
structural magnetic resonance images(MRI) acquired as a part of the ADNI [1]
study. The MR scans are all T1-weighted, acquired sagittally using volumetric
3D MPRAGE with 1.25×1.25 mm in plane spatial resolution and 1.2 mm thick
sagittal slices. All images were acquired on a 1.5 T scanner.

3.1 Preprocessing Protocol

Each image was rigidly aligned using the Anterior Commissure Posterior Com-
missure (AC-PC) points followed by skull removal using the BET algorithm[12].
Skull stripped images were warped to a template using HAMMER[11]. Tissue
density maps for grey matter (GM), white matter (WM) and ventricles (VN)



462 B. Gaonkar, K. Pohl, and C. Davatzikos

were then generated using the RAVENS approach[6]. These maps were generated
from 127 images of Alzheimer’s patients and 127 images of normal controls. All
RAVENS maps were smoothed by an 8mm full width at half maximum (FWHM)
Gaussian kernel before further processing.

3.2 Results on Simulated Datasets

Generation of Simulated Data We first tested PBM on simulated data.
We select 63 GM RAVENS maps from normal subjects. Three regions labeled
{a, b, c} are selected as shown in Fig. 1. Two patterns of atrophy are introduced
by reducing the RAVENS maps values in selected locations. Pattern P1 at loca-
tions {a, b} and pattern P2 at locations {b, c}. In 31 of the 63 images atrophy is
introduced, either according to pattern P1 or according to pattern P2. These 31
images now represent the patient group in our simulated dataset. The remaining
32 images are not modified and serve as controls.

Analysis of Results. We apply the method described in Section 2 to this
simulated dataset with r = 3 , T = 1, ...,K and for K = 2, ..., 7 . For every
K, the algorithm produces K ranked basis images. Figure 1 shows the first two
bases by rank for three different parameter settings.For visualization purposes
the intensity histograms of the images corresponding to the patterns represented
by each basis are scaled so that all voxel intensities lie between 0 and 1. It should
be noted that the results for other parameter settings are almost the same. These
results indicate that PBM can discover the patterns P1 and P2 introduced in the

Fig. 1. PBM on simulated data .(a)simulated patterns introduced in the data(b)PBM
results, basis ranked 1 and 2 for parameter settings r=3,K=2,T=1 (c)r=3,K=4,T=4
(d) r=3,K=7,T=2 (e)VBM t-statistic map corresponding to p-values not corrected for
multiple testing.
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Fig. 2. The 5 top ranked basis/patterns obtained from PBM in WM from ADNI data

data as the first two basis.The figure also shows VBM analysis. It can be clearly
seen that the t-statistic from the VBM analysis compares poorly against the
PBM analysis. VBM identifies regions that are relatively consistently involved
in all subjects, but it doesn’t identify the distinct sub-patterns. Neither is it
effective when only some of the subjects show involvement of some region (e.g.
regions a and c)

3.3 Results on Real Datasets

In this section we apply PBM on the GM,WM and VN RAVENS maps of 127
Alzheimer’s patients and 127 normal controls from the ADNI study. We present
results for parameter settings of R = 3, K = 5 and T = 3. Note that repeating
experiments with several other parameter values does not change the results
greatly. The results are presented in Fig.2, Fig. 3 and Fig. 4.

PBM Analysis of GM Maps. Figure 2 shows that the first two patterns
detected by PBM in GM are distinct from each other. One involves the puta-
men more prominently than the other. The insula and thalamic nuclei and the
putamen show up in the PBM analysis and have been previously associated with
Alzheimer’s disease[9]. The other regions that are shown to be strongly associ-
ated with disease in GM include the hippocampus, the parahippocampus, the
temporal lobe, as well as the frontal lobe and occipital lobes. These regions are
known to play a pivotal role in Alzheimer’s pathology. These preliminary results
indicate that PBM could offer diagnostic value in the analysis of medical image
data.
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Fig. 3. The 5 top ranked basis/patterns obtained from PBM in VN from ADNI data

Fig. 4. The 5 top ranked basis/patterns obtained from PBM in GM from ADNI data
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PBM Analysis on WM Maps. Figure 3 associates atrophy in most of the
major white matter tracts with Alzheimer’s pathology. There is recently pub-
lished evidence[2] to suggest that this is indeed the case. In case of WM the
2nd ranked pattern identified by PBM, highlights periventricular WM atrophy,
a hallmark of late onset Alzheimer’s disease[10]. Corpus callosum and splenium
also show up in PBM analysis as being strongly associated with Alzheimer’s
pathology.
PBM Analysis of VN Maps. Figure 4 presents the results of a PBM analysis of
the ventricles. The top ranked patterns highlight ventricular expansion and peri-
ventricular disease oriented pathology. The ventricles are known to be dilated in
Alzheimer’s disease and the results of PBM are consistent with this fact.

4 Discussion

In this paper we present a novel multivariate approach to morphometry, PBM,
which does not suffer from the limitations of VBM described in [7]. PBM can
identify subtypes of patterns that don’t necessarily involve the same brain re-
gions and facilitate a global analysis of heterogeneous diseases. A limitation of
the presented work is that it lacks formal ways of establishing statistical sig-
nificance. Although the results presented here seem stable with respect to the
parameters R, K and T further work is needed in the direction of optimal pa-
rameter estimation as well as to exploration of robustness of the method with
respect to parameter settings. A second direction of future exploration relates to
the Euclidean distance metric used here to evaluate ‘nearness’ between images.
This could be replaced by a different metric in future work possibly yielding
better results. Also PBM could be extended to diffusion imaging, fMRI and lon-
gitudinal analysis. In summary we have developed and applied a multivariate
morphometric framework to quantify group differences between different popu-
lations which overcomes some of the limitations of VBM.

Acknowledgment. Data used in preparation of thiis article were obtained from
the Alzheimers Disease Neuroimaging Initiative (ADNI) database
(adni.loni.ucla.edu). As such, the investigators within the ADNI contributed
to the design and implementation of ADNI and/or provided data but did not
participate in analysis or writing of this report. A complete listing of ADNI inves-
tigators can be found at: http://adni.loni.ucla.edu/wp-content/uploads
how to apply/ADNI Authorship List.pdf

The research was also supported by an ARRA supplement to NIH NCRR
(P41 RR13218).

References

1. The alzheimer’s disease neuroimaging initiative, http://www.adni-info.org/
2. Agosta, F., Pievani, M., Sala, S., Geroldi, C., Galluzzi, S., Frisoni, G.B., Filippi,

M.: White matter damage in alzheimer disease and its relationship to gray matter
atrophy. Radiology 258(3), 853–863 (2011),
http://dx.doi.org/10.1148/radiol.10101284

adni.loni.ucla.edu
http://adni.loni.ucla.edu/wp-content/uploads/how_to_apply/ADNI_Authorship_List.pdf
http://adni.loni.ucla.edu/wp-content/uploads/how_to_apply/ADNI_Authorship_List.pdf
http://www.adni-info.org/
http://dx.doi.org/10.1148/radiol.10101284


466 B. Gaonkar, K. Pohl, and C. Davatzikos

3. Aharon, M., Elad, M., Bruckstein, A.: K-svd: An algorithm for designing overcom-
plete dictionaries for sparse representation. IEEE Transactions on Signal Process-
ing 54(11), 4311–4322 (2006)

4. Ashburner, J., Friston, K.J.: Voxel-based morphometry–the methods. Neuroim-
age 11(6 Pt.1), 805–821 (2000), http://dx.doi.org/10.1006/nimg.2000.0582

5. Bookstein, F.L.: ”voxel-based morphometry” should not be used with imperfectly
registered images. Neuroimage 14(6), 1454–1462 (2001),
http://dx.doi.org/10.1006/nimg.2001.0770

6. Davatzikos, C., Genc, A., Xu, D., Resnick, S.M.: Voxel-based morphometry using
the ravens maps: methods and validation using simulated longitudinal atrophy.
Neuroimage 14(6), 1361–1369 (2001),
http://dx.doi.org/10.1006/nimg.2001.0937

7. Davatzikos, C.: Why voxel-based morphometric analysis should be used with great
caution when characterizing group differences. Neuroimage 23(1), 17–20 (2004),
http://dx.doi.org/10.1016/j.neuroimage.2004.05.010

8. Elad, M., Aharon, M.: Image denoising via sparse and redundant representations
over learned dictionaries. IEEE Trans. on Image Processing 15(12), 3736–3745
(2006)

9. de Jong, L.W., van der Hiele, K., Veer, I.M., Houwing, J.J., Westendorp, R.G.J.,
Bollen, E.L.E.M., de Bruin, P.W., Middelkoop, H.A.M., van Buchem, M.A., van
der Grond, J.: Strongly reduced volumes of putamen and thalamus in alzheimer’s
disease: an mri study. Brain 131(Pt. 12), 3277–3285 (2008),
http://dx.doi.org/10.1093/brain/awn278

10. Scheltens, P., Barkhof, F., Valk, J., Algra, P.R., van der Hoop, R.G., Nauta, J.,
Wolters, E.C.: White matter lesions on magnetic resonance imaging in clinically
diagnosed alzheimer’s disease. evidence for heterogeneity. Brain 115 (Pt. 3), 735–
748 (1992)

11. Shen, D., Davatzikos, C.: Hammer: hierarchical attribute matching mechanism for
elastic registration. IEEE Trans. Med. Imaging 21(11), 1421–1439 (2002),
http://dx.doi.org/10.1109/TMI.2002.803111

12. Smith, S.M.: Fast robust automated brain extraction. Hum. Brain Mapp. 17(3),
143–155 (2002), http://dx.doi.org/10.1002/hbm.10062

13. Tropp, J.A.: Greed is good: algorithmic results for sparse approximation. IEEE
Transactions on Information Theory 50(10), 2231–2242 (2004)

http://dx.doi.org/10.1006/nimg.2000.0582
http://dx.doi.org/10.1006/nimg.2001.0770
http://dx.doi.org/10.1006/nimg.2001.0937
http://dx.doi.org/10.1016/j.neuroimage.2004.05.010
http://dx.doi.org/10.1093/brain/awn278
http://dx.doi.org/10.1109/TMI.2002.803111
http://dx.doi.org/10.1002/hbm.10062


Longitudinal Cortical Thickness Estimation

Using Khalimsky’s Cubic Complex

M. Jorge Cardoso1, Matthew J. Clarkson1, Marc Modat1,
and Sebastien Ourselin1,2

1 Centre for Medical Image Computing (CMIC), University College London, UK
2 Dementia Research Centre (DRC), University College London, UK

Abstract. Longitudinal measurements of cortical thickness is a current
hot topic in medical imaging research. Measuring the thickness of the cor-
tex through time is normally hindered by the presence of noise, partial
volume (PV) effects and topological defects, but mainly by the lack of a
common directionality in the measurement to ensure consistency. In this
paper, we propose a 4D pipeline (3D + time) using the Khalimsky cubic
complex for the extraction of a topologically correct Laplacian field in an
unbiased temporal group-wise space. The thickness at each time point is
then obtained by integrating the probabilistic segmentation (transformed
to the group-wise space) modulated by the Jacobian determinant of its
deformation field through the group-wise Laplacian field. Experiments
performed on digital phantoms show that the proposed method improves
the time consistency of the thickness measurements with a statistically
significant increase in accuracy when compared to two well established
3D techniques and a 3D version of the same method. Furthermore, quan-
titative analysis on brain MRI data showed that the proposed algorithm
is able to retrieve increasingly significant time consistent consistent group
differences between the cortical thickness of AD patients and controls.

1 Introduction

The extraction of 4D consistent measurements of thickness from anatomical
structures is an important post processing step in neuroimaging. For example,
changes in the thickness of the cerebral cortex are of interest in various diseases
such as Alzheimer’s and Huntington’s disease, having the potential to provide a
biomarker for diagnosis and neurodegeneration [1]. However, the reliable extrac-
tion of 4D consistent and sub-voxel accurate measurements of thickness from
probabilistic segmentations is still an unsolved problem.

In order to provide accurate longitudinal measurements, we require that the
measurement of thickness is preformed in a consistent direction and location
on all time points. Thickness estimation methods, mostly developed for inde-
pendent 3D time points, can be separated into surface-based and voxel-based
techniques. Surface based methods [2] fit a triangulated mesh to the cerebral
cortex, making them computationally expensive, especially due to topological
constraints. Also, the parametrisation of the surface can be complex and cur-
vature constraints and smoothness parameters can bias the thickness measure-
ments [3]. Voxel-based methods on the other hand extract the value of thickness
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directly from the voxel grid and are computationally very efficient, but their
accuracy is limited by the image resolution and the quality of the segmentation.
Nonetheless, voxel based methods have been shown to preform as well as sur-
face based methods [4]. Overall, voxel-based methods can be clustered into 3
subgroups: mathematical morphology [5] based methods use a combination of
skeletonisation and region growing techniques in order to calculate the minimal
Euclidean distance between points. Partial differential equation (PDE) based
methods [6,7,8] solve the Laplace equation between the inner and outer surfaces
as if they were charged conductors, resulting in isopotential electric field lines
between them. The thickness is then equal to the sum of the lengths of the
normals to these isolines. Even though certain topological constraints over the
shape of the surfaces are theoretically required, Laplace equation based meth-
ods are normally used without enforcing them [8]. Finally, line integral based
methods calculate thickness of the structure of interest by finding the direc-
tion that minimises the line integrals over its probabilistic segmentation at each
voxel position. This method was recently extended to 4D [9] by finding a time
consistent directionality between time-points. However, it still lacks topological
consistency. In order to solve the problems regarding topology, [10] proposed a
method that combines the features of all the above voxel-based methods in a
unified, fully automated Khalimsky based thickness estimation algorithm, that is
topologically correct and partial-volume aware. This method uses the properties
of the Khalimsky grid and an iterative set of element collapse operations to cor-
rect the topology of the segmentation. The corrected segmentation is then used
to create a multi-stage Laplacian field that encompasses the partial-volume con-
taining areas. The streamlines of this Laplacian field are then integrated using
a PDE based method with a spatially varying speed function that is dependent
on the probabilistic segmentation.

We propose to extend the above described method [10] in order to encom-
pass 4D consistency. Here, all the time points are registered to an unbiased
temporal group-wise space and a group-wise segmentation is then obtained by
means of a multivariate EM segmentation algorithm specifically designed for
cortical thickness estimation [10]. A multistage Laplacian is then calculated on
the temporal group-wise space, and the per time point values of thickness are
then obtained by integrating over the single time point segmentations along the
temporal group-wise derived streamlines.

2 Method

2.1 Proposed Pipeline

The pipeline of most 3D cortical thickness algorithms can be described in 3 steps:

1. The image is segmented into several classes;
2. An implicit or explicit correspondence from one side of the cortex to the

opposite side is then found using a multitude of methods;
3. Finally, the thickness is measured according to a specific metric.
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Fig. 1. Top) Individual time points are segmented and registered to the temporal
group-wise space; Bottom) A group-wise segmentation is obtained from the trans-
formed images and used to create a group-wise Laplacian field. Thickness is obtained
by integrating through the group-wise Laplacian field over the transformed segmenta-
tion at each time point.

Any of these steps can be altered in order to introduce temporal consistency.
However, altering steps 1 or 3 will directly affect the measurement of thickness,
as either the segmentation or the thickness metric itself would be affected by a
constraint. This can reduce the statistical significance of difference measurements
between groups, leading to increased sample sizes. In order to maintain the
sensitivity of the measurement intact but still achieve temporal consistency, we
propose to constrain only the direction of the measurement, by changing step 2.
The proposed 4D cortical thickness pipeline consists of five steps, as shown on
Fig.1. For the sake of simplicity, assume a series of skull stripped brain images
acquired at 3 different time points. The five steps can the be described as:

1. The images are segmented independently using a previously published voxel
based probabilistic segmentation algorithm [11] specifically designed for cor-
tical thickness. This segmentation will separate the brain into 5 classes: WM,
cortical and deep GM and internal and external CSF. The cerebellum is re-
moved within the same pipeline by atlas propagation. Here, the segmenta-
tions from the deep GM and internal CSF are added to the WM segmentation
in order to create a class containing all the internal structures, simply called
WM for the sake of clarity.

2. An unbiased group-wise registration is then created between all the time
points. This iterative registration [12] process results in a transformation Tt

for each time point t to the average group-wise space. All the skull stripped
images and respective segmentations are transformed to this space.

3. In order to create a group-wise segmentation, a multivariate version of the
same algorithm [11] is used. Here, the segmentation model assumes that
each label is not only a realisation of one image (time point) but a combined
multivariate realisation of all time points, leading to a segmentation with a
high level of cortical detail.

4. A topologically correct Laplacian field map is created using the group-wise
segmentation as described in section 2.2 and 2.3. This Laplacian map has
the directionality information derived from the group-wise segmentation.
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Fig. 2. a) From left to right: An example object; A rasterised version of the object
with partial volume effect; the result of step 1 in blue and step 2 in red; the result of
the step 3 in blue and step 4 in red; b) Multi-Stage Laplace equation: The iso-lines
set to a fixed potential and the Laplace equation is solved. The distance L0 and L1 is
integrated from opposite sides of the object, following the Laplacian field streamlines.

5. This common directionality is then used at each time point to drive a PDE
based thickness measure with a speed function proportional to the trans-
formed segmentation modulated by the Jacobian of this transformation, as
described in section 2.4

The topologically correct Laplacian field in step 4 constrains the time consistent
direction of thickness measurement. This consistency is important as the corre-
spondences between both sides of the cortex can change dramatically on simple
3D models due to sulci and gyri opening and closing.

2.2 Topology Preservation and the Khalimsky’s Cubic Complex

Topology-preserving operations are used in many image analysis applications
in order to transform an object while leaving its topological characteristics un-
changed. Notwithstanding their simplicity, topology-invariant operations in the
voxel space have some well-described problems regarding the minimality of the
set and the existence of lumps [13]. Abstract complexes, like the Khalimsky space
provide a sound topological basis for image analysis. Intuitively, a cubic complex
can be seen as a space where every voxel is represented by a structure composed
of a set of elements having various dimensions (e.g. cubes, squares, edges, ver-
tices) put together according to some rules. Please refer to [13] for a complete
formal description of the cubic complex framework. As shown in [10], this ab-
stract space provides a sound basis for digital topology and topology correction
but also an interesting framework for the extraction of thickness measurements.

In order to correct the topology, a series of collapse operations are used to
transform a shape into another in a topologically invariant manner [10]. In short,
this topology correction step can be described as a 4 step procedure involving
Khalimsky based collapse operations, as shown in Fig. 2. The first to steps can
be described as a shrink wrap operation in the Khalimsky space in order to
obtain a topologically correct WM segmentation. Then, the same operation is
performed on the opposite direction in order to correct the topology of the CSF
class.
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2.3 Multi-Stage Laplace Equation on the Group-Wise Space

In order obtain a 4D consistent measurement of thickness at each time point, a
unique association between two sides of the cortex is required. For this purpose,
we use the Laplace equation, a second order partial differential equation (PDE),
solved between two enclosed boundaries Ω and Ω′ in the group-wise space. The
classic equation takes the form ∇2φ = 0, with the value at φΩ and φΩ′ set up as
boundary conditions. Similarly to [10], instead of a single Laplacian field for all
the pure voxels as in [6,7,8], a multiple Laplacian field is solved. This obviates
the problems regarding the estimation of surface normals for PV integration
using ray casting [8]. A set of isolines is generated for each tissue type from
the topologically correct group-wise segmentation. The Laplace equation is then
solved between these four equipotential lines resulting in a smooth transition field
traversing the cortex. The solution of this Laplace equation under an anisotropic
voxel grid in the Khalimsky space is presented in [10].

From the resultant Laplacian field, the normals to the direction of the Lapla-
cian isolines in the group-wise space, denoted by NGW , are calculated using
finite differences.

2.4 Thickness Measurement at Each Time Point

In order to measure thickness, the length of the streamlines between the in-
ner and outer surface has to be measured at each time point by integrating
the vector field NGW on the group-wise space. Because digital topology is not
preserved even under diffeomorphic transformations, each time point has to be
deformed to the group-wise space using the previously computed group-wise
transformation. In order to measure thickness, instead of the basic form partial
differential equation proposed by Yezzi [7], where the speed of the advancing
front is assumed to be 1, we use a more generalised form of the PDE. Here
∇Lt · NGW = f t, for an unknown function Lt at time-point t and assuming
that NGW and f t are known. In our case, and differently from [6,7,14,8], the
value of f will be spatially varying and equal to the probability of belonging
to the cortical GM modulated by the Jacobian determinant of the transforma-
tion, f t = pt

GM |T(x)t|. This value will act as time cost and will make the value
of Lt equivalent to the time of arrival in a level-set framework. Modulation by
the Jacobian determinant is necessary in order to take the voxel compression
into account. Even though collisions of the advancing front might exist, they are
not a problem due to the upwind nature of the integration and the existence of
the group-wise vector field NGW . Let Lt

0(x,y,z)
be a function that measures the

time of arrival (arc length of the streamline according to the time cost f t) from
the boundary of set FWMpure on the group-wise space to a point in the object,
and Lt

1(x,y,z)
be the time of arrival from the boundary of set FCSFpure , again in

the group-wise space, to the point in the object. The values of L0 and L1 are
calculated using anisotropic finite differences, as described in [10] . The final
value of thickness is then defined as Thickt = L0t + L1t. In order to reduce the
bias of any further statistical analysis, the value of thickness is only calculated at
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mid-isopotential line on the group-wise Laplacian field. The ribbon containing
the thickness measurements will thus have spherical topology (Euler character-
istic of 2) and will be in the same space for all time points.

3 Experiments and Results

The experimental section of this paper is divided into two subsections. First,
a digital phantom with time evolving ground truth thickness is used to assess
the accuracy and sensitivity of the proposed algorithm compared to three 3D
state-of-the-art methods. The proposed method is then applied to brain MRI
data in order to assess group separation in terms of cortical thickness between
Alzheimer’s disease diagnosed patients and controls.

Phantom validation: In order to evaluate if the proposed method can accu-
rately retrieve the underlying thickness of an object, 7 folded 3D digital phan-
toms with spherical topology and known ground truth thickness were created
(Fig. 3), resulting in six high resolution isotropic images with 3 structures equiv-
alent to WM, GM and CSF. The thickness of the object is changing with time
from 5.2 to 3.6mm in order to simulate a thickness loss in an object over sev-
eral time points. Note that the sulci will open after time-point 1. These high
resolution phantoms were then down-sampled by 5 in order to simulate PV
effect and the thickness of the down-sampled structures was then measured.
We compare the proposed 4D method with the 3D version of the same algo-
rithm, the method proposed by Jones et al. [6] and the method proposed by
Acosta et al. [8].

Results show that all 3D methods are highly sensitive to temporal structural
changes. When compared to the ground truth, the thickness change in time
is overestimated, possibly due to sulci opening. The proposed method, on the
other hand, uses a 4D consistent directionality derived from all the time-points,
resulting in a much more accurate and precise thickness estimation. One should
be cautious when reporting cortical thickness loss in time, as 3D methods can
severely overestimate it.
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Fig. 3. Left: A 4D simulated high resolution phantom with a time varying thicknesses
ranging from 5.2mm to 3.6mm (a-g). Right: Mean and standard deviation of the esti-
mated thickness at all voxel positions from timepoint 1 to 3.5 when compared to the
ground truth in black.
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Fig. 4. A plot showing the progression of the average cortical thickness in time, nor-
malised to the average thickness over all time points. From left to right: The normalised
thickness for controls and AD patients using the 4D (proposed) method and 3D (time
independent) versions of the algorithm.

Brain MRI analysis: To further investigate the temporal consistent of the
proposed method, the thickness of the cortical layer was calculated on the ADNI
dataset at 3 time points. The main purpose of this study was not to evaluate
group separation between different groups but to assess their stability in time.
From the full ADNI dataset, a subset of 60 age- and gender-matched subjects (30
AD and 30 controls ) were selected. Each subject has T1-weighted 1.5T MRI
volumetric images acquired using a 3D MPRAGE sequence (typically 1.20 ×
1.00 × 1.00mm) at 0, 12 and 24 months.

Fig. 4 shows the progression of the distribution of the average value of thick-
ness within the cortex at each time point, normalised to the average thickness
over all time points. Due to the lack of time consistency, unexpected inver-
sions of the thinning pattern occur on the 3D version of the algorithm. The
4D version of the algorithm shows a marked improvement regarding the sta-
bility of the thinning pattern. This leads to a reduction of the standard devia-
tion of the thickness distributions within each group, increasing the statistical
power. In order to compare the different groups (AD and controls) on a per
area basis, the group-wise space was parcelated into different areas using the
an anatomical atlas. The 3D method shows statistically significant differences
in thickness (p < 10−3) on both the temporal and parietal region. The frontal
region is statistically significantly thinner (p < 10−3) at both time-points 1 and
3 but it but does not achieve the significance threshold at time-point 2. On the
other hand, the proposed 4D method shows statistically significant differences
in thickness at the level p < 10−5 in the middle and inferior temporal and pari-
etal regions and p < 10−3 in the frontal gyrus region in the first time point.
From time point 2 onwards, the frontal region becomes significant at p < 10−5

and both the superior and occipital regions become statistically significant at
p < 10−3.

Due to the lack of 4D consistency in the segmentation, cortical lost might
be over-estimated. In order to investigate this, future work will explore the
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use of a 4D segmentation step for improved consistency. We will also consider
the use of the full Jacobian matrix for the modulation step instead of it’s
determinant.

4 Conclusions

In this paper we present a new method to extract 4D measurements of thick-
ness from cortical segmentations. First, all the time points are registered to
an unbiased and temporal consistent group-wise space. Then, a time consis-
tent group-wise point-to-point correspondence is found by means of a multistage
Laplacian field derived from a multivariate segmentation in the group-wise space.
This common directionality is then used to calculate the thickness at each time
point.

Experiments on digital phantoms with known ground truth thickness show
that the proposed method is more accurate and precise at retrieving true thick-
ness values than other previously published methods, thereby reducing the over-
estimation of cortical thinning in the presence of sulci opening. Quantitative
analysis on brain MRI data showed that the proposed algorithm is able to re-
trieve increasingly significant time consistent consistent group differences be-
tween the cortical thickness of AD patients and controls.
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Abstract. The process of brain growth involves the expansion of tissue
at different rates at different points within the brain. As the layers within
the developing brain evolve they can thicken or increase in area as the
brain surface begins to fold. In this work we propose a new spatiotem-
poral formulation of tensor based volume morphometry that is derived
in relation to tissue boundaries. This allows the study of the directional
properties of tissue growth by separately characterizing the changes in
area and thickness of the adjacent layers. The approach uses temporally
weighted, local regression across a population of anatomies with different
ages to model changes in components of the growth radial and tangen-
tial to the boundary between tissue layers. The formulation is applied
to the study of sulcal formation from in-utero MR imaging of human
fetal brain anatomy. Results show that the method detects differential
growth of tissue layers adjacent to the cortical surface, particularly at
sulcal locations, as early as 22 gestational weeks.

1 Introduction

This work is motivated by the study of growth patterns in the developing brain.
In particular, there is considerable interest in exploring geometric characteris-
tics of growth that underlie the formation of sulci and gyri. Multiple hypotheses
regarding the ontogeny of cortical folding patterns have emerged that consider
factors like axonal tension [1], differential cortical expansion [2], mechanical con-
straints [3] and genetic determination [4] as well as combinations of these factors
[e.g. [5], [6]]. A more complete characterization of the local growth patterns as-
sociated with cortical folding in the human fetus will provide evidence for the
development of theories on gyrogenesis

Tensor based morphometry is a powerful tool that makes use of accurate
spatial normalization to study local differences in tissue size across a population,
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that can be used to study changes in anatomy with age. It has recently been
used to study fetal brain growth [7] and brain growth in early childhood [8],
[9], [10], [11]. One of the key challenges in TBM analysis is interpreting not
just the scalar volume increase with growth, but the directional characteristics
that induce the formation of a sulcated brain from a smooth fetal brain. In
this paper we describe an approach to examining how tissue growth occurs in
adjacent tissue layers as the shape of the boundary between them evolves. We
derive a statistical framework to model the components of tissue growth over
time in relation to the local coordinate frame of the tissue boundary. We apply
this to look at how primary sulci are formed in the developing human fetus in
relation to the boundary between the cortical plate and sub-plate, by specifically
mapping normal and tangential components of volume increases on either side
of the tissue boundary. We make use of temporally weighted, local regression to
test whether the rate of area or thickness is increasing or decreasing over time.
This allows us to study the pattern of increases in the area of layers in relation
to increases in thickness of the layers at specific gestational ages.

2 Methods

For a cross-sectional population of n subject at different ages, we compute a
transformation Di, i = 1, 2, ...n for each subject, which captures the geomet-
ric changes required to spatially normalize each subject image to a common
space. At each voxel p, the local differences size and shape can be derived from
the deformation tensor which is defined as the gradient of the transformation
(Dp

i [x, y, z]) at that voxel and is given by (Jp
i ) =

[
∂Dp

i [x,y,z]

∂x∂y∂z

]
. We form an aver-

age brain surface by constructing a triangulated mesh from the cortical surface
of the average image. The Jacobian matrices within 4 mm of each surface ver-
tex were averaged (in the log domain [12] and placed onto the surface mesh for
surface modeling. For each subject, this then provided a map that summarizes
shapes changes on the cortical surface.

2.1 Discriminating Shape Change into Area or Thickness Changes

Shape changes adjacent to anatomical boundaries occur as a series of changes
in local area and thickness of the adjacent tissue layers. At each location on the
boundary, change in neighboring tissue area and thickness can be quantified by
resolving the Jacobian matrix into its radial and tangential components respec-
tively. We form a surface normal map (N ) by computing the surface normal
at each vertex of the average surface. Vertex-wise approximation of change in
neighboring layer thickness T p

i , is the scalar projection of the Jacobian tensor
((Jp

i )) of the tissue location projected onto the corresponding surface normal
( n),

T p
i = abs(nT (Jp

i )n) (1)

In order to compute the change in local surface area, we compute maps of vectors
tangential to the surface and perpendicular to the surface normal vector. The
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cross-product of n and an arbitrary, non-colinear vector r results in one possible
tangent (t1) to the surface. The other surface tangent (t2) is the cross-product
of (t1) and n. Local change in area is the scalar component of the Jacobian
tensor onto t1 and t2,

Ap
i =

√
(t1T (Jp

i )t1) × (t2T (Jp
i )t2) (2)

For each subject, we compute a map of surface area Ai and thickness Ti change
which can then be used to analyze local changes in shape.

2.2 Modeling Local Changes at Specific Time Points

In order to examine the temporal progression of changes in surface shape, we
use locally weighted regression (LWR) [13] to examine the relationship between
surface area or thickness and a time-variable of interest (e.g. age of subjects).
LWR is a non-parametric method that fits a smooth regression model to the data
by fitting simple models to localized subsets of the data. For each independent
variable of interest (IVOI), a lower degree polynomial is fitted using weighted
least squares, giving more weight to points near the IVOI and less weight to
points further away. The regression is considered complete when a local model is
fit to all independent variables. In order to study age-specific models of surface
shape change, we performed LWR with area (or thickness) as the dependent
variable and age as the independent variables. Let Y correspond to the vector of
dependent variables (at a single vertex), X is the vector of independent variables
and and ε are the errors. As shown in Equation 2.2, for each independent variable
Xi, a linear model is fit by using weighted least squares where Wi is the weight
matrix. A generalized bell-shaped function is usually used to form the weight
matrix. (The matrix dimensions of each of the variables are indicated below each
variables in Equation 2.2). LWR results in a vector of coefficients (β1, . . . , βn)
corresponding to the total number of independent variables.

WiY = WiXβi + ε
(n× 1) (n× n)(n× 1)(1 × 1) (n× 1)

Hypothesis testing: Resulting regression coefficient (β1, . . . , βn) maps are tested
for significance using a standard t-test. Statistical significance was computed
and these were corrected multiple comparisons using permutation tests [14].

The β1, . . . , βn values are estimates of increase or decrease in area or thickness
at a particular time point and the hypothesis tests estimate statistical signifi-
cance of these changes.

3 Application – Comparing Growth Patterns Between
Cortical Plate (CP) and Subplate (SP) During Early
Fetal Development

The following experiments were performed using clinical MR scans of 40 fetal
subjects at gestational ages ranging from 20 to 28 weeks. The mothers were
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Fig. 1. Example of using LWR to model area changes at a particular location on the
subplate (SP). A smooth function is fit to the entire time interval by fitting linear
models to smaller subsets of data. For each subset of data, the independent variables
closest to the independent variable of interest are weighted higher than those further
away.

referred for fetal MRI due to questionable abnormalities on prenatal ultrasound
or a prior abnormal pregnancy. All women had normal fetal MRI and all new-
borns have had normal postnatal neurodevelopment. Fetal imaging was per-
formed in our institution on a 1.5T scanner (GE Healthcare, Milwaukee, WI)
without sedation of the mother or the fetus. For each subject multiple stacks of
single-shot fast spin-echo (SSFSE) T2-weighted slice images (pixel size 1 mm ×
1 mm, slice thickness ≈ 3 mm) are planned in the approximately axial, sagittal
and coronal planes with respect to the fetal brain and are acquired with MR
sequence parameters (TR = 4500 ms, TE = 91 ms). High resolution 3D volumes
were reconstructed from 2D slice MR images using the slice intersection motion
correction (SIMC) technique [15]. The reconstructed volumes were automatically
segmented into individual tissue types (developing grey matter, developing white
matter, the germinal matrix) using an atlas-based approach with probabilistic
atlases generated from a spatiotemporal model of the fetal brain [16]. The tissue
label maps for each of the 40 scans were co-aligned using an unbiased groupwise
registration algorithm. The algorithm simultaneously estimated an average brain
shape and a deformable mapping to each of the anatomies being studied. This
average shape was estimated in such a way to ensure that the average distance
from each point in that space, when mapped to the individuals in the group, is
forced to be zero, forming a so-called minimum deformation anatomy. For each
subject, the Jacobian matrix maps were computed, from the resulting deforma-
tion fields, to quantify the pattern of deformation required to spatially normalize
individual anatomies. The inner surface of the cortical plate in the group average
tissue segmentation map was formed into a triangulated mesh using a topology
preserving marching cubes algorithm [17].

For each subject, we computed two surface Jacobian maps corresponding to
two layers of the cerebral mantle namely the cortical plate (CP) and the subplate
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(SP). For each layer, we compute a set of maps describing local changes in surface
thickness and surface area changes. For each layer and metric, we compute a
model of spatial changes from 21 to 28 weeks GA at 1 week intervals.

3.1 Results and Discussion

Figure 2 shows a matrix of the statistically significant variations in area and
thickness between the CP and the SP. The T Maps were overlaid on the aver-
age surface and displayed using the Rview software1. Due to space constraints,
we have shown growth patterns for 22, 24 and 26 weeks only. Overall, we see
distinctly different patterns of area and thickness changes between the two lay-
ers. We also see a distinct temporal pattern of area and thickness change from
21 to 28 weeks. On the SP, the medial side of the fronto-parietal region (as
indicated by black arrows) shows a progressive, relative increase in area from
21 to 27 weeks which corresponds to relative decrease in the thickness compo-
nent of growth during this period. We also notice that the emergence of the
post-central sulcus (purple arrows) as increase in area of the SP beginning at
23 weeks which is correlated with a increase in area on the CP plate at the
corresponding location after 24 weeks. We observe in the lateral views that the
operculization process manifests as changes in area and volume both on the SP
and CP. Local area increases in the SP begin at the operculum at 22 weeks.
By 24 weeks, the increase in area has shifted to accommodate the emergence
of the superior temporal gyrus and by 26 weeks area increases also occurs at
the location of the superior temporal sulcus (orange arrow). A similar pattern
of area increase is also visible on the CP although the process seems to be de-
layed by 1 week. During this period, the local thickness component of growth
on the SP decreases as expected. Local area increases at the presumptive lo-
cation of the fronto-parietal gyrus is visible in both the SP and the CP be-
tween 21- 24 weeks. The lack of change in thickness of the CP is supported
by the findings of Rakic et al. [18], who postulate that the CP enlarges pri-
marily by tangential expansion as a uniform surface and not by increase in
thickness.

We see a distinct difference in the directional growth of the CP and SP.
In regions of cortical folding, the CP and SP expanded in overlapping areas.
Moreover, where SP expanded in the tangential direction, SP also significantly
grew in the normal direction. In contrast, the CP did not increase in the normal
direction, from which we infer there is no detectable change in thickness at our
image resolution. The total expansion of SP underlying developing gryi is in
agreement with the histological observation in gyrencephalic animals of large
visible SP at gyri and very thin SP at sulci [19], [20]. Coincident expansion of
the CP and SP, which is primarily composed of axonal fibers held at transient
contacts prior to reaching final targets in the CP [20], may support cortical
folding hypotheses that suggest that connectivity is a major driver of cortical
folding patterns [1], [21].

1 http://rview.colin-studholme.net
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Fig. 2. Spatiotemporal patterns of variational growth between the cortical plate (CP)
and subplate (SP) during early fetal development. Warm colors indicate significant,
relative increase in area or thickness component of growth with time and cool colors
indicate statistically significant reductions in area or thickness component. DR = Dor-
sal view, LL = left lateral view and LM = left medial view. Changes are bilateral unless
noted otherwise.

4 Conclusion

In this paper, we have introduced descriptors that allow us to characterize growth
in adjacent tissue layers in terms of changes in area and thickness. Also for the
first time, we use temporally weighted, local regression to create spatiotemporal
models of tissue growth along an evolving tissue boundary between the adjacent
layers. The two methods are incorporated into the TBM framework to model
differential patterns of tissue growth between two adjacent anatomical layers.
Using the proposed spatiotemporal morphometry framework, we modeled vari-
ational growth patterns between the CP and SP which underly the mechanism
of sulcation in a fetal brain. The spatiotemporal method allowed us to precisely
stage growth patterns of various tissue layers corresponding to the emergence
of the primary sulci. Future work will include extending this analysis to other
tissue boundaries within the fetal brain and examining the correlation between
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changes across the boundary (e.g volume increases in SP vs area increases in
CP). The general framework of spatiotemporal morphometry can be adapted to
other applications.
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Fast Shape-Based Nearest-Neighbor Search for

Brain MRIs Using Hierarchical Feature Matching
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Abstract. This paper presents a fast method for quantifying shape dif-
ferences/similarities between pairs of magnetic resonance (MR) brain
images. Most shape comparisons in the literature require some kind of
deformable registration or identification of exact correspondences. The
proposed approach relies on an optimal matching of a large collection of
features, using a very fast, hierarchical method from the literature, called
spatial pyramid matching (SPM). This paper shows that edge-based im-
age features in combination with SPM results in a fast similarity mea-
sure that captures relevant anatomical information in brain MRI. We
present extensive comparisons against known methods for shape-based,
k-nearest-neighbor lookup to evaluate the performance of the proposed
method. Finally, we show that the method compares favorably with more
computation-intensive methods in the construction of local atlases for use
in brain MR image segmentation.

1 Introduction

Large collections of medical images are becoming ubiquitous as public resources,
and within specific clinical practices. Currently, large studies consist of thousands
of images, but in the coming years databases of images of various types will grow
to tens of thousands. The availability of such data demands new techniques
for image analysis and associated algorithms that are able to efficiently take
advantage of these large collections. We begin with a brief discussion of the kinds
of algorithms that utilize these large sets of images and how these algorithms
demand new technologies for fast image lookup, and end this section with a
discussion of how the proposed method addresses this challenge.

One use for a large collection of medical images is to aid in segmentation or tis-
sue classification. Atlases, comprising voxel-wise tissue probabilities, incorporate
information about spatial location of biological structures. Atlases with hard/soft
tissue/object assignments can be used alone, or as “priors”, for segmentation and
combined with voxel measurements of a specific image to generate label maps
in previously unseen images. Atlases are typically constructed by summarizing
information concerning image intensities and anatomical shapes from a training
set that includes manual segmentations. The information is summarized in (i) an
average image (template) and (ii) a tissue probability map. To segment a test
image, the template is warped to the test image and the tissue probabilities in
the atlas are then transferred to the test image.

G. Fichtinger, A. Martel, and T. Peters (Eds.): MICCAI 2011, Part II, LNCS 6892, pp. 484–491, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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Recent work [1,11,6] shows that there can be significant loss of information in
the averaging/summarizing process underlying conventional atlas construction
schemes. Alternative strategies rely on multiatlases or nonparametric atlases.
Such schemes consider every image (and associated manual segmentation) in
the training set as an atlas. They transfer information from the training set to
the test subject by independently warping atlas templates to the latter and,
subsequently, warping atlas segmentations to the latter. An important aspect of
multi or nonparametric atlases is that one typically selects a small subset of at-
lases from the training set, comprising the atlas templates that are most similar
to the test image. Lotjonen et al. [11] use a weighted average of these images,
where weights reduce monotonically with distance, thus forming a nonparamet-
ric estimate of segmentations in the space of images. A small collection of similar
images typically registers quite well and results in a crisper average, thus pro-
viding better quality segmentations compared with those obtained using a sum-
mary/average atlas from the entire training set. This has been demonstrated
on brain magnetic resonance (MR) images [1] and cardiac MR angiography im-
ages [6]. Despite these impressive developments in nonparametric atlases, finding
images representing similar anatomy requires registration between the test image
and (potentially) every image in the training set. Thus, the problem of efficiently
applying these methods to very large training sets remains open.

There are other types of analyses demanding some kind of fast nearest-
neighbor (NN) lookup on sets of anatomical images. For instance, Gerber et
al. [7] propose a method to learn the underlying manifold structure on sets of
brain images, and rely on comparisons (deformable registrations) of each image
against every other, resulting in many days of computation time—but ultimately
they use only NN relationships to construct the manifold. Wolz et al. [13] sim-
ilarly use NN relationships to extract biomarkers from a low-dimensional rep-
resentation under the hypothesis that the low-dimensional coordinates capture
information about shape and appearance. Other approaches for learning repre-
sentations on sets of images exist [2,5], but they share the same need for quickly
identifying and quantifying shape-based relationships between similar images.

The problem of fast searching in image spaces has received a lot of attention
in computer vision for content-based image retrieval and recognition. In this con-
text, Grauman and Darrell [8] proposed an efficient hierarchical approximation
for measuring similarity between histograms of features using a pyramid match
kernel (PMK). While [8] applies PMK as bags of image features in which spatial
location is typically ignored, Lazebnik et al. [10] proposed a variation on the
PMK approach, called spatial pyramid matching (SPM), which computes ap-
proximate geometric correspondences based on histograms of feature locations.
They apply SPM primarily to content-based image retrieval, where relatively
coarse approximations to feature localization and matching are justified. How-
ever, these methods do offer bounded-error approximations of L1, bipartite fea-
ture matching—raising the possibility that they would have utility in evaluating
anatomical shape similarity. This observation is supported, in part, by medical
image registration algorithms that rely on hierarchical feature matching [12].
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The purpose of this paper is to examine the application of a fast, hierarchical
approach for matching image features to the problem of shape-based lookups into
large databases of medical images. The result is a novel method for fast, shape-
based, approximate search of medical images. The proposed method is several
orders of magnitude faster than typical 3D registration methods, thereby mak-
ing NN searches practical for large databases of medical images. We describe a
mechanism by which MR brain images can be reduced to feature maps that, com-
bined with the matching algorithms above, offer acceptable approximations to
deformation distance. This paper also validates the accuracy of the fast searches
relative to accuracies produced by registration methods. Furthermore, the pa-
per presents results on the application of the proposed method for brain-tissue
segmentation, where the results demonstrate segmentation performance as good
or better than with registration-based metrics.

2 Methods

The proposed method for measuring the similarity between two brain MR images
relies on hierarchical feature matching using SPM [10]. This section reviews
the formulation for SPM and describes its application to shape comparison on
brain MR images. The use of SPM on image features entails a pipeline of four
steps: (i) image preprocessing—intensity and spatial normalization and edge-
preserving filtering, (ii) feature extraction—Canny edge detection, (iii) feature
labeling—data-driven codebook generation and label assignment, and (iv) SPM
comparisons—construction and comparison of a collection of labeled, multilevel
feature histograms. Steps (i)–(ii) rely on public domain implementations (i.e.
ITK) for affine registration, intensity normalization, filtering, and edge detection
that are well known from the literature. We describe steps (iii) and (iv), next.

Feature Extraction and Codebook Construction: The proposed method
relies on edges to capture anatomical shape. SPM matches a set of feature maps
in a way that approximates L1, bipartite matching, but does not enforce any
kind of smoothness on the matching, which is typcially important for medical
image registration. In order to avoid mismatching nearby edges associated with
different anatomies, we classify edges into different types based on local shape.
For edge classification, we use the orientation and curvature of the level sets of the
input image at each edge point, which are computed by first- and second-order
derivatives of Gaussians. Then each edge is classified by (i) a clustering process
on the orientation-curvature features extracted at all edge voxels followed by
(ii) a quantization/coding process that assigns a label to every edge voxel based
on the cluster center to which it is nearest. We use k-means for clustering and
refer to cluster centers as the codebook of possible edge patterns C = {c1, · · · , ck}
in brain MR images. Figure 1 shows examples of the hard-coded edge maps.
To alleviate errors/artifacts in the hard quantization/coding process, we assign
“soft” labels as in fuzzy-c-means, where each edge point has a set of membership
values of belonging to every cluster.
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Shape Similarity using Spatial Pyramid Matching: Each edge type in
the codebook is considered as a different feature map, and each feature map is
represented as a multilevel spatial histogram, or spatial pyramid. For each edge
type SPM approximates the distance between nearby edges by the overlap of
the spatial histograms of the edge images at each level. Features in two differ-
ent pyramids, are “matched” if they lie in the same bin, at a specific level in
the pyramid. The algorithm assigns matches starting from the finest level and
proceeds progressively through coarser levels—to a final single bin, where any
remaining features are matched. Once labels get matched at a specific level of
the pyramid, they are not considered for matches at coarser levels. This pyramid
matching process is essentially an approximate, greedy algorithm for bipartite
matching between labeled point sets. For each feature match at each level there
is an associated weight that assigns a cost (or reward) for that match. To ap-
proximate L1 matching, one would use a cost proportional to the bin size at
each level in the hierarchy, and sum over each bin at all levels. This is, however,
sensitive to mismatches, outliers, and inherent inaccuracies in binning (worse at
coarser levels). As an alternative, Grauman and Darrell [8] assign weights that
are the reciprocal of the bin size (i.e. rewarding finer-level matches) and show
that the resulting similarity measure is a Mercer kernel.

Given two images A and B of a particular edge type c ∈ C, consider their
spatial pyramid representations hA and hB, with L levels in order of increasing
resolution. Each level l is a spatial histogram with 2l−1 bin along each image
dimension d, with a total of Ml = 2d(l−1) bins. Let hl

A and hl
B be the represen-

tations of A and B, respectively, at level l with hl
A(i) and hl

B(i) the soft count
of edges of type c in the ith bin. Then, the number of matches between hl

A and
hl

B is given by the histogram intersection:

I(hl
A, hl

B) =
Ml∑
i=1

min(hl
A(i), hl

B(i)). (1)

Given the matches that have already occurred at levels [l + 1, L] finer than l,
the new matches occurring at level l < L are: Nl = I(hl

A, hl
B) − I(hl+1

A , hl+1
B ).

At the finest level L, all the matches I(hL
A, hL

B) are new: NL = I(hL
A, hL

B). If hA

and hB are the same, then all (new) matches occur at the finest level L.
Similarity between point-sets A and B is measured using the PMK,

κ(A,B) =
L∑

l=1

wlNl = I(hL
A, hL

B) +
L−1∑
l=0

1
2L−l

(I(hl
A, hl

B) − I(hl+1
A , hl+1

B )), (2)

which is a weighted combination of the new matches at each level. The matches
at finer levels are given higher weights because matches at finer levels indicate
lower separation distance between the matched points. Specifically, the weight
wl, for matches at level l, is wl = 1/(2L−l) that decreases exponentially with
level coarseness; this rate is consistent with the exponential increase of the bin
size with level coarseness. For the finest level, wL = 1.

To ensure a maximum PMK similarity κ(·, ·) of 1, κ(·, ·) is normalized as
κ̃(A,B) = κ(A,B)/

√
κ(A,A)κ(B,B). Then, SPM similarity between two



488 Peihong Zhu et al.

images is the sum of normalized PMK similarities for each edge type: S(A,B) =∑k
c=1 κ̃(Ac, Bc), where κ̃(Ac, Bc) is the normalized PMK similarity for the cth

code. SPM’s algorithmic complexity is linear in the point-set cardinality, number
of pyramid levels, and number of codes.

3 Evaluation Methodology

The SPM approach is compared to diffeomorphic registration (LDDMM) [4],
which captures geodesic distances of deformation fields, and an elastic registra-
tion approach (not strictly a metric) as employed in [7] . This is not an exhaustive
list of metrics for registration-based shape comparison, but is representative of
the state of the art in terms of compute time and performance. Our hypothesis is
that SPM is comparable to the various options for deformation metrics (different
algorithms and parameters) in the evaluation of shape differences and k-NNs.

Consider a training set of brain images B = {B1, · · · , BM} and a test set
A = {A1, · · · , AN}. To compare k-NN performance, we find the k-NNs Bj ∈ B
of all Ak ∈ A using (i) SPM with 2 different codebook sizes, (ii) elastic registra-
tion with 2 values of the standard parameter, say λ, which balances the weight
between the image-match and deformation smoothness, and (iii) diffeomorphic
registration with two λ values. Our evaluation metrics are:

1. Accuracy (π): For image Ai, let the k-NNs given by two different meth-
ods (among SPM, diffeomorphic registration, and elastic registration) be
ηS(Ai, k) ⊂ B and ηR(Ai, k) ⊂ B. Then, π for S relative to R is:
π = (1/N)

∑N
i=1 |ηR(Ai, k) ∩ ηS(Ai, k)|/|ηR(Ai, k)|.

2. ε-ball radius ratio (γ): If images in B are very similar to each other, there are
many neighbors within a relatively small distance. Thus, we propose an ε-
ball metric, from topology theory, to quantify the extra distance introduced
by differences in k-NNs. Given the k-NNs ηR(Ai, k), we find the smallest set
ηS(Ai, k

∗) such that ηR(Ai, k) ⊂ ηS(Ai, k
∗). Note: k∗ ≥ k. Then,

γ = (1/N)
∑N

i=1[maxB∈ηS(Ai,k∗)dR(Ai, B)]/[maxB∈ηR(Ai,k)dR(Ai, B)],
where dR(Ai, B) is the registration-based distance between Ai and B; γ ≥ 1.

3. To compare performance for atlas-based segmentation, we use the Dice over-
lap measure between an atlas-based tissue segmentation A and the ground-
truth tissue segmentation G. The Dice overlap is: (2|A ∩G|)/(|A| + |G|).

The evaluation employs: (i) a database B of 259 skull stripped, T1-weighted brain
MR images (normal humans; image size 160×192×176 voxels) with probabilistic
tissue segmentations and (ii) a database A of 20 BrainWeb [3] images.

4 Results and Discussion

The main motivation of using SPM similarity is to enable fast searches for NNs.
Thus, we begin by discussing the computational cost and times for matching
tasks between two 3D brain images SPM, elastic registration, and diffeomorphic
registration. Diffeomorphic registration between two brain MR images with 2003
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(a) (b) (c) (d) (e)

Fig. 1. (a) Axial slices from 2 examples of 3D T1w brain MR images in the 259-
brain database (see text). (b) Coded edge maps associated with (a). (c)–(e) 3 nearest
neighbors (NNs), for the images in (a), found by the proposed method. The NNs clearly
reflect the overall shape of the skull, ventricles, etc. SPM similarities between the top
and bottom row images are very small, reflecting the large differences in skull shape.

voxels, using LDDMM [4] with 100 iterations and 5 intermediate timepoints, re-
quires roughly 8× 1013 flops. An elastic registration requires approximately 50-
times fewer, i.e. 2×1012, flops. For the same example, SPM requires less than 108

flops. Typical registration methods have a high demand for trilinear interpola-
tions, which can result in poor memory-access patterns. SPM, on the other hand,
eliminates interpolations entirely. Codebook construction and edge labeling are
computationally light and need to be performed just once, during preprocessing,
and require computation of the same order as in preprocessing for registration.
Run times on conventional, serial CPUs confirm, approximately, these calcula-
tions. A careful C++ CPU implementation of LDDMM, registration between
two brain images requires around 4-6 hours, while a similar implementation of
elastic registration requires roughly 10 minutes. A Matlab implementation of
SPM takes roughly 40 seconds. The experiments in this paper used a GPU im-
plementation [9] of LDDMM (roughly 10 minutes required). In real systems to be
deployed one would implement SPM on a parallel architecture such as a GPU (a
100× speedup over Matlab is expected). Such experiments becomes architecture
specific and are beyond the scope of this paper.

Selecting 3500 random pairs, we compute SPM similarities and registration-
based distances. Linear regression between: (i) registration-based distances pro-
vided by different methods gives slopes around 0.83, R2 around 0.75; (ii) SPM
similarity and registration-based distance gives slopes around −0.73, R2 around
0.6. This indicates that SPM similarity correlates very well with registration-
based distances.

For accuracy we consider a subset of 100 from the 259 brain MR images. We
compute SPM similarities and registration-based distances for all pairs in the
dataset. Subsequently, we compute π for k-NN searches with k = 10 for every
image in the dataset and average the values over the dataset (the standard devia-
tion is around 0.13 for all results). Figure 2 indicates that (i) π for SPM, relative
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k-NN Accuracy
Diff1 Diff2 Elas1 Elas2 SPM1 SPM6 SPM18

Diff1 1 0.39 0.22 0.35 0.25 0.32 0.32
Diff2 1 0.51 0.69 0.45 0.53 0.53
Elas1 1 0.45 0.36 0.36 0.36
Elas2 1 0.42 0.52 0.53
SPM1 1 0.56 0.52
SPM6 1 0.86
SPM18 1

Average ε-Ball Radius Ratio
Diff1 Diff2 Elas1 Elas2 SPM1 SPM6 SPM18

Diff1 1 1.24 1.30 1.25 1.38 1.33 1.32
Diff2 1.26 1 1.20 1.16 1.33 1.29 1.26
Elas1 1.29 1.19 1 1.23 1.29 1.27 1.27
Elast2 1.13 1.07 1.10 1 1.12 1.09 1.09

Fig. 2. [Top-Left] k-NN accuracy π for different parameter values (smoothness of
warp) of diffeomorphic and elastic registration as well as different numbers of edge
codes (subscripts) for SPM. [Bottom-Left] Average ε-ball radius ratio γ for different
methods compared to reference distances listed in the first column. The first two rows
use diffeomorphic registration to give the reference dR(·, ·), while the last two use
elastic registration. [Right] Dice overlaps for atlas-based segmentation of 20 BrainWeb
images [3]. Atlases are constructed using 10 nearest neighbors selected by diffeomorphic
registration, elastic registration, SPM, and random selection.

to each registration method, is very close to π measured for one registration
method relative to another; and (ii) using codebooks, rather than simply edges,
improves SPM’s performance. Figure 2 also shows that SPM’s performance is
also robust respect to the size of the codebook. The second table in Figure 2
shows ε-ball radius ratios, indicating that SPM and registration-based methods
misidentify kNNs in a way that introduces similar errors in image distances.

Next, the utility of SPM is evaluated for atlas-driven segmentation by com-
paring the quality of local kNN based atlases. Notice that SPM does not provide
a coordinate transformation, thus after finding the k-NNs with each method,
we use the LDDMM registration to warp the k-NN images (and segmentations)
to the test image and average their tissue probabilities to construct the atlas.
In order to isolate k-NN search performance, tissue values are assigned based
only on the local atlas and no intensity based segmentation is used. We used 20
test images from the BrainWeb dataset [3] and build the k-NN atlases from the
259-brain image database. To evaluate the efficacy of each atlas we use the Dice
overlap of segmentation with respect to ground truth. We average these Dice
values over all 20 test brains. Figure 2 shows that Dice overlaps using SPM out-
perform the others for this dataset. Dice overlaps for elastic and diffeomorphic
registration are very close to each other. Random selection of images reduces
performance by several percent, which is consistent with findings in [6,1].

Conclusion: This paper demonstrates the effectiveness, in terms of both com-
pute times and accuracy, of an SPM-based k-NN search for brain MR images.
Some engineering decisions, such as limiting features to edges and coding based
on orientation and curvature, are effective, but warrant further investigation.
For instance, one might learn features directly from image patches, especially if
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the images in question are not dominated by high-contrast edges. The question
of generally applicability is also quite interesting. While the results for brain
images are quite promising, successful demonstrations on other types of data,
such as cardiac, have to be completed. However, the basic properties of the pro-
posed framework, including a great deal of flexibility in possible features and
robustness to feature outliers, promises to be more general.

Acknowledgements. This work is supported by the NIH/NCRR Center for
Integrative Biomedical Computing - 2P41 RR0112553-12, and the NIH/NCBC
National Alliance for Medical Image Computing - U54-EB005149.

References

1. Aljabar, P., Heckemann, R., Hammers, A., Hajnal, J., Rueckert, D.: Multi-atlas
based segmentation of brain images: Atlas selection and its effect on accuracy.
NeuroImage 46(3), 726–738 (2009)

2. Aljabar, P., Wolz, R., Srinivasan, L., Counsell, S., Boardman, J., Murgasova, M.,
Doria, V., Rutherford, M., Edwards, A., Hajnal, J., Rueckert, D.: Combining mor-
phological information in a manifold learning framework: Application to neonatal
MRI. In: Jiang, T., Navab, N., Pluim, J.P., Viergever, M.A. (eds.) MICCAI 2010.
LNCS, vol. 6363, pp. 1–8. Springer, Heidelberg (2010)

3. Aubert-Broche, B., Collins, D., Evans, A.: A new improved version of the realistic
digital brain phantom. Neuro Image 32(1), 138–145 (2006)

4. Beg, F., Miller, M., Trouve, A., Younes, L.: Computing large deformation metric
mappings via geodesic flows of diffeomorphisms. Int. J. Comp. Vis. 61(2) (2005)

5. Chen, T., Rangarajan, A., Eisenschenk, S.J., Vemuri, B.C.: Construction of neu-
roanatomical shape complex atlas from 3D brain MRI. In: Jiang, T., Navab, N.,
Pluim, J.P., Viergever, M.A. (eds.) MICCAI 2010. LNCS, vol. 6363, pp. 65–72.
Springer, Heidelberg (2010)

6. Depa, M., Sabuncu, M.R., Holmvang, G., Nezafat, R., Schmidt, E.J., Golland, P.:
Robust atlas-based segmentation of highly variable anatomy: Left atrium segmen-
tation. In: Camara, O. (ed.) MICCAI Workshop Stat. Atlases Comp. Models Heart,
pp. 1–8 (2010)

7. Gerber, S., Tasdizen, T., Fletcher, P., Joshi, S., Whitaker, R.: ADNI: Manifold
modeling for brain population analysis. Med. Imag. Analysis 14(5), 643–653 (2010)

8. Grauman, K., Darrell, T.: The pyramid match kernel: Efficient learning with sets
of image features. J. Mach. Learn. Res. 2, 725–760 (2007)

9. Ha, L., Kruger, J., Fletcher, T., Joshi, S., Silva, C.T.: Fast parallel unbiased dif-
feomorphic atlas construction on multi-graphics processing units. In: Euro. Symp.
Parallel Graph. Vis., pp. 65–72 (2009)

10. Lazebnik, S., Schmid, C., Ponce, J.: Beyond bags of features: Spatial pyramid
matching for recognizing natural scene categories. In: IEEE Conf. Computer Vision
and Pattern Recognition, vol. 2, pp. 2169–2178 (2006)

11. Lotjonen, J., Wolz, R., Koikkalainen, J., Thurfjell, L., Waldemar, G., Soininen, H.,
Rueckert, D.: ADNI: Fast and robust multi-atlas segmentation of brain magnetic
resonance images. NeuroImage 49(3), 2352–2365 (2010)

12. Shen, D., Davatzikos, C.: HAMMER: Hierarchical attribute matching mechanism
for elastic registration. IEEE Trans. Med. Imag. 21(11), 1421–1439 (2002)

13. Wolz, R., Aljabar, P., Hajnal, J.V., Rueckert, D.: Manifold learning for biomarker
discovery in MR imaging. In: Wang, F., Yan, P., Suzuki, K., Shen, D. (eds.) Conf.
Mach. Learn. Med. Imag., pp. 116–123 (2010)



3D Active Shape Model Segmentation with

Nonlinear Shape Priors

Matthias Kirschner, Meike Becker, and Stefan Wesarg

Graphisch-Interaktive Systeme, Technische Universität Darmstadt,
Fraunhoferstraße 5, 64283 Darmstadt, Germany

{matthias.kirschner,meike.becker,stefan.wesarg}@gris.tu-darmstadt.de

Abstract. The Active Shape Model (ASM) is a segmentation algorithm
which uses a Statistical Shape Model (SSM) to constrain segmentations
to ‘plausible’ shapes. This makes it possible to robustly segment organs
with low contrast to adjacent structures. The standard SSM assumes
that shapes are Gaussian distributed, which implies that unseen shapes
can be expressed by linear combinations of the training shapes. Although
this assumption does not always hold true, and several nonlinear SSMs
have been proposed in the literature, virtually all applications in med-
ical imaging use the linear SSM. In this work, we investigate 3D ASM
segmentation with a nonlinear SSM based on Kernel PCA. We show
that a recently published energy minimization approach for constraining
shapes with a linear shape model extends to the nonlinear case, and over-
comes shortcomings of previously published approaches. Our approach
for nonlinear ASM segmentation is applied to vertebra segmentation and
evaluated against the linear model.

1 Introduction

Accurate segmentation of organs in medical images is challenging, because ad-
jacent structures are often mapped to the same range of intensity values, which
makes it hard to detect their boundaries. In these cases, prior knowledge of
the shape of an organ can be used to avoid that the segmentation leaks into
the neighboring structures. One of the most popular segmentation algorithms
with a shape prior is the Active Shape Model (ASM) [1], which uses a linear,
landmark-based Statistical Shape Model (SSM).

The linear SSM is learned by a Principal Component Analysis (PCA) of the
training shapes, which implies the assumption that the shapes are Gaussian
distributed. While this model has been successfully applied to the segmentation
of various structures in medical imaging, there are cases in which the assumption
does not hold true. An example for such a case is shown in Figure 1 (left), which
shows a training data set consisting of 14 lumbar (L1-L3) and 9 thoracic (Th10-
Th12) vertebrae, projected to the first two principal components. One can clearly
see that each vertebra type (thoracic, lumbar) builds a cluster. The mean shape
of this training data set shows characteristics of both lumbar and thoracic shapes

G. Fichtinger, A. Martel, and T. Peters (Eds.): MICCAI 2011, Part II, LNCS 6892, pp. 492–499, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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Fig. 1. Left: A set of 14 lumbar vertebrae (green triangles) and nine thoracic ver-
tebrae (blue circles), projected to the first two principal components. The shading
encodes values of the log-likelihood function of the learned Gaussian. The brighter
the shading, the higher is the probability. The curves show isocontours of the func-
tion. Right: The mean shape, which shows characteristics of both lumbar and thoracic
vertebrae.

(Figure 1, right). While it is the most likely shape with respect to the linear SSM,
we would not expect a vertebra of this shape in the human body.

To describe such datasets more accurately, nonlinear, multimodal models are
required. Several nonlinear extensions of SSMs for ASM segmentation have been
proposed in the literature, for example based on Kernel Principal Component
Analysis (KPCA) [2,3] or Gaussian Mixture Models [4]. However, to the best
of our knowledge, these approaches have never been applied to segmentation in
3D, which typically suffers from the huge gap between the high dimensionality
of the shapes and the small number of training examples. In fact, Heimann and
Meinzer observe in their recent review [5] that nonlinear, landmark-based SSMs
have hardly attracted the attention of the community so far. This stands in
contrast to level set segmentation with shape priors, where nonlinear techniques
such as KPCA [6] or Parzen Density estimation [7] are becoming increasingly
popular for learning priors from signed distance functions.

In this paper, we take a first step towards bridging the gap between theoretical
models on one side and real world applications on the other. We summarize our
main contributions as follows:

1. We discuss methodological shortcomings of previously published approaches
for constraining shapes in nonlinear ASMs, especially in the case of high
dimensional training data sets with few training examples.

2. We present a unified formulation for constraining shapes in ASMs, which
contains linear shape models as special cases.

3. We present a particular nonlinear ASM based on KPCA (KPCA-ASM).
4. We apply the KPCA-ASM to the real world problem of segmenting vertebrae

in 3D CT scans. Our evaluation provides insights into the properties of the
nonlinear ASM, and shows that it can increase the segmentation accuracy
in certain applications.
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2 Statistical Shape Models and the Active Shape Model

In this section, we briefly review Statistical Shape Models (SSM) and the seg-
mentation algorithm Active Shape Model (ASM), which were both introduced
by Cootes et al. [1]. In SSMs, each of the S training shapes is represented by
N corresponding landmarks x

(j)
i = (xij , yij , zij), which are concatenated to the

shape vector xi = (xi1, yi1, zi1, . . . , xiN , yiN , ziN ) ∈ IR3N . Procrustes alignment
is used to compute a common coordinate system for the shapes. The linear SSM
uses PCA to capture the statistics of the training shapes. One computes the
eigenvectors p1, . . . ,p3N and corresponding eigenvalues λ1 ≥ . . . ≥ λ3N of the
covariance matrix C = 1

S−1

∑S
i=1(xi − x̄)(xi − x̄)T of the shapes. We discard

eigenvectors with index i > t, were t = min{t′|∑t′

i=1 λi/
∑3N

i=1 λi > 0.98}. The
3N × t-matrix of retained eigenvectors is denoted by P = (p1| . . . |pt), and the
subspace of IR3N spanned by these eigenvectors is denoted by U .

The ASM is an iterative algorithm, which is initialized by placing the mean
shape into the image. Each iteration consists of two steps: Landmarks are dis-
placed to optimal image features in their vicinity, which have been selected by
an appearance model. Then the deformed shape is constrained with the SSM.

3 Shape Constraints for Linear and Nonlinear ASMs

In the original ASM algorithm, a shape x′ is constrained to a plausible shape x
(a) by projecting x′ to U using the formula

b = P T (x′ − x̄), (1)

(b) by imposing bounds on the subspace vector b, e. g. by enforcing that bi ∈
[−3

√
λi, 3

√
λi], and (c) by generating the plausible shape by x = x̄ + Pb. This

approach cannot be trivially extended to nonlinear shape models. For example,
Romdhani et al. [2] place upper bounds on the KPCA components like in the
linear model, but it has been shown that this approach is not valid in general [3].

Instead, Cootes et al. [4] and Twining and Taylor [3] propose to constrain
shapes with nonlinear shape models by minimizing an energy Eshape(x) until
Eshape(x) ≤ θ, where θ defines a plausibility threshold. In contrast to the least
squares projection in Eq. 1, this approach does not guarantee a result which is
close to the deformed shape x′. Furthermore, it restricts the space of allowed
shapes to those shapes which are close to the isocontour Eshape(x) = θ, and
it remains open how to choose θ. Finally, the ‘proximity to data’ measure for
KPCA [3] does not penalize the possible loss of information that may occur when
projecting to a feature space. This loss can be considerably high, especially in
case of high dimensional shapes and small training data sets.

A unified approach for constraining shapes: The first two of the afore-
mentioned problems can be solved by adding an image energy Eimage(x) that
penalizes deviations from the boundary detected by the appearance model. A
deformed shape x′ is constrained by minimizing E(x) = α·Eimage(x)+Eshape(x)
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Fig. 2. Visualization of two KPCA-based shape energies (Left: σ3; Right: σ9). In con-
trast to the Gaussian energy (Figure 1), these energies are multimodal.

until a (possibly local) minimum is reached. The parameter α balances image
and shape energy, and must be chosen appropriately. In order to account for
the loss of information that occurs when projecting to a feature space, we use
the general approach of Moghaddam and Pentland [8]: The shape energy is split
into two terms, namely the distance in feature space (DIFS) and the distance
from feature space (DFFS). The DIFS computes the probability in feature space,
whereas the DFFS penalizes the costs of the projection to the feature space. In
the linear case, the feature space is U , and the energy becomes

Eshape−pca(x) =
1
2

t∑
i=1

b2
i

λi
+

1
2ρ

‖r‖2, (2)

where ‖r‖2 = ‖x − x̄‖2 − ‖b‖2 is the costs of the projection of x to U , and
ρ =

∑3N
i=t+1

λi

3N−t . We have recently shown [9] that an ASM based on this energy
has better segmentation accuracy than the standard approach which uses Eq. 1
as it is less restrictive: By using the DFFS, shapes can leave the subspace U . It
permits a limited amount of variability that has not been previously observed
in the training data, such that the model adapts better to unseen shapes.

KPCA shape energy: KPCA [10] is a nonlinear extension of PCA: The basic
principle is to map the input data to a feature space F and subsequently do a lin-
ear PCA of the mapped data. The mapping is implicitly defined by a kernel func-
tion k(x,y). We use a Gaussian kernel function k(x,y) = exp− ‖x−y‖2

2σ2 , where
the parameter σ controls the width of the kernel. The centered kernel is defined
by k̃(x,y) = k(x,y) − 1

S

∑S
i=1(k(x,xi) + k(y,xi)) + 1

S2

∑S
i=1

∑S
j=1 k(xi,xj).

In order to do KPCA of the training shapes, we first compute the Gram
matrix K ∈ IRS×S with the entries Kij = k̃(xi,xj), and then determine the
eigendecomposition of K, which yields its eigenvectors a1, . . . , aS and eigenvalues
ν̃1, . . . , ν̃S . We introduce a regularization parameter ε̃ = 0.001 and discard all
eigenvectors with ν̃i ≤ ε̃. The remaining r eigenvectors are re-normalized such
that ν̃

− 1
2

i aT
i a = 1. Moreover, we define νi = 1

S−1 ν̃i and ε = 1
S−1 ε̃.
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The r KPCA components of x can be computed by βi =
∑S

j=1 aij k̃(xi,x).
The shape energy for a KPCA shape model is defined by

Eshape−kpca(x) =
t∑

i=1

β2
i

νi
+

1
ε
(k̃(x,x) −

t∑
i=1

β2
i ). (3)

Note the similarity between Eq. 3 and Eq. 2. In fact, the above definitions are
designed so that in the case of ε = ρ and klin(x,y) = xT y, both energies are
identical up to a constant factor of 2.

We want to mention that Eq. 3 has been previously used by Cremers et al. [11]
in a Mumford-Shah based level set segmentation system. However, to the best
of our knowledge, it has never been used in an ASM. Instead of evolving a curve,
we find a local minimum of the combined image and shape energy in each ASM
iteration. We use the L-BFGS method [12] to minimize the energy, which is
designed for high-dimensional problems.

Figure 2 visualizes two instances of the function Eshape−kpca(x), learned from
the vertebral shape data set. We used here the Gaussian kernel with widths σ3

and σ9, where σK = K · 1
S

∑S
i=1 minj∈{1,...,S} ‖xi − xj‖, a choice inspired by

Cremers et al. [11]. In both cases, the KPCA shape energies are multimodal,
in contrast to the linear shape energy (Figure 1), which has a single peak in a
region which is not occupied by any training examples.

Enforcing smoothness: A high image energy and a high ρ or ε permits larger
deviations from the training shapes. While additional flexibility of the SSM is
certainly desired, because it allows for more accurate segmentations, no force
controls the nature of this deformation. This means that individual landmarks
can be drawn towards outliers of the appearance model, and the segmenta-
tions become jagged. We therefore explicitly enforce smooth segmentations by
smoothing the shape after energy minimization with a Laplacian filter: Let q be
the position of a landmark, and let m be the mean of its neighbors. We move
q to m if ‖q − m‖ > 1.2 · δq. For each landmark, the constant δq is set to the
maximal distance between q and m in the training data. In each ASM iteration,
we iterate five times through all landmarks in order to smooth the shape.

4 Appearance Model and Image Energy

Klinder et al. [13] achieve good segmentation results for vertebrae with an ap-
pearance model that considers the image intensity, gradient magnitude and gra-
dient direction. While their model uses various ad-hoc parameters, we combine
these features in a more principled, purely statistically motivated way. Each im-
age feature vector sampled at a boundary voxel v consists of a five dimensional
feature vector f = (I(v), ‖G(v)‖, G1(v), G2(v), G3(v)). Here, I(v) is the image
intensity at voxel v, G(v) = (G1(v), G2(v), G3(v)) is the gradient and ‖G(v)‖ its
magnitude. In our implementation, G(v) is computed in normal direction n of
the current landmark. We compute an orthonormal basis {n,n′,n′′}, and use
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these directions to compute G(v) with finite differences, instead of using the
image axes. We model the distribution of f by the product of two independent
probability distributions: A Gaussian distribution over f1 = (I(v), ‖G(v)‖) with
mean μ and covariance matrix Σ, and a Fisher distribution [14] over f2 = G(v)
with mean η and concentration parameter κ. This motivates our fitness function
g(f) = − 1

2 (f1 − μT )Σ−1(f1 − μ) + κ · fT
2 η − κ, which is the log-likelihood of

the assumed distribution up to a constant term. We have g(f) ≤ 0 for all f .
The parameters Σ, μ, κ and η are learned from the training data. We define
the image energy by Eimage(x) =

∑N
j=1(1 − g(f (j)))−1‖x(j) − x′(j)‖2, where x′

is the deformed shape and f (j) the feature at landmark j.

5 Experiments

In our evaluation, we used seven CT scans of the abdomen from a publicly avail-
able database1. We manually segmented the vertebrae in these scans, and used
the data from the first five scans as training data and the remaining as test
data. All in all, the training data set consists of nine thoracic (Th10: 1; Th11: 3;
Th12: 5) and 14 lumbar (L1: 5; L2: 5; L3: 4) vertebrae. The test data set con-
sists of five thoracic (Th10: 1; Th11: 2; Th12: 2) and six lumbar (L1: 2; L2: 2;
L3: 2) vertebrae. In the experiments, we segmented the test data with three
different types of ASMs: The standard linear ASM, the linear ASM with energy
minimization [9], and the KPCA-ASM with different kernel widths. Dependent
on the chosen shape model, the shape energy returns different numerical values,
which made it necessary to balance α for each method individually in order to
achieve good segmentation results. This was done manually by trying different
values for α and bracketing the optimal choice. Initial pose parameters of the
SSM were determined manually for each test data set. The same manual ini-
tialization was used for each tested approach. Each ASM was executed for 50
iterations. We evaluated the segmentation quality with the measures Volumetric
Overlap Error (VOE), Average Surface Distance (ASD), and Hausdorff Distance
(HD).

6 Results

The quantitative results of our experiments are shown in Table 1. It can be seen
that the KPCA-ASMs outperform the linear ones. Compared to the standard
linear ASM, the VOE decreases by over 20 %, the ASD by more than 25 %.
Depending on σ, the HD decreases by up to 13 %. The increase of accuracy
is especially large for thoracic vertebrae, where the average HD decreases by
more than 20 % from 8.7 mm (standard ASM) to 6.8 mm (KPCA-ASM σ6). A
qualitative result for a thoracic vertebra is shown in Fig. 3. The standard ASM
required 13 seconds, and the KPCA-ASM between 40 and 65 seconds.

1 3D-IRCADb-01: http://www.ircad.fr/softwares/3Dircadb/3Dircadb1/
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Table 1. Segmentation results obtained with different ASM algorithms. The table
shows average results and standard deviations (SD).

VOE [%] ASD [mm] HD [mm]

Manual Initialization 60.66 SD: 7.01 3.83 SD: 0.82 16.40 SD: 2.97

Linear ASM (standard) 22.33 SD: 6.55 0.83 SD: 0.33 7.99 SD: 3.41

Linear ASM (α = 2000) 20.38 SD: 7.62 0.73 SD: 0.38 7.27 SD: 3.64

KPCA-ASM (σ3, α = 1750) 17.40 SD: 6.66 0.61 SD: 0.32 7.95 SD: 3.52

KPCA-ASM (σ6, α = 100) 17.55 SD: 3.80 0.60 SD: 0.22 6.88 SD: 2.45

KPCA-ASM (σ9, α = 50) 17.45 SD: 4.14 0.60 SD: 0.22 6.95 SD: 2.72

Fig. 3. Comparison of segmentation results for a thoracic vertebra (Th11): The lin-
ear ASM cannot always separate ribs and vertebra (left). The KPCA-ASM has more
specific shape constraints, and separates vertebra and ribs well (right).

7 Discussion

In this paper, we presented a unified approach for constraining linear and nonlin-
ear shapes in ASMs. Based on this model, we devised a nonlinear KPCA-ASM,
which we used for segmenting vertebrae in CT scans. Our evaluation clearly
shows that a KPCA-ASM can increase the segmentation accuracy compared to
linear ASMs in applications where the training data has a nonlinear distribu-
tion. In our opinion, the reason for this is that the KPCA-ASM is more specific
than the linear ASM, and thus detects outliers of the appearance model more
effectively. While the nonlinearity of our training data is obvious, because it can
be separated into lumbar and thoracic vertebrae, the nonlinear structure of the
data may be more subtle in other cases. However, our nonlinear SSM was trained
in a completely unsupervised way, without prior knowledge about clusters. This
is why we expect that a KPCA-ASM will also perform well in other scenarios
with nonlinearly distributed training data.

Compared to the results recently reported by Klinder et al. [13], we achieve a
significantly better ASD for segmenting individual vertebrae, although it must
be mentioned that we have used manual initialization here. Note that Klinder
et al. first try to identify the vertebra (e. g. L1), and then segment it with mod-
els dedicated to this vertebra. Our quantitative results indicate that, given a
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reasonably well initialization, the KPCA-ASM is able to automatically deter-
mine the correct vertebra class during segmentation.

A drawback of the KPCA-ASM is that several parameters must be chosen,
such as the kernel width σ, the regularization parameter ε̃ and the image energy
force α. However, our evaluation shows that the effort for tuning pays off.

To the best of our knowledge, this is the first time that a nonlinear ASM
has been successfully applied to the segmentation of organs in tomographic 3D
scans. Given the positive evaluation results of our study, we expect that nonlinear
ASMs will play an important role in medical image segmentation in the future.
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Abstract. For segmenting complex structures like vertebrae, a priori
knowledge by means of statistical shape models (SSMs) is often incor-
porated. One of the main challenges using SSMs is the solution of the
correspondence problem. In this work we present a generic automated
approach for solving the correspondence problem for vertebrae. We de-
termine two closed loops on a reference shape and propagate them con-
sistently to the remaining shapes of the training set. Then every shape
is cut along these loops and parameterized to a rectangle. There, we op-
timize a novel combined energy to establish the correspondences and to
reduce the unavoidable area and angle distortion. Finally, we present an
adaptive resampling method to achieve a good shape representation. A
qualitative and quantitative evaluation shows that using our method we
can generate SSMs of higher quality than the ICP approach.

1 Introduction

Segmentation of vertebrae is necessary for several clinical applications such as the
treatment of severe herniated vertebral disks or the insertion of pedicle screws.
Segmenting vertebrae is a challenging task [12]. Besides local image artifacts or
noise, different vertebrae lie close together and are difficult to distinguish from
each other and from the adjacent rib cage. Therefore, a general approach is to
use a-priori information by means of statistical shape models (SSMs) to make
the segmentation more robust. An SSM contains information about the mean
of the training set and the possible variations from the mean. For a detailed
discussion of SSMs we refer to the review of Heimann et al. [10].

One of the main challenges using SSMs is to establish correspondences in
the training data set. Each training shape has to be represented by the same
number of 3D points (also called landmarks) and landmarks representing the
same anatomical feature should have the same index. A common way to solve
this problem is to parameterize every surface to a common base domain and
to establish the correspondences on this parameter space. Current work in this
context focuses on genus 0 objects such as liver or kidney [2,5,9,14]. Visually
spoken, the genus describes the number of holes of a surface. Only Lamecker
et al. [13] presented a method independent of the genus, where they employ
manually defined patches for each shape and parameterize every patch to a disk.
Using this approach, discontinuities may occur along the cuts.
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Fig. 1. Overview of our algorithm. Our contributions are printed in italics.

In this work we present an automated approach designed for closed surfaces
of genus 1 like vertebrae (see Figure 1). We do not rely on a simple Iterative-
Closest-Point (ICP) based approach [1] only, since this algorithm does not take
into account the triangle structure of the mesh. Hence, flipped triangles in the
aligned shapes may occur (see Figure 2).

Related work: Concerning the establishment of correspondences on the pa-
rameter space, approaches similar to ours are those of Brett and Taylor [2] and
Meier and Fisher [14]. Both work on a parameter space but do not reduce any
distortion. Another approach is the work of Davies et al. [5], which is based
on information theory. Here, the so-called Minimum Description Length (MDL)
function is minimized over the parameter space. We do not use this objective
function, since it is more costly than our approach.

A lot of research has been done in the area of mesh parameterization. For a
detailed overview we refer to the Siggraph Course Notes of Hormann et al. [11].
When mapping a 3D shape to a plane rectangle, distortion of angle and area is
unavoidable in most cases. Tewari et al. [17] presented an algorithm for meshing
genus-1 point clouds via parameterization. Since they do not sample on the
parameter space but reconstruct the shape by inverting the parameterization,
they do not have to consider distortion. Tailored to the parameterization of
genus-1 meshes is the work of Steiner and Fischer [16]. While they consider
angular distortion, no area distortion is taken into account. However, for a high-
quality resampling on the parameter space, it is crucial to minimize both angular
and area distortion [6,11]. Only few algorithms exist which minimize both kinds
of distortion simultaneously. We choose Degener et al.’s approach [6] since they
use a differentiable energy and can obtain a parameterization which is optimal
for uniform sampling.
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ICP Our Algorithm

Fig. 2. Comparison of vertebrae after correspondence establishment (with the same
number of triangles). Using ICP (left), triangle flips occur (red boxes), while our algo-
rithm prevents them (right).

Contributions: Our work has the following contributions:

1. We automatically construct a statistical shape model for vertebrae. To the
best of our knowledge, this is the first approach without any manual inter-
action apart from the simple ICP approach.

2. We present an algorithm for the consistent propagation of two reference loops
to the remaining training set.

3. We introduce a correspondence term based on point-to-point distances and
combine it with Degener’s energy [6] in order to establish both accurate
correspondences and a good reconstruction quality after uniform sampling.

4. We present a new algorithm for curvature adaptive resampling of the pa-
rameter space to further improve the shape representation.

2 Methods

The input of our algorithm is a set S = {si : i = 1, ..., k} of training surfaces,
the so-called shapes, extracted from expert segmented image data. Each shape
is approximated by a triangle mesh M = (P , T ), where P consists of the ap-
proximating points Pj , j = 1, ..., n and T contains the triangles describing the
connectivity of the points. For a given index j of a node we write Pj for the 3D
world space coordinates and pj for the 2D parameter space coordinates. In the
following we describe how to establish the correspondences for this training set.

Reference Mesh: We select a randomly chosen reference shape sRef . From
topology we know that we have to cut a surface of genus 1 along two cut loops
in order to make it homeomorphic to a rectangle in the plane. For an introduction
to topology we refer to the book of Munkres [15]. Let GRef = (VRef ,KRef) be
the corresponding graph to sRef with vertices VRef and edges KRef . On this
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graph, we determine the shortest set of loops with a common basepoint using
the automatic algorithm of Erickson and Whittlesey [7]. We do this for every
point of the triangle mesh and choose the shortest set of loops over all basepoints.
Here, we use the Euclidean distance to weight the edges. The found loops span
the fundamental group [15] of the vertebra given the basepoint bRef .

After the two cut loops have been found on the reference mesh, we parame-
terize it to a rectangle using Tutte’s graph embedding method [18] with uniform
weights. For mapping the boundary, we map each loop to an edge of the rectan-
gle and create a copy which we map to the opposite edge (see Figure 1). In doing
so, opposite edges are identified, so that the corresponding quotient space [15]
of the rectangle is homeomorphic to a torus.

The distortion of angle and area on the parameter space leads to a bad shape
representation when sampling uniformly on the parameter space. Degener et
al. [6] minimize in every node an energy which reduces both angle and area
distortion. It is defined as EDeg

j =
∑

T∈1-ring(j) Eangle(T )Earea(T ) for every node
j = 1, ..., n, where the set 1-ring(j) contains all triangles T such that j ∈ T ,

Eangle(T ) =
a2 · cotα + b2 · cotβ + c2 · cot γ

2 area(T )
and (1)

Earea(T ) =
area(T3D)
area(T )

+
area(T )

area(T3D)
. (2)

The variables a, b and c represent the edge lengths of the triangle T in the
parameter space and α, β and γ describe the opposite interior angles of the
corresponding triangle T3D in the world space. We use this differentiable energy
to reduce the area and angle distortion on the parameter space. We additionally
reduce the distortion at the boundary by employing a free-boundary optimiza-
tion that allows the boundary to move. Points leaving the rectangle on one side,
are inserted again on the opposite, identified side.

Remaining training set: Since we want to cut approximately along the same
anatomical paths for each training shape, i. e. find consistent loops, we propagate
the two reference loops to the remaining training shapes as follows: We first
align every remaining training shape si, i = 2, ..., k, to the reference mesh using
the Iterative-Closest-Point (ICP) method, integrating normals in the similarity
criterion. We then propagate the reference basepoint bRef by choosing the nearest
neighbor on si. Again, we apply Erickson and Whittlesey’s algorithm to the
propagated basepoint bi, but we introduce a new cost function for the edges
based on the distance to the reference loops. Let LRef contain the points of
the two reference loops. Then the cost function ci : Ki −→ R+ for the graph
Gi = (Vi,Ki) of the shape si is defined as follows:

ci(j1, j2) = 0.5[ min
ζ∈LRef

(||P i
j1 − PRef

ζ ||) + min
ξ∈LRef

(||P i
j2 − PRef

ξ ||)]. (3)

In this way we ensure that the propagated loop Li is close to the reference
loop LRef . Furthermore, Erickson and Whittlesey’s algorithm guarantees that
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we obtain a shape homeomorphic to a rectangle by cutting along the propagated
loops. Hence, the propagation of the loops is assured to be successful.

Subsequently, the current shape si is parameterized in the same way as the
reference mesh but with the difference that we also establish correspondences:
Remember that every shape si is aligned to the reference mesh via ICP. This
global alignment for establishing correspondences can lead to flipped triangles as
the ICP algorithm ignores the triangulation. Therefore, we minimize an energy
over the parameter space. This energy is defined as Ej = ECor

j + λEDeg
j , where

ECor
j describes the correspondence term, EDeg

j is responsible for reducing the
distortion and λ ∈ R

+
0 is a free parameter which has to be chosen appropriately.

Let N q
ICP(j) contain the indices of the q nearest neighbors (in our case q = 8) on

the reference shape of the node j on the current shape si. For the correspondence
term we use a soft-nearest neighbor approach and define our energy as

ECor
j =

∑
k∈Nq

ICP(j)

wjk||pi
j − pRef

k ||, (4)

where the weights wjk = exp(−||P i
j − PRef

k ||) describe the distance between the
point j on si and the point k on sRef in the 3D world space. To achieve a good
shape representation, we add to this correspondence term the distortion energy
EDeg

j which we already used for sRef . Like Degener et al. [6], we minimize the
combined energy Ej for j = 1, ..., n using the Polak Ribière method. Triangle
flips are avoided by restricting every node to the kernel of its 1-ring.

In this way we parameterize every shape consistently to the parameter space,
where we establish correspondences and reduce the resulting distortion.

Adaptive Resampling: Once the parameterizations are in correspondence,
we can define a common sampling grid in order to reconstruct corresponding
landmarks for each shape from its parameterization. During reconstruction, a
compromise between two conflicting goals must be established: The more land-
marks we use, the greater becomes the gap between the number of training
shapes and their dimension. Conversely, we need enough landmarks to obtain an
accurate model of the shape which contains every relevant feature. Obtaining a
sparse, yet accurate description of the vertebral shape is particularly challeng-
ing. While the vertebral body has a relatively simple geometry, the vertebral
processes are thin regions with high curvature. Therefore, it is reasonable to
use a curvature adaptive strategy for landmark sampling. Adaptive sampling
schemes for SSM construction have been proposed by Heimann et al. [9] and
Cates et al. [3]. Heimann et al. use adaptive sampling exclusively to compen-
sate for area distortion in the parameterizations. The particle system method of
Cates et al. adaptively oversamples features with high curvature, but does not
inherently produce a consistent triangulation for all shapes.

We first construct a dense, uniform sampling grid that is used to sample the
parameter space. The large number of sampling points and the low distortion of
the parameter spaces ensure that all details of the input shapes are preserved.
We average all densely reconstructed shapes to a mean mesh M, and use a
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state-of-the-art remeshing algorithm [8] in order to obtain a sparse, curvature
adaptive representation MAdap of M. Because the initial, uniform sampling grid
defines a parameterization of M, and all points of MAdap lie on the surface of
M, we can compute the parameter space coordinates of the points of MAdap by
simple linear interpolation. These parameter space coordinates define the final,
adaptive sampling grid. It is used to sample sparse landmark representations of
all input shapes, from which we compute the SSM.

3 Experiments and Results

For our experiments, we used a training set of 14 manually segmented lum-
bar vertebrae (L1–L3) from CT scans of five different patients. We established
correspondences for this training set with our algorithm using different λ. For
comparison, we also used the ICP algorithm including normals in the similarity
criterion as done by Brett and Taylor [2]. Then we constructed the corresponding
SSMs using the standard approach by Cootes et al. [4]. The different λ for our
algorithm indicate how much weight we give relatively to the Degener term for
the different SSMs. As the Degener term is numerically much higher than the
correspondence term, we note that the factor λ does not reveal anything about
the absolute ratio of the two energies.

In Figure 3 we show that the local artifacts caused by ICP can be avoided
with our algorithm, which leads to SSMs with higher quality. Furthermore, we
evaluated the SSMs using the measures of generalization and specificity as pro-
posed by Davies et al. [5] (see Figure 4). For calculating those measures, we
sampled 1000 normally distributed model instances and compared them to the

(a) Mode 1 of SSM constructed via
ICP using normals

(b) Mode 1 of SSM constructed using
our algorithm with λ = 0.00025

Fig. 3. Comparison of SSMs. The first mode of the respective SSM is shown for 2σ (first
row) and −2σ (second row), where σ describes the standard deviation. Local artifacts
occur in the SSM constructed via ICP using normals. These artifacts are eliminated
with our algorithm, which leads to an SSM of higher quality.



506 M. Becker et al.

0.15

0.16

0.17

0.18

0.19

0.2

0.21

0.22

0.23

0.24

1 2 3 4 5 6 7 8 9 10

G
en

er
al

iz
at

io
n 

(H
au

sd
or

ff)

Number of modes

ICP
Lambda 0.001

Lambda 0.00075
Lambda 0.00025

0.18

0.19

0.2

0.21

0.22

0.23

0.24

0.25

1 2 3 4 5 6 7 8 9 10

S
pe

ci
fic

ity
 (H

au
sd

or
ff)

Number of modes

ICP
Lambda 0.001

Lambda 0.00075
Lambda 0.00025

Fig. 4. Evaluation of SSMs using the generalization and specificity measure [5], vertical
bars indicating the standard error of the mean. The x-axis gives the number of modes
used in the experiment. The generalization values (left) are very similar, while our
algorithm has better specificity values (right) from mode 5 on.

training set using the Hausdorff metric [15]. We did not use the compactness
measure since the ICP algorithm may lead to a loss of detail, but loss of detail
leads to a better compactness. Hence, we cannot get reliable information about
the quality of the SSM using the compactness measure.

We observe that from mode 5 on the specificity measure of our algorithm is
better than that of the ICP, while for the generalization, results lie too close
together to determine any rank order. To be more specific, all values of our
algorithm lie within the interval of the standard error of the ICP.

4 Discussion

We presented an approach for automatically solving the correspondence problem
for vertebral shapes. To the best of our knowledge it is the first automated
approach to construct SSMs for vertebrae aside from the simple ICP approach.
We ensure that for every shape of the training set we cut approximately along
the same anatomical paths. When every shape is parameterized to the rectangle,
we optimize the correspondence by minimizing a novel combined energy function
based on point-to-point distances which additionally penalizes distortion.

For a good reconstruction of the shape, we developed an enhanced method for
adaptive resampling which is independent of the underlying parameter space. In
contrast to the method of Heimann et al. [9], we do not need to use different maps
to sample different regions of the parameter space, even if the parameter space
is the unit sphere. The remeshing algorithm does not only distribute landmarks
adaptively according to curvature, but also favors equiangular triangles. Thus,
it implicitly compensates for small distortion in the parameterizations.

The benefit of our approach over ICP is that it is designed to avoid triangle
flips and thus ensures a topological consistent shape model. Experiments show
that our SSMs generalize as well as the ICP model, while their specificity is even
better. Another advantage of our method is its generality in the sense that it can
be used for any surface of genus 1 and furthermore, any (differentiable) objective
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function can be used for the correspondence establishment on the parameter
space. Hence, it would be interesting to test other correspondence energies such
as the MDL function [5] to see if the correspondences can be further improved.
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Abstract. Low-grade gliomas (WHO grade II) are diffusively infiltra-
tive brain tumors arising from glial cells. Spatial classification that is
usually based on cerebral lobes lacks accuracy and is far from being able
to provide some pattern or statistical interpretation of their appearance.
In this paper, we propose a novel approach to understand and infer
position of low-grade gliomas using a graphical model. The problem is
formulated as a graph topology optimization problem. Graph nodes cor-
respond to extracted tumors and graph connections to the spatial and
content dependencies among them. The task of spatial position mapping
is then expressed as an unsupervised clustering problem, where cluster
centers correspond to centers with position appearance prior, and cluster
samples to nodes with strong statistical dependencies on their position
with respect to the cluster center. Promising results using leave-one-out
cross-validation outperform conventional dimensionality reduction meth-
ods and seem to coincide with conclusions drawn in physiological studies
regarding the expected tumor spatial distributions and interactions.

1 Introduction

Low-grade gliomas (WHO grade II) are diffusively infiltrative brain tumors that
are generally revealed by seizures in young patients with a normal social and
professional life [1]. Although surgery of low-grade gliomas has been a contro-
versial subject for decades, it is now considered as the best therapeutic option
as reported in the recent European Guidelines [2]. However, surgery can cause
functional deficit, especially if the tumors are located near or within a functional
area. For that matter, the tumor’s location in the brain is of great importance.

Inferring spatial dependencies regarding tumor appearance in the brain is a
research direction that has gained little attention [3,4]. The most natural ap-
proach to such a problem is through statistical modeling with respect to the
position of low-grade gliomas. This could be achieved using dimensionality re-
duction techniques like principal [5] or independent [6] component analysis. This
� This work was supported by ANRT (grant 147/2010), Intrasense and the European

Research Council Starting Grant Diocles (ERC-STG-259112).
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can be easily achieved at the voxel level, but a huge number of observations is
needed and the linearity assumption regarding the correlation between the spa-
tial positions of tumors is imposed. Non-linear methods embed the observation
space into a low-dimensional space and then seek for correlations in this space.
Examples refer to isomap [7] or laplacian graphs [8]. Within the considered clin-
ical setting, neither the expected rank of the reduced space is known nor the
number of samples is sufficient to approximate the manifold.

Network connectivity analysis is an alternative to the above mentioned meth-
ods, a quite popular idea in functional imaging when targeting task-specific brain
understanding through mutual activations of brain regions [9]. In such a context,
the brain is parceled according to a certain criteria and considered to be a fully
connected network, each node is associated with a multi-dimensional variable
explaining the activations as a function of time/task. The aim is then to group
parcels with important statistical correlations in terms of behavior [10].

In this paper, we are inspired from these methods but we amend them to
deal with a static setting. While the brain parcels are known in functional imag-
ing, in our case these parcels do depend on the observations and correspond to
manually annotated low-grade gliomas. Our method first registers all samples to
the same reference pose while explicitly taking into account the tumor position
during the registration. The registered data are considered to define a statistical
measure of coherence between different tumors based on their spatial position as
well as their geometric form. This measure is used to determine a graph where
messages are exchanged between nodes. The strength of the message depends
on the statistical measure of coherence between tumors, while the overall capac-
ity of a node depends on the total volume of messages being passed to it. The
problem of understanding spatial dependencies between tumors appearance is
then casted as an unsupervised clustering problem[11] where both the number
of clusters, the cluster centers and the nodes assignments are to be determined.

The reminder of this paper is organized as follows: in section 2 we detail the
preprocessing step and introduce the spatial position representation network.
The optimization of the network is discussed in section 3 while experimental
validation and comparisons with linear methods are presented in section 4. Dis-
cussion concludes the paper.

2 Network Representation of Low-Grade Gliomas Spatial
Dependencies

Our data set consisted of 95 3D MRI images of 95 different patients with low-
grade gliomas: 90 FLAIR T2 weighted, and 5 T2 weighted. We had a majority of
male patients, age between 21 and 65 and tumor size between 3.5 and 123 cm3.
The image size ranged from 256x256x24 to 512x512x33, and the pixel resolution
from 0.4x0.4 to 0.9x0.9 mm2 in the (x,y) plane and 5.3 to 6.4 mm in the z plane.
Each image had been manually annotated by experts to indicate the position of
the tumor. The atlas for registration consisted of a high resolution FLAIR image
(size 256x256x24, resolution 0.9x0.9x5.45 mm3) of a tumor free brain.
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Let us consider without loss of generality n acquisitions Vi() of brain volumes
as well as the corresponding segmentations Si() binary maps indicating whether
a pixel belongs or not to the tumor. Both, intensity volumes and binary maps
are rigidly registered to the same pose. The first step towards spatial position
mapping of low-grade gliomas consists in removing the brain local anatomical
variability through deformable registration. This is achieved using the discrete
optimization method presented in [12] that is amended to deal with the lack of
visual correspondences in the brain tumor areas by not taking into account tumor
voxels during registration. Using the optimal deformable registration parameters,
let us consider now S(x) = S(T (x)) being the deformed segmentation map.

We then measure the proximity between two tumors by adopting as suggested
in [13] the Mahalanobis distance. Let us consider the spatial coordinates of all
pixels belonging to tumors Si and Sj . Let x̄i and x̄j be the center of mass of Si

and Sj . The Mahalanobis distance between the tumors is computed as:

dM (Si, Sj) =
√

(x̄i − x̄j)TΣ−1(x̄i − x̄j) Σ =
(ni − 1)Σi + (nj − 1)Σj

ni + nj − 2
(1)

where Σi and Σj are the covariance matrices of pixels coordinates of Si and
Si while ni and nj are the number of pixels in tumors Si and Sj respectively.
The complete network corresponding to our data-set is shown in [Fig. (1)] where
the nodes correspond to the tumors and the strength and color of the edges
correspond to the proximity of the observed tumors.

3 Network Optimization

Let us consider the set of distances d(Si, Sj) between all pairs of low-grade
gliomas. Let us assume that the observations can be expressed through a compact
sub-graph of k central nodes. Both the number and the position of the central
nodes are to be determined while the remaining observations should be expressed
from one of these nodes. In order to determine the quality of a central node, we
adopt two measurements, a global and a local one. The global measurement
assumes that a central node should have significant overlap with the remaining
measurements. This can be quantified by the overall distance of the node from the
rest of the data. The assignment of an observation to one of the central nodes
(local measurement) should be based on their distance. The optimal network
connectivity should minimize the local and the global criteria both in terms of
central node selection and tumor assignments. This is an unsupervised clustering
problem,

min
k

min
c1,...,ck

min
l1,...,ln

⎛⎝ n∑
i=1

d(ci, Sj) + α

k∑
j=1

δ(ci − lj)d(Slj , Sj)

⎞⎠ (2)

where lj is the assignment of observation j and α is a constant coefficient bal-
ancing the contributions of the two terms. To recover the lowest potential of the
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(a) (b) (c)

Fig. 1. Network representation of the data-set. Arcs corresponding to a distance greater
than 5 are not displayed.

above functional, we will rely on a recently proposed clustering algorithm [11],
which does not require any initialization and provides near-optimal clustering
results both in terms of number of central nodes as well as in terms of remaining
nodes assignments. The optimization results will heavily depend on the relative
importance given between the two terms (alpha value). In order to determine
the optimal number of central nodes, one should consider the quality of clusters
being associated with them. We consider the following criteria to determine the
compactness of clusters and the quality of the overall representation:

Dunn Index [14]: For a partition of K clusters, it is computed as

D = min
i∈[1:K]

{ min
j∈[1:K],j 
=i

{d(ci, cj)
dmax

}} (3)

where dmax corresponds to the maximal distance of a sample to the center of
the cluster it belongs to, and d(ci, cj) is the distance between the centers ci and
cj of clusters i and j. Intuitively, a good clustering will be characterized by a
high Dunn index (see [Fig. (2b)]): compact and well separated clusters yield a
low dmax and a high distance inter clusters.

Davies-Bouldin Index [15]: this index also identifies compact and well sep-
arated clusters. It computes the maximum similarity between clusters:

DB =
1
K

K∑
i=1

max
j∈[1:K],j 
=i

σi + σj

d(ci, cj)
(4)

where σi is the average distance of all points in cluster Ci to its center, K
is the number of clusters and d(ci, cj) is the distance between the centers of
clusters i and j. A small DB value indicates little similarities between clusters
and therefore, a better clustering ([Fig. (2c)]).

Global Silhouette Index [16]: For a given cluster Ck = (S1, ...Sn), the sil-
houette index assigns to each of its members a quality measure s(Si) (i=1,...,n)
that is a confidence indicator on the membership of Si in Ck. It is defined as

GS =
1
K

K∑
j=1

1
nj

nj∑
i=1

s(Si) with s(Si) =
b(Si) − a(Si))

max(a(Si), b(Si))
(5)
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Fig. 2. Values of the 3 criteria in function of alpha (a,b,c,d) and of the number of
clusters (e). (a) Global Silhouette index, (b) Dunn index, (c) Davies-Bouldin index,
(d,e) Combination of the three indexes.

where nj is the number of elements in cluster Cj , a(Si) is the average dis-
tance between Si and all of the remaining elements in Ck, and b(Si) is the
minimum average distance between Si and all of the elements clustered in
Cj , (j = 1, ...,K; j �= k). s(Si) takes values between -1 and 1. A value close
to 1 indicates that Si has been assigned to the appropriate cluster and a value
close to -1 infers that Si has been misclassified. A value close to zero suggests
that Si lies equally far away from 2 clusters. Since the largest silhouette in-
dex is indicative of the best clustering, we select the clustering that yields the
maximum global silhouette index ([Fig. (2a)].

We have considered increasing relative importance between the global and the
local term as shown in [Fig. (2)]. All the considered criteria reached their best
value for the same 15 nodes graph-structure. The optimal network connectivity
is shown in [Fig. (3)]. One can observe a notion of symmetry between the left
and the right hemisphere. The distribution of the individual distance values
before clustering is shown in [Fig. (4a)] while [Fig. ((4b)], and ((4c)] show the
distribution per cluster of distances and individual silhouette indexes.

4 Experimental Validation

In order to evaluate the performance of the method we have considered a leave-
one-out cross validation strategy. We have used n−1 measurements to learn the
topology of the graph and the remaining observation to predict its position in
the network. We have performed this test n = 95 times.

We denote 3 different results that satisfy the 3 optimality criteria. In most
cases, the number of central nodes has reached the same value as for the whole
data-set, that is K = 15. In one case, the optimal number of clusters was 16.
The removed sample is a large tumor (about 110 cm3) that is the center of an
important cluster (12 nodes) which splits in 2 without its center. The removal
of 7 samples yielded 14 clusters networks. Those samples were assigned to small
clusters (2 or 3 nodes) that were merged with a neighboring cluster when the
sample is removed.

We have considered 2 criteria to determine the ability of the retained centers
to express their respective populations. First the cluster members should be
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(a) (b) (c)

Fig. 3. 15 nodes network corresponding to the optimal criteria, connections corre-
sponding to distances bigger than 4 are not displayed

overlapping with the center and their cluster’s center ck should be the closest, i.e.
d(Si, ck) = minj∈[1:K] d(Si, cj) and d(Si, ck) ≤ 2. Secondly, we use the individual
silhouette index s(Si) to evaluate the membership of a sample to a cluster. If the
value is high, there is no doubt about the membership of the sample. If it is close
to 0, we compare its value to the average silhouette index of the corresponding
cluster : s(Si) ≥ 0.3 or s(Si) ≥ 1

nk

∑nk

j=1,j 
=i s(Sj)−std(sk), where std(sk) is the
standard deviation of individual silhouette index values for cluster Ck, and nk

the number of elements in Ck. Such a configuration was able to properly assign
80% of the whole training example.

In order to evaluate the network prediction strength, we have considered
the cluster that optimally represents the removed observation, and measured
the quality of the cluster once this new sample has been added to it. Ideally, the
quality of the clusters should remain the same if the network is able to express
the variability of new samples. This was the case in 73% of the 95 cases. Failure
can occur if the new sample is an outlier, equally close to 2 existing clusters or
was the center of a cluster. We also estimate the effect of the removal of a sample
on the clustered graph’s structure by evaluating the quality of correspondences
between the clustered graph obtained from the whole data-set G0, and the 15
nodes graphs obtained from cross validation experiments Gk, (k = 1, .., 87). To
this end, we seek a matching between the nodes of the graphs by using the al-
gorithm proposed by [17]. We find complete match in 83% of the cases and only
one node didn’t correspond for the remaining graphs.

Finally, comparison with principal component analysis (PCA) was considered.
PCA computes a new orthogonal coordinates system that regroups the maximum
variance in a minimum vectors. It is a simple way to find correlation between
data: the fewer vectors necessary to represent the data, the bigger the correla-
tion. We performed PCA on the data-set at the voxel level. Each [256,256,24]
binary segmentation map was converted to a [256x256x24,1] vector, so that each
voxel was a variable and each image was a sample. While our experiments using
network representation suggest that 15 clusters represent 80% of the data, 15
PCA vectors regroup only 65% of it. Another drawback of PCA was that the
obtained vectors did not correspond to specific preferential locations.
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Fig. 4. Distance distribution between all the tumors (a),Box-plots of the distances (b)
and individual Silhouette (c) values for each cluster

5 Discussion

Very few studies have dealt with spatial dependencies of gliomas appearances
in the brain. In this paper, we proposed graph theory to represent our data-set
spatial dependencies and clustering to regroup statistically dependent tumors.
Cross-validation results on an important volume of clinical data support the
idea that the complete graph could be reduced to a handful nodes, which indi-
cates statistical preferential locations for low-grade gliomas in the brain that our
clustered network enables to identify. There are very few tumors in or near the
occipital and prefrontal lobes (7%). We find (symmetrically) the higher amount
of tumors around the insula or the temporal lobe (27% in the right hemisphere
and 33% in the left hemisphere). The remaining tumors are in the frontal and
parietal lobes, mostly close to the motor areas. Those results are consistent
with previous observations [4]. Furthermore, preliminary results indicate that
the graph’s structure remains unchanged while at the same time the method
outperforms standard dimensionality reduction techniques.

Several open questions remained unanswered from this study. Despite the siz-
able validation set, increasing the number of cases considered in the study could
further enhance the claims of the paper. On a more theoretical view-point, the
impact of the registration process is critical since the selection of the reference
pose introduce a strong bias on the results. The use of population registration
methods [18] that simultaneously deform all the data while taking into account
tumoral regions is a promising alternative. The estimation [19] and propagation
of registration uncertainties is another mean of eliminating the bias while at the
same time producing a qualitative interpretation of the results. This can also
produce better means of measuring spatial coherence between tumors through
high-dimensional embedding and Gaussian processes distance definition. Creat-
ing a statistical representation of tumor appearances can be of great interest
and a valuable clinical tool for computer aided diagnosis. The network obtained
through leave-one-out cross validation, through n-to-m graph matching and net-
work topology optimization could lead to a unique representation for the spa-
tial mapping of low-grade gliomas in the brain. Automatic segmentation is a
task that could automatically benefit from the obtained graphical model since it
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consists of a powerful position prior queue. Another possible outlook would be
to integrate functional data and observe the consequences of a tumor on the
functional brain and its plasticity.
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Abstract. In vivo MicroCT imaging of disease models at multiple time
points is of great importance for preclinical oncological research, to mon-
itor disease progression. However, the great postural variability between
animals in the imaging device complicates data comparison.

In this paper we propose a method for automated registration of
whole-body MicroCT follow-up datasets of mice. First, we register the
skeleton, the lungs and the skin of an articulated animal atlas (Segars
et al. 2004) to MicroCT datasets, yielding point correspondence of these
structures over all time points. This correspondence is then used to reg-
ularize an intensity-based B-spline registration. This two step approach
combines the robustness of model-based registration with the high accu-
racy of intensity-based registration.

We demonstrate our approach using challenging whole-body in vivo
follow-up MicroCT data and obtain subvoxel accuracy for the skeleton and
the skin, based on the Euclidean surface distance. The method is compu-
tationally efficient and enables high resolution whole-body registration in
≈17 minutes with unoptimized code, mostly executed single-threaded.

1 Background

The possibility to scan the entire body of small animals with dedicated hardware
in vivo offers great benefits for preclinical research, because it allows to follow
e.g. pathology development over time within the same subject. This excludes
intersubject variability and has ethical and economical benefits.

A problem that arises with imaging entire bodies is the potentially large pos-
tural variability of animals that are imaged at different time points (Fig. 1). This
significantly complicates data examination, because researchers have to ‘align’
structures of interest visually and navigate through large whole-body datasets.
For some applications, dedicated animal holders can be used to reduce the postu-
ral variability. However, such holders may influence the study, e.g. by obstructing
light in optical imaging based studies.

To deal with the problem of high postural variability, in [1] we presented a
robust method for registration between the skeleton, the lungs and the skin of
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Fig. 1. Demonstration of the large variability in animal posture between different scans.
Shown are subjects scanned in prone (left) and supine (right) position.

a mouse atlas (MOBY [2]) and whole-body MicroCT data of mice. We subse-
quently used the point correspondences on these structures to map the remainder
of the body using Thin Plate Spline (TPS) interpolation. However, in areas with
few correspondences, the accuracy of the mapping may be limited.

In this paper we aim at improving the accuracy of the TPS mapping by
integrating intensity information during the registration. We present an accurate,
time efficient and highly robust method for registration of follow-up MicroCT
datasets that contain articulated objects. This we achieve by regularizing an
intensity-based registration criterion with the Euclidean distance metric, based
on pointsets of anatomical correspondences. We evaluate the method using non-
contrast-enhanced MicroCT data of eight animals, imaged at two time points.

2 Previous Work

Several strategies are described in the literature that focus on registration of
images with multiple structures of interest with varying structural properties.
Staring et al. [3] describe an approach that adds a local rigidity penalty term
to the registration function to penalize rigid object deformations. Somayajula et
al. [4] present an intensity-based registration of whole-body MicroCT follow-up
datasets of mice using a scale-space approach. A method that relies on skele-
ton segmentations from MicroCT is described in Li et al. [5]. The skeletons are
aligned using nonrigid robust point matching, followed by intensity-based non-
rigid registration based on radial basis functions. Suh et al. [6] register the skele-
ton using extended demons with subsequent intensity-based registration using
normal demons. These approaches exploit the high CT contrast to avoid unreal-
istic bone deformation without [4] and with [3,5,6] using the skeleton explicitly.
All methods may suffer from local minima when bones are in close proximity,
but especially in case of large postural variability.

A possibility to increase the robustness of whole-body registration is to model
and register individual parts of an animal. Approaches range from registration of
individual Volumes Of Interest and subsequent interpolation (block-matching),
that do not take relationships between VOIs into account, to methods that
register structures of interest simultaneously or hierarchically. Articulated reg-
istration methods are based on realistic modeling of joints and were applied for
example to mouse hind limbs [7].
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Fig. 2. First, an anatomical animal atlas (skeleton, lungs, skin) is registered to a base-
line (fixed image, 1) and one or multiple follow-up (moving image, 2) MicroCT datasets.
The point correspondence between the atlas and the datasets allows to establish point
correspondences between the datasets as well, which can subsequently be used to reg-
ularize intensity-based registrations (3).

3 Method: Whole-Body Mouse Registration

In the following, we shortly describe an atlas-based framework for articulated
registration presented in earlier work [1] and then the proposed extension for
intensity-based registration. An overview of the framework is shown in Fig. 2.
The fixed and moving images are denoted with IF and IM respectively, and the
transformation relating the two by Tμ, with parameters μ.

3.1 Articulated Whole-Body Registration

The mouse atlas used in this work is the publicly available MOBY atlas [2] that
we modified by manually segmenting individual bones and organs, identifying
joint locations and adding anatomically realistic joint models. The registration
of this atlas to MicroCT was presented in previous work [1] and will be described
briefly. Using a hierarchical anatomical model of the skeleton, each atlas bone
is registered individually to an unlabeled skeleton surface representation, using
the Iterative Closest Point (ICP) algorithm [8]. In each step, the Degrees of
Freedom (DoFs) of the transformation function are defined by the joint type, by
which the current bone is connected to the bone that is higher in the hierarchy.
To account for differences in bone size, anisotropic scaling is added to the mo-
tion parameters of each bone. Thus, the DoFs vary between seven for a hinge
joint (translation, non-isotropic scaling, one rotation) and nine for a ball joint.
The surfaces of the lungs and the skin are subsequently registered, initialized
by the skeleton registration result. The final result is a dense set of correspond-
ing points on the skin, the skeleton and the lungs. Establishing such a point
correspondence between the atlas and a target for data of several timepoints,
allows to subsequently establish point correspondence between the timepoints
as well (see Fig. 2). Corresponding pointsets of two different timepoints are in
the following denoted as ZF and ZM .
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(a) Moving IM (b) IFFD (c) TPS (d) IFFD Reg (e) Fixed IF

Fig. 3. Dorsal-ventral maximum intensity projections of MicroCT volumes before and
after registration with different methods. Note that (a) was acquired in prone, whereas
(e) was acquired in supine position. The arrows indicate erroneous limbs after regis-
tration based on intensity information only. This is the animal shown in Fig. 5

3.2 Regularized Intensity-Based Registration

The articulated skeleton registration is surface-based and mostly neglects in-
tensity information in the data. To combine the robustness of the articulated
registration with the accuracy of intensity-based methods, we propose to reg-
ularize an intensity-based registration with the point correspondence from the
articulated registration. Registration is formulated as an optimization problem:

argmin
μ

C = argmin
μ

Ssim(Tμ; IF , IM ) + αSCP(Tμ;ZF ,ZM ), (1)

where the cost function C is optimized with respect to the transformation param-
eters μ. Ssim measures the image intensity similarity. We chose Normalized Cross
Correlation (NCC), because all datasets are acquired with the same modality.
We thus assume a linear relationship between the intensity values of IF and IM .
SCP is a metric incorporating the similarity of the corresponding pointsets ZF

and ZM and is defined as the mean Euclidean distance between them:

SCP =
1
P

∑
xi

F ∈ZF

∥∥xi
M − Tμ(xi

F )
∥∥ , (2)

where P is the number of corresponding points, and xi
F ,xi

M corresponding points
from the fixed and moving image pointsets, respectively. The two terms of Eq. 1
are weighted by the parameter α. The optimization problem is solved using
a parameter-free Adaptive Stochastic Gradient Descent (ASGD) optimization
routine [9], in a multiresolution fashion, using Gaussian pyramids. For each res-
olution, the optimal value of α is set manually, depending on how much the
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Fig. 4. Boxplots of the DSC for the skeleton and the skin and the NCC, for IFFD
and IFFD Reg. Notch overlap indicates no significant difference (p ≥ 0.05) between
medians. Note that after initialization, the medians are: DSC skeleton 0.15, DSC skin
0.81, NCC 0.65 and using TPS interpolation 0.42, 0.91 and 0.81.

image intensity and the point distance measure should contribute to C. In the
first resolutions, SCP should have a relatively large impact on C, to remove large
postural differences. Thus, α is set to a relatively large value because otherwise
the optimization may get stuck in local minima. Assuming that afterwards IF

and IM are coarsely aligned, the influence of SCP can be gradually decreased
and removed from C in the last resolution (α = 0).

The intensity-based registration was initialized by a similarity registration
(motion and isotropic scaling), followed by nonrigid registration with the trans-
formation Tμ parameterized by B-splines [10]. They were employed in a multigrid
setting, gradually refining the B-spline control point grid over the resolutions.

4 Experimental Setup

Eight female mice (Balb/c nu/nu, Charles River, L’Arbresle, France), 6 weeks
old at baseline, were scanned twice, three weeks apart, once in prone and once in
supine position and with arbitrary limb position. MicroCT (SkyScan 1076, Kon-
tich, Belgium) parameters were: 1.5◦ steps, 180◦, 50keV x-ray voltage, 200μA
anode current, Al filter 0.5mm and exposure time 100ms. The datasets were re-
constructed with built-in software (beam-hardening and ring artifact correction
both 10) and a dynamic range of -1000 to 4000 Hounsfield units. No cardiac
nor respiratory gating was used. The data was subsampled to 1443 μm3 voxel-
size (≈ 250 × 200 × 650 voxels), smoothed with a Gaussian filter (σ = 1) and
segmented using the Color Structure Code technique [13] with T = 24 for the
skeleton and the skin and T = 6 for the lungs. Triangular surface meshes were
extracted from the segmentations using Marching Cubes (more details in [1]).

Following the procedure in Section 3.1, we derived ≈2000 correspondences
on the skeleton, the lungs and the skin. For the intensity-based registration, we
used 5 resolutions (500 iterations) for the similarity registration and 6 resolutions
(2000 iterations) for the B-Spline registration. α was kept constant at 0.05 in
resolutions 1-4, decreased to 0.005 and 0 in resolutions 5 and 6 respectively (pa-
rameter files available at http://elastix.isi.uu.nl/wiki.php). Invertibility
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Table 1. Skeleton and skin surface distance and landmark localization accuracy (in
voxels). Surface distances are based on eight animals and the landmark distances on a
subset of three animals. (*) Results are based on a different, yet comparable dataset.

Skeleton distance Mean Median Max Min
Init 9.70 ± 11.68 5.59 81.16 3e-6
TPS 2.01 ± 2.72 1.32 36.91 3e-6
IFFD 1.19 ± 5.15 0.34 71.99 5e-7
IFFD Reg 0.49 ± 0.80 0.33 17.83 3e-7
Li et. al [5] (*) 0.61 ± 0.19 N/A N/A N/A

Skin distance Mean Median Max Min
Init 9.56 ± 10.30 6.46 76.62 9e-6
TPS 3.79 ± 3.63 2.71 36.70 1e-6
IFFD 1.37 ± 4.58 0.50 68.64 4e-7
IFFD Reg 0.83 ± 1.16 0.49 16.41 9e-8

Landmark distance Mean Median Max Min
Init 65.24 ± 32.81 64.52 131.62 4.91
TPS 6.25 ± 3.75 5.52 25.63 2.17
IFFD 3.75 ± 7.46 1.90 51.87 0.37
IFFD Reg 1.97 ± 1.72 1.57 11.51 0.37
Li et. al [11] (*) 3.46 ± 1.88 3.64 5.96 1.04

and smoothness of all final transformations was confirmed using the determinant
of the Jacobian of the deformation fields, which was > 0 within all animals.

For evaluation, the following metrics were chosen: Normalized Cross Correla-
tion (NCC) to assess the intensity similarity and the Dice Similarity Coefficient
(DSC) to assess skeleton and skin segmentation accuracy. The DSC is defined as
2(V1 ∩ V2)/(V1 + V2) and measures structural overlap. It is well suited for elon-
gated and thin structures, which occur in our data (Fig. 1). We also determined
the Euclidean Point to Surface Distance (EPSD) between the skeletons and skins
of registered datasets. We excluded the tail, since it is irrelevant for most studies.
Color-coded EPSD mapping to the surfaces allows to detect local registration
inaccuracies. Finally, we assessed how well specific bone structures are regis-
tered, by measuring the Euclidean Point to Point Distance (EPPD) between
19 anatomical landmarks, manually indicated before and after registration, on
distal body parts like the limbs, on the spine and on the ribs. Results are given af-
ter initialization, TPS interpolation, intensity-based registration without (IFFD)
and with using regularization (IFFD Reg). For comparison with published work,
we present results of Li et al. [5], because their datasets are comparable to ours.

Correspondence determination was done with Matlab 2010b (The Mathworks,
Natick, USA) and the intensity-based registration using the ITK-based and pub-
licly available elastix software [12] on an Intel Xeon E5620 8 cores (2.4GHz)
and 24GB RAM. The time requirements were ≈5 mins. for IFFD and ≈17 mins.
for IFFD Reg. (including ≈5 mins. to determine correspondence).

5 Results and Discussion

Qualitative results of the registration are shown in Fig. 3, quantitative results
for the DSC and the NCC are presented in Fig. 4 and the surface distances and
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landmark localization accuracy before and after registration are given in Tab. 1
and Fig. 5. The very large difference between the metrics after initialization
and after IFFG are an indication for the large postural differences between the
animals. Comparing TPS and IFFD, the average error is smaller for IFFD, but
the maximum is much larger. The reason is the large initial postural differences
between animals. TPS can deal with that and therefore, all body parts are
registered equally well. IFFD is very accurate, when body parts lie within the
registration capture range, but fails completely otherwise. Generally, the more
distal to the body, the higher the error becomes. Fig. 5 and Fig. 3 support this
because the error increases significantly at the limbs. The results of IFFD Reg
reveal that our approach can handle large variability in the data without losing
accuracy. The DSC plot (Fig. 4) shows excellent overlap for the skeleton and the
skin. We obtain subvoxel accuracy for bone and the skin in the surface distance
measure (Tab. 1). The maximum distances mainly stem from the very distal
ends of the limbs and the ribs for the skeleton, and folds for the skin (Fig. 5).
In addition, IFFD Reg yields higher intensity similarity than IFFD (Fig. 4).
For all presented metrics, IFFD Reg outperforms both, TPS and IFFD, proving
that relying on point correspondence or intensity only is not sufficient for highly
accurate registration, in case of large postural differences.

Compared to published data by Li et al. [5,11], we have similar results for
the skeleton distance and better results for the landmark localization. Their
method pays special attention to registration of the ribs, thus it might yield
more accurate results for these structures. However, they evaluate using ex vivo
data, excluding rib movement artifacts. If accurate rib registration is required,
an additional stiffness penalty could easily be added to our registration criterion
[3]. In addition, we want to stress that the method in Li et al. requires 260
minutes for registration and our method takes ≈17 minutes. We realize that
those experiments were performed on outdated hardware (Pentium PC, 2GHz,
1GB RAM), but most of our code was executed single-threaded and in addition,
our image domain was approximately twice as big. It would be interesting to
compare our method to the promising approach of Suh et al. [6] as well, which
seems to be more time efficient and more accurate, compared to Li et al.

Fig. 5. The skeleton and the skin of an animal at baseline with color-coded Euclidean
distance to the nearest surface point on the mapped skeleton and skin after registration
using IFFD and IFFD Reg respectively. Values (in voxels) are based on one animal.
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Finally we want to point out, that the registration of an atlas yields a seg-
mentation of the skeleton as a by-product.

6 Conclusion

We presented a highly robust and accurate approach for registration of artic-
ulated objects with application to whole-body MicroCT data of mice. This we
obtained by regularizing an intensity-based registration criterion with a distance
metric, derived from point correspondence among datasets. We performed regis-
tration of in vivo whole-body MicroCT data with high resolution in ≈17 minutes
and obtained subvoxel accuracy for the skeleton and the skin. Compared to com-
peting methods, our approach is very time efficient.
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Abstract. In this paper, we propose a pipeline for evaluating the performance 
of brain image registration methods. Our aim is to compare how well the 
algorithms align subtle functional/anatomical boundaries that are not easily 
detectable in T1- or T2-weighted magnetic resonance images (MRI). In order to 
achieve this, we use structural connectivity information derived from diffusion-
weighted MRI data. We demonstrate the approach by looking into how two 
competing registration algorithms perform at aligning fine-grained parcellations 
of subcortical structures. The results show that the proposed evaluation 
framework can offer new insights into the performance of registration 
algorithms in brain regions with highly varied structural connectivity profiles.  

Keywords: Volumetric registration, MRI, probabilistic tractography, structural 
connectivity, human thalamus. 

1   Introduction 

There have been numerous studies comparing the performance of volumetric 
registration algorithms by measuring the correspondence between manually outlined 
labels of the reference and the warped images (e.g. see [1]). These types of 
evaluations shed light on which algorithm performs better and in which areas. 
However, they often rely on information that was also used to drive the registration 
algorithms (e.g. intensity contrast in T1-weighted images). In order to avoid such 
circularity, ideally, an independent testing mechanism should be used. In other words, 
one should avoid the circularity of the information flow as well as ‘using registration 
to assess registration’. This paper tackles the former issues and tries to minimize the 
influence of the latter. 

Our paper proposes a new framework for evaluating performance differences of 
volumetric registration algorithms. It relies on a modality different from the one used 
for registration (in our case, T1-weighted images). Diffusion Weighted Imaging 
(DWI) is a suitable choice for this purpose as it contains information complementary 
to that found in other structural modalities. In this paper we assess the inter-subject 
alignment of anatomical boundaries within subcortical structures derived through the 
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analysis of white matter connectivity. Note, the aim of this paper is to present an 
evaluation methodology and not to provide a comprehensive comparison of a range of 
registration methods. 

DWI has been used to map the architecture of cortical white matter (WM) and also 
to determine WM consistency [2,3,4]. Furthermore, WM connectivity patterns highly 
correlate with the functional segregation of the brain [5]. Thus, evaluating registration 
performance in the areas of distinct connectivity patterns might yield additional 
insights into the inter-subject alignment of functional homologues.  

We were inspired by the work of [6] which shows that thalamic connectivity 
analysis can result in anatomically and functionally plausible and highly consistent 
parcellations of the anatomy, revealing structures (i.e. different thalamic nuclei) that 
cannot be seen on T1- or T2-weighted images alone. Therefore, if we were to: 1) 
parcellate all the thalami in a group of subjects, e.g. as proposed in [7], and 2) 
consistently label anatomically corresponding clusters across subjects, it would be 
possible to measure inter-subject cluster overlap. Importantly, the registration 
algorithms assessed by this measure do not use information used for parcellation. The 
thalamus and the putamen were used as examples to demonstrate our findings. 

2   Methods 

In order to demonstrate our hypothesis, this paper evaluates the differences between 
the Combined Volumetric and Surface-based registration (CVS) algorithm [8, 9] and 
FNIRT (FMRIB's non-linear image registration tool) [10] by examining the post-
registration overlap of connectivity-based segmentation labels across a group of 
control subjects. CVS and FNIRT belong to two complementary and widely used 
software packages and it is of great interest to the neuroimaging community to know 
which registration method of these two is superior in what case.  

First, for each subject, image distortion and bias field corrections were performed 
prior to the DW-to-T1 affine registration (FSL/FLIRT [13]). In that way, pairs of DW 
and T1 images were brought to the same coordinate system prior to further analysis. 
Secondly, in order to perform parcellation of subcortical structures using structural 
connectivity, every voxel in the region of interest (ROI, e.g. the thalamus) has to be 
associated with a feature vector encoding measures of connectivity to other brain 
areas. These feature vectors  become inputs into the clustering algorithm. Commonly, 
each entry in the feature vector is the probabilistic tractography result (a measure of 
uncertainly of the WM tract originating in the seed voxel and passing through the 
target) to one of the neocortical targets, e.g. a major brain lobe [6]. In order to boost 
the sensitivity in discriminating between areas of varying connectivity, we decided to 
identify a greater number of cortical targets using the spherical registration and 
parcellation algorithm of FreeSurfer [12]. Targets for probabilistic tractography 
(PROBTRACKX/FSL [13]) were formed in the following steps: 

 
1) Using Freesurfer, parcellate surfaces of both cortical hemispheres into 80 

equilateral triangles (calculated as the first subdivision of an icosahedron) 
that are consistently labeled across all subjects. Triangular features were 
chosen as they do not follow any particular anatomical divisions and do not 
therefore bias the results; 
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Fig. 1. Triangular targets were drawn on an inflated and registered sphere (left) thus imposing 
anatomical consistency in triangle positions across subjects. Figures (middle and right) show 
projections of triangles to the white matter surface – different colours correspond to different 
triangle labels, i.e. different cortical targets. 

2) Propagate surface parcellations into the volume. A 1 mm thick sheath on the 
grey/white matter surface was constructed as depicted in 1) (see Fig. 1);  

3) Concatenate volumetric masks/triangular labels from both hemispheres to 
form a list of cortical targets (targets for probabilistic tractography). 

Therefore, the final output of probabilistic tractography for every ROI is an MxN 
connectivity matrix where M is the number of voxels in the ROI and N is the number 
of targets, which in our current implementation is set to 160 (80 targets for each 
hemisphere). Typically, connectivity matrices are very sparse having 90-95% of all 
values zero. Clustering of the thalamic and putamen connectivity matrices is done for 
all 41 subjects using Hierarchical Dirichlet Process Mixture Models (HDPM) with 
spatial constraints [7]. Both structures were segmented by FreeSurfer [11]. Each of 
the connectivity matrices was preprocessed and grouped into 9 clusters. Preprocessing 
consisted of PCA data dimensionality reduction to size Mx20, typically retaining 
more than 95% of explained variance. We decided not to use infinite mixture models 
in our analysis as they regularly produced more than 40 clusters, many of which 
contained just a few voxels. By varying the number of clusters for a small subset of 
subjects, we found that 9 clusters is a good compromise between capturing 
anatomically plausible divisions and achieving reasonable inter-subject consistency. 
Clustering consistency was also found to be robust with respect to the number of 
cortical targets. The parameter regulating intra-subject spatial smoothness (called 
‘beta’, as implemented in [7]) was set to 1, which is the default value suggested in [7]. 
We should note that HDPM-based clustering does not make use of inter-subject 
registrations and the correspondence among cluster labels is established solely 
according to the data matrix fed into the HDPM pipeline.  

After the clustering step, all subjects were non-linearly registered to a template 
(which was part of the hierarchical clustering cohort, a randomly chosen subject) 
using two methods: CVS and FNIRT (see Sections 2.1 and 2.2). We decided not to 
use a standard space (such as the MNI152) for our analysis, as we test for the 
alignment of very subtle and subject-specific parcellations and are thus in need for a 
template image with similar detail in it. We believe that if the T1-weighted intensities 
within our ROIs are insufficient to discriminate between internal subregions, then the 
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alignment of other cortical areas would constrain the deformations, hopefully 
maximizing the alignment of functionally distinct areas. 

Finally all clustering results were warped using the two registration methods. We 
then computed the Jaccard overlap measure to test the inter-subject alignment 
accuracy among the HDPM clustering of the connectivity descriptors in the ROIs. 

  
Thalamus, ventral view Putamen, medial ventral view 

Fig. 2. Thalamus and Putamen clustered using proposed methodology (HDPM clustering of 
connectivity matrices). Different colours/numbers represent different clusters (9 in total) of 
distinct WM connectivity patterns, e.g. thalamic nuclei (image left).  

2.1   CVS 

Combined Volumetric and Surface-based Registration is a brain image registration 
method that maximizes the alignment of both cortical and subcortical structures. It 
consists of three image processing steps. First, a surface registration algorithm finds 
correspondences between the input surfaces from two brain scans [14] and these 
correspondences are transformed into a sparse displacement field in Euclidean space. 
This morph is then diffused into a dense displacement field in the volume using a 
nonlinear elastic model. Finally, a nonlinear volumetric registration refines the 
alignment, bringing subcortical structures, which are not near the surfaces, into 
accurate alignment. This technique has been shown to produce state-of-the-art 
alignment of cortical folding patterns, architectonics and subcortical structures [8].  

2.2   FNIRT 

The nonlinear FNIRT registration tool [10] uses a B-splines representation of the 
registration warp field and optimizes the sum of squared differences as its objective 
function. It is not typically run in a subject-to-subject setting as it was initially 
optimized for subject-to-template registrations. For our project, together with the 
original developers of the code, we established a particular set of parameters that 
achieve high quality subject-to-subject correspondence. 

2.3   Data Description 

The experiments were run on data provided through collaboration with Dr. Randy 
Gollub and the Medical Investigation of Neurodevelopmental Disorders (MIND) 
Institute. Forty-one data sets were selected all of which have been acquired by our 
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collaborators using an identical MRI sequence on a Siemens scanner. The structural 
data is of 256x256x256 size with 1 mm3 voxel resolution and TR =12ms, TE=4.76ms, 
TI=4.76ms, flip angle=20°. The diffusion scans use single shot EPI, and a twice-
refocused SE pulse sequence, optimized to minimize eddy current-induced distortions 
(TR/TE=7400/89 ms, b=700 s/mm2, 256x256 mm FOV, 128x128 matrix, 2 mm (0 
mm gap) slice thickness, 10 T2 + 60 DWI. Sixty-four slices were acquired in the AC-
PC plane. The 60 diffusion-encoding gradient directions were determined using the 
electrostatic shell method, and result in a high signal-to-noise diffusion volume.  

3   Results 

Comparison between the FNIRT and CVS registration methods was performed for 
thalamic and putamen clusterings. Table 1 summarizes the results of compound 
(calculated across all labels in parallel) Jaccard coefficient measures. Using this 
measure every subject’s clustering was compared to the template clustering. In 
summary, FNIRT performs consistently better than CVS in the left thalamus. 

Table 1. Mean Jaccard coefficient between the clustering of the template and all the other 
thalami/putamen (40 comparisons per table entry – see Fig. 3). Statistically significant 
difference at p<0.01 level is indicated in bold (unpaired T-test, DOF correction).  

THALAMUS FNIRT CVS PUTAMEN FNIRT CVS 
Left 0.19 0.14 Left 0.20 0.18 
Right 0.16 0.13 Right 0.21 0.20 

 
We also calculated how well both methods perform when each ROI is considered a 

single label, without any clustering. In both the left and right hemispheres, FNIRT 
performed better (p<0.001) over CVS. If this effect is regressed out of the findings 
from Table 1, previous conclusions do not change (FNIRT performs better in the left 
thalamus with p<0.05). Regressing out an effect, in this case, means calculating the 
compound Jaccard coefficient just for the intersection of the two ROIs. 

We also calculated the pairwise compound Jaccard coefficient (compound Jaccard 
coefficient calculated between each pair of subjects) for the whole dataset excluding 
the template. These results are shown in Table 2. Similarly to the previous analysis, 
we computed this metric with the ROIs treated as a single label. In both the left and 
right hemispheres, FNIRT performed better (p<10-5). When the effect of the global 
alignment is regressed out of the findings from Table 2, FNIRT still outperformed 
CVS for both the left and right putamen and for the left thalamus (p<0.01). 

Table 2. Mean pairwise compound Jaccard coefficient (see [8] for computational details) 
among the clusterings of all ROIs excluding the template (40x40 comparisons per table entry – 
see Fig. 3). Statistically significant difference at p<0.01 level is given in bold (unpaired T-test, 
DOF correction).  

THALAMUS FNIRT CVS PUTAMEN FNIRT CVS 
Left 0.28 0.23 Left 0.26 0.22 
Right 0.27 0.20 Right 0.18 0.15 
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Fig. 3. (FIRST ROW) Compound Jaccard coefficient for the left thalamus for FNIRT and 
CVS algorithms. Mean Jaccard coefficient value is shown with a green line (see Table 1). 
(SECOND ROW) Pairwise compound Jaccard coefficient for the clusterings of the left 
thalamus for FNIRT and CVS algorithms (see Table 2). Subjects are numbered from 1 to 40. 

4   Discussion 

A new method for evaluating registration performance is proposed. It tests for 
registration differences within areas of uniform T1/T2 contrast, but of highly variable 
connectivity (such as the thalamus and the putamen).  

The results show that it is possible to make highly local distinctions between 
competing registration methods possibly giving a new insight into how and where 
they can be improved. However, our pipeline so far includes automatically segmented 
subcortical labels, which is suboptimal to having expert segmentations. The questions 
such as what are the best ways to cluster connectivity matrices, impose inter-subject 
cluster correspondences and how these affect final findings also need further 
investigation. Furthermore, we would like the registration methods (that are 
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compared) to be independent of the evaluation pipeline. In this particular 
demonstration, CVS relies on FreeSufer cortical surface registrations which might 
introduce a potential confound (possibly in favor of CVS).  

Although our goal is to compare performance of volumetric registration methods 
by looking into the overlap of anatomical boundaries found through WM connectivity 
analysis, we acknowledge that the accuracy of registration itself can be application 
specific [15]. E.g., this particular evaluation pipeline can yield an “optimal” 
registration method to be used when analyzing the group results of a functional 
paradigm with activations in deep brain structures. A “better” registration method 
could, in that case, result in statistically stronger conclusions and/or better spatial 
localization of the measured effect.  

Finally, we hope to motivate further research into the integration of connectivity 
information (both structural and functional) into registration algorithms. E.g., the 
structural connectivity matrix utilized in this paper (and comparable across subjects) 
can be directly integrated into the registration cost functions of CVS or FNIRT [16].  
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Abstract. This paper presents an approach for joint segmentation and
deformable registration of brain scans of glioma patients to a normal
atlas. The proposed method is based on the Expectation Maximization
(EM) algorithm that incorporates a glioma growth model for atlas seed-
ing, a process which modifies the normal atlas into one with a tumor
and edema. The modified atlas is registered into the patient space and
utilized for the posterior probability estimation of various tissue labels.
EM iteratively refines the estimates of the registration parameters, the
posterior probabilities of tissue labels and the tumor growth model pa-
rameters. We have applied this approach to 10 glioma scans acquired
with four Magnetic Resonance (MR) modalities (T1, T1-CE, T2 and
FLAIR ) and validated the result by comparing them to manual segmen-
tations by clinical experts. The resulting segmentations look promising
and quantitatively match well with the expert provided ground truth.

Keywords: joint segmentation-registration, EM, diffusion-reaction
model.

1 Introduction

Statistical atlases constructed from MR scans are powerful tools for aiding the
analysis and understanding of brain tumor development. The atlases are used
for tasks such as learning the relative location of tumors with respect to healthy
tissue [4] or guiding the automatic segmentation of brain tumor scans [13]. An
important component in the construction and application of the atlases is the
registration of brain tumor MR scans to the a common coordinate system. This
coordinate system is often represented by a MR scan of a healthy subject due to
the subject specific nature of brain tumors. Although a plethora of methods for
image registration exists [2], this registration task is generally considered very
challenging as there is no correspondence for the pathology in the healthy scans.
� Corresponding author.
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(a) CSF (b) WM (c) GM

(d) T1-CE (e) TU (f) ED (g) Modified GM

Fig. 1. (a)-(c) Healthy white matter (WM), gray matter (GM) and cerebro spinal fluid
(CSF) probability maps, (d) sample glioma scan, (e) corresponding estimated tumor
(TU), (f) edema (ED), and (g) gray matter probability maps before registration to the
patient.

In addition, the healthy tissue in the brain scan is often severely deformed by
the mass-effect of the tumor so that its shape is very different from that in the
healthy brain scan. In this paper, we address this issue by developing a new
approach for brain tumor registration that explicitly models the mass effect of
the pathology.

A popular approach for registering brain images to an atlas coordinate system
is to mask out the pathology and then perform the registration to the healthy tis-
sue [11,13,14]. Alternative methods use atlas seeding, in which a tumor is seeded
in the healthy (atlas) scan [10]. Both of these frameworks essential ignore edema
as they fail to explicitly model the diffusion of the tumor cells into the neigh-
boring healthy tissue. This limitation was addressed by [1], whose registration
incorporated a biophysical (diffusion-reaction) tumor growth model simulating
the mass-effect and diffusion caused by the pathology. However, the approach
requires accurate segmentations of the pathology which are difficult to produce
automatically. We now derive a joint atlas registration and segmentation frame-
work to circumvent this problem.

Similar to joint segmentation and registration methods targeted towards
healthy brains [8, 6], our method iteratively estimates the posterior probabili-
ties of tissue classes and registers the atlas via the EM algorithm. However, our
approach also computes the diffusion-reaction parameters of the tumor growth
model and the coordinates for atlas seeding. These additional parameters greatly
increase the complexity of the optimization problem compared to [8,6] which re-
quired us to carefully adopt the EM model to this specific application. The
remainder of this paper is organized as follows: In Section 2 we review the
diffusion-reaction model and describe the construction of the atlas. The at-
las is then used in Section 3 to guide our joint registration and segmentation
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framework. In Section 4 we present our quantitative evaluation and results of
the application to sample patients, and conclude the paper in Section 5.

2 Atlas Generation

In this section, we use a glioma growth model to embed a tumor in an originally
healthy atlas. We define the atlas as a set of probability maps that specify the
spatial distribution of brain tissues (see Fig.1.(a)-(c)). This modified atlas then
guides the EM algorithm in registering and segmenting of subjects with glioma.

As in [1], a model of the glioma is implanted into the healthy brain scan
by artificially seeding a tumor in the healthy atlas and growing it using the
biophysical model proposed in [3]. Let ΩA and [0, T ] denote the space of atlas
and a time interval for growing the tumor. The evolution of tumor probability
πTU (x, t) in ΩA × [0, T ] is determined by the following diffusion-reaction model:

∂πTU

∂t
−∇(D∇πTU )+∇(πTUv) =ρπTU (1 − πTU ),

∇[λI∇ · u+μ(∇u+∇uT )] = p∇πTU (1)

where ∇ is the differential operator, u is the mass effect displacement field
caused by the presence of the tumor, v = ∂u/∂t is the relevant velocity field,
p is a scalar which determines the strength of the tumor mass effect, D is a
spatially variable function capturing diffusion coefficient within white (DWM )
and gray matters (DGM ), and ρ is proliferation coefficient. We fix ρ = 0.025 and
DGM = 1e−10 (the default values of [3]) as the method is relatively insensitive to
these parameters. Now, if we denote with x0 the initial seed location of the tumor
and with d the voxel size of the ΩA, then our tumor growth model is completely
defined by the parameters q ≡ {x0, p,DWM , T } given the initial conditions for
the u(x|q, t = 0) = 0 and πTU (x|q, t = 0) = exp(−(x − x0)2/d2).

Once we solve the above equation for u and πTU , we combine those results at
t = T with the original atlas of healthy brains πo

X(·) to infer tissue probability
maps πX(·|q) for tissue X . To simplify notation, we omit t = T from u and
πTU and simply denote with πTU (x|q) the spatial probability map of glioma
being present at location x ∈ ΩA at time T and u(x|q) the corresponding mass
effect at that location and time. We then construct πX(·|q) for GM and CSF by
deforming the corresponding spatial probabilities πo

X(·) of the healthy population
via the mass-effect u and weighing them with (1 - πTU ):

πGM (x|q)≡πo
GM (u(x)) · (1 − πTU (x))

πCSF (x|q)≡πo
CSF (u(x)) · (1 − πTU (x))

(2)

We construct the spatial probability map of edema πED based on the as-
sumption that edema is in close proximity of the tumor, which we model via the
Heaviside function H(πTU (x)) ( H(a) = 0 for a ≤ 0 and H(a) = 1 otherwise),
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and be confined to the mass deformed white matter of the healthy brain, which
we model with πo

WM (u(x)). Thus:

πED(x|q)≡πo
WM(u(x)) · (1 − πTU (x)) ·H(πTU (x)). (3)

We define the subject specific spatial probability map of the white matter as:

πWM (x|q)≡1 − [πTU (x|q) + πED(x|q) + πCSF (x|q) + πGM (x|q)] (4)

A sample set of the generated probability maps πTU (·|q), πED(·|q) and πGM (·|q)
is shown in Fig.1, illustrating the impact of the mass effect and tumor invasion
in originally healthy atlas.

Finally, we note that we use the same probability map for enhancing tumor
and necrosis as our tumor growth model does not distinguish between these two
tissue types. In addition, we simplify notation by denoting the probability maps
generated in this section with πk(·|q), 1 ≤ k ≤ K = 6.

3 Joint Segmentation-Registration

We now describe the framework for joint segmentation-registration which is
guided by the atlas defined in the previous section. We assume that a set
of J co-registered, inhomogeneity-corrected, and skull stripped MR images is
given in the reference (fixed) domain ΩF so that for any sample voxel x ∈
ΩF , y(x) ≡ [y1(x), · · · , yJ(x)]T is an independent observation vector that cor-
responds to the J image intensities. We then define observation set as:
Y = {y(x)|x ∈ ΩF }. The goal of this section is to derive an algorithm for es-
timating the intensity distributions of each structure Φ, the atlas coefficient q,
and the deformation between the atlas and the reference domain h.

We further specify Φ by assuming the conditional probability distribution
function (pdf) of each y(x) is a weighted mixture of K Gaussians:
f(Y|Φ,h,q,x) ≡∑K

k=1 πk(h(x)|q)fk(y(x)|Φ) where fk ∼ N(mk,Σk) is a mul-
tivariate Gaussian distribution with mean mk and the covariance matrix Σk,
and Φ ≡ {m1, · · · ,mK ,Σ1, · · · ,ΣK}. The mixture weights are determined by
πk(h(x)|q) which are originally defined in the atlas space ΩA (see Section 2) and
registered to the patient space through h : ΩF → ΩA, a vector field mapping
the atlas into the patient space. Based upon these assumptions, we write the
conditional likelihood of Y as: f(Y|Φ,h,q) =

∏
x∈ΩF

f(Y|Φ,h,q,x).
Our problem of joint segmentation registration and atlas parameter estimation

can be defined as the solution of the following:

(Φo,ho,qo) ≡ argmax
Φ,q,h

logf(Y|Φ,h,q). (5)

One way of computing the solution to this problem is via Expectation-
Maximization algorithm [8]. EM is an iterative algorithm which in stead of
directly solving (5), maximizes a lower bound on logf(Y|Φ,h,q). At every
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iteration, given the current estimate of the unknown parameters Φ′, h′ and
q′, the lower bound of the log-likelihood in (5) is written as:

Q(Φ,h,q|Φ′,h′,q′) ≡
∑

x∈ΩF

K∑
k=1

pk(x)log(πk(h(x)|q)fk(y(x)|Φ)), (6)

where pk(x) stands for the posterior probability of class k at voxel x (see equ.(7))
The structure of the proposed EM algorithm consists of iterations between the
E-Step and M-Step, during which the posteriors and parameters {Φ,h,q} are
respectively updated. Further detail is as follows:
E-Step: In this step, label estimation is achieved by updating the computed
posterior probabilities given the current estimate of the parameter:

pk(x) =
fk(y(x)|Φ′)πk(h′(x)|q′)∑K
l=1 fl(y(x)|Φ′)πl(h′(x)|q′)

. (7)

M-Step: The update of the distribution parameters, (i.e. means and covariance
matrices) in Φ have closed form solutions which can be found in the literature
[9] and are not mentioned here. We optimize h by the following variational
framework which computes the differential of (6) with respect to an infinitely
small test function v:

0=Q(Φ,h′+v,q′|Φ′,h′,q′)−Q(Φ′,h′,q′|Φ′,h′,q′)=
∑

x∈ΩF

vt(x).{r(x)+W(x).v(x)}

(8)
In this equation, the gradient vector r(x) and the matrix W(x) are defined as:

r(x) = 2
K∑

k=1

pk(x)
πk(h′(x)|q′)

∇πk(h′(x)|q′), (9)

W(x) =
K∑

k=1

pk(x)[
H(πk(h′(x)|q′))
πk(h′(x)|q′)

− ∇πk(h′(x)|q′)(∇πk(h′(x)|q′))t

(πk(h′(x)|q′))2
] (10)

where H is the Hessian matrix. The detailed derivations are omitted due to space
limitations. Equation (8) leads to r(x) + W(x).v(x) = 0, hence v can be found
as: v(x) = W−1(x) · r(x). For further numerical stability, we add an identity
matrix component to W, therefore the update of h(x) can be written as:

h′(x) ← h′(x) − [W(x) + cI]−1r(x), (11)

where I is the identity matrix and c is a constant. In this paper, we found
c = 0.1 to produce a robust and reasonable deformation field. Notice the update
equation is computed independently at every voxel, which in general results in
a non-smooth deformation field. In order to apply the smoothness constraint,
similar to Thirions’ demons framework [7] we diffuse the estimated deformation
vectors by a Gaussian convolution filter with a band width of 2.
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Table 1. Dice overlap ratios (%) of the segmented tumor and edema with the expert
provided ground truths for fully and partly optimized tumor models. For S1-S5 subjects
total volumes of edema and tumor were manually segmented whereas for subjects S6-
S10 every third slice was delineated by our specialist.

Opt. Lab. S.1 S.2 S.3 S.4 S.5 S.6 S.7 S.8 S.9 S.10 Avg.

Fully
TU 89.4 89.7 87.2 83.0 91.8 70.0 81.6 84.0 82.7 90.8 85.4
ED 85.7 80.0 60.4 59.5 83.3 81.6 81.7 87.6 75.6 66.0 76.0

Partly
TU 83.9 89.0 87.9 80.3 86.1 51.8 78.7 71.8 80.2 79.5 71.7
ED 83.7 79.2 59.0 46.2 83.1 63.0 78.2 84.8 74.1 64.8 71.6

To update the atlas parameters q, since no analytical expression for the deriva-
tives of Q(Φ′,h′,q|Φ′,h′,q′) w.r.t q exists, we follow a numerical scheme. We
maximize (6) using a derivative free pattern search library [5]. Subsequently,
each process returns its corresponding Q value to the library and the procedure
is iterated until a maximum is found. Since this operation is computationally ex-
pensive it is performed only after having an adequate convergence on estimated
deformation field otherwise we keep it fixed.

4 Results

We applied our proposed joint segmentation-registration method to 10 glioma
patients. Our preprocessing pipeline starts with skull stripping of all modalities
(FLAIR,T2,T1, and T1CE) and MR field inhomogeneity correction [15]. These
images are co-registered to the atlas using an affine registration based on mutual
information [12]. We solved (1) on a lattice of 64 × 64 × 64 nodes for efficiency
reasons. We numerically compared our EM based segmentation results to the
expert provided references for edema and tumor labels using Dice volume overlap
ratio. For the S1-S5 cases (see the first five columns in Table.1) total volumes
of pathology were delineated and for the S6-S10 cases every third slice was
segmented by our specialist. We also computed the dice scores with respect to
every third slice in S1-S5. The average difference between these scores and those
obtained based on entire volume was less than 0.75%.

Sample results of seven patients in Fig.2 show a high visual correspondence
with patients anatomies. Moreover, it is interesting to observe that the regis-
tered atlas probability maps closely match the patient segmented labels, which
indicates good registration as well.

This observation is further verified by our numerical evaluations in Table.1
which shows that the segmentations using our method have reasonable matches
with the reference volumes. Also, the Dice scores favorably compare to the val-
ues reported in [13], though the data sets are different. Regarding the observed
discrepancy between the expert provided segmentations and our results, we be-
lieve that it is due to the fact that the proposed method takes a voxel-based
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(a) FLAIR (b) T1CE (c) Labels (d) CSF and TU (e) GM

Fig. 2. Segmentation and registration results for seven sample patients. Each row
corresponds to a single patient and represents the results in the slice with largest tumor
section. (a)-(b) FLAIR,T1-CE images,(c) segmentation results indicating enhancing
tumor, necrosis, edema, CSF, gray and white matters in light and dark yellows, purple,
red, gray and white colors respectively, (d) overlay of the tumor and CSF probability
maps registered to the patient scans, (e) probability map of GM registered to the
patient scans.
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classification approach, while a human rater considers other complex feature
such as the shape and appearance.

Moreover, in order to investigate the sensitivity of the results w.r.t. optimality
of parameters of model, two different sets of experiments were performed. In the
first case, all model parameters in q were optimized (denoted by Fully), and in
the second case only DWM was optimized and the expert chosen parameters such
as seed location and tumor growth length were not refined (denoted by Partly).
As shown in Table.1, the Dice coefficients in fully optimized mode are in general
higher and imply better overlaps compared to partly optimized model.

5 Conclusion

We developed a joint segmentation registration tool for glioma images. Our pro-
posed method utilizes multi-channel MR images as the patient feature images,
and an originally healthy atlas as the spatial probability maps for various tis-
sue labels. We utilized a tumor growth model to modify the probability maps
of the original atlas. The model impacts the atlas original probability maps by
both deforming and masking them the due to tumor mass-effect and diffusion.
We employed an EM algorithm to iteratively refine the estimates of posterior
probabilities of various tissue labels, registration field and tumor growth param-
eters. Validation using 10 data sets reveals that the method can handle large
mass effects and tumor sizes with various tissue types such as necrosis, edema
and tumor infiltration. Quantitative evaluations of segmentations of our method
were based on Dice overlap ratios with expert provided reference volumes, and
in general are higher than values reported in the state-of-the-art literature.
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NIH NCRR (P41 RR13218).
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Abstract. Deformable registration of images obtained from different
modalities remains a challenging task in medical image analysis. This
paper addresses this problem and proposes a new similarity metric for
multi-modal registration, the non-local shape descriptor. It aims to ex-
tract the shape of anatomical features in a non-local region. By utiliz-
ing the dense evaluation of shape descriptors, this new measure bridges
the gap between intensity-based and geometric feature-based similarity
criteria. Our new metric allows for accurate and reliable registration of
clinical multi-modal datasets and is robust against the most considerable
differences between modalities, such as non-functional intensity relations,
different amounts of noise and non-uniform bias fields. The measure has
been implemented in a non-rigid diffusion-regularized registration frame-
work. It has been applied to synthetic test images and challenging clinical
MRI and CT chest scans. Experimental results demonstrate its advan-
tages over the most commonly used similarity metric - mutual informa-
tion, and show improved alignment of anatomical landmarks.

1 Introduction

Advances in medical image registration techniques have resulted in a number of
robust and accurate methods for deformable registration of scans of the same
modality [1]. However, the registration of images from different modalities re-
mains challenging. Alignment of multi-modal images helps to relate relevant
information from different scans and to find the corresponding anatomical loca-
tion of the response of functional imaging in structural scans. Intensity relations
between those scans are not functional and can vary locally.
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Pj
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Pj

N
w1(xi,xj) w2(xi,xj)

Weights
at xi

Images

Modality 1 Modality 2

Fig. 1. Estimation of the non-local shape descriptor for the same feature at location
xi in two different modalities, red and blue colour channels of cryosection (see text for
further details)

Mutual information (MI) is derived from information theory and measures
the statistical dependency of two random variables. It was first introduced to
medical image registration for the rigid alignment of multi-modal scans [2][3],
and later used successfully in a variety of applications, including deformable
registration. It is based on the assumption that a lower entropy of the joint
intensity distribution corresponds to a better alignment. However, in several
practical applications, additional constraints must be made or extensions added.
Several weaknesses of MI for non-rigid registration have been identified [4]. For
example, it is affected by non-uniform intensity distributions like bias fields. MI
is intrinsically a global measure and therefore local deformations can lead to
local minima in the solution as shown in [5]. To overcome these difficulties, we
introduce a novel similarity metric for multi-modal image registration.

2 Non-local Shape Descriptor

We propose the non-local shape descriptor (NLSD), which defines a response
related to the shape of image features at each location in both images to be
registered. The shape descriptor is well adapted to medical image registration
purposes, because it aims to extract anatomically meaningful geometric shapes.

The proposed similarity term is derived from a very efficient denoising tech-
nique, non-local means [6]. For the purpose of denoising it is necessary to find
structural similarity in an extended non-local region of an image feature. The
values of the most similar patches in the non-local search window contribute to
a weighted average of the denoised central voxel. In this paper we will use the
non-local weights to extract a geometric descriptor, which forms the basis of the
proposed multi-modal similarity metric. A related descriptor, the self-similarity
descriptor, has been presented for the application of object detection in [7].

We search for similar patches in a limited non-local region N around the
current voxel of interest xi. Within N all patches Pj are compared to the patch
centred on xi. This concept is illustrated in Fig. 1, showing a magnification
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of an image feature in two different modalities, in this case the blue and red
colour channel of a cryosection. The dashed white line delimits the non-local
search region, while the green squares outline exemplary patches Pj , and the
red square the central patch Pi.

A weight w(xi,xj) is assigned to each location xj in N according to an ex-
ponentially decaying distance function based on the Euclidean distance between
two patches Pi and Pj .

w(xi,xj) = exp
(
−
∑

Δx ‖I(xi + Δx) − I(xj + Δx)‖2

√
2σ2

)
(1)

where Δx is defined over the range of voxels within a patch centred at 0. We
thereby try to find patches within the non-local search region that are similar
to the central patch. The value for σ2 is the local variance of the noise and can
be directly estimated from the 3D image data (see [8] for details).

The similarity metric at a given position x is defined as the normalised cross
correlation (NCC) of the respective weights w1 and w2 for the images I1 and I2:

NLSD(x) =
∑

k ((w1(x,xk) − w1) · (w2(x,xk) − w2))√∑
k(w1(x,xk) − w1)2

√∑
k(w2(x,xk) − w2)2

, k ∈ Nx (2)

where w is the mean of all weights within the non-local region Nx. NCC is
robust against noise, but to accommodate for missing correspondences a mutual-
saliency weighting [9] could potentially be beneficial.

We have implemented the calculation of this new similarity term as a convo-
lution filter to evaluate the SSD of two patches. The pointwise product of both
images is obtained and subsequently convolved with a uniform averaging filter.
For the calculation of the weights within the non-local region N the second im-
age is shifted by xk −x0(∀k ∈ N ) and the averaging filter is applied again. This
implementation speeds up the calculation of the similarity metric substantially
and avoids the need for preselection of potentially good weights as proposed in
[8]. The size of the non-local region should be as large as possible, but for prac-
tical applications a size of 15x15 for 2D experiments and 7x7x7 for 3D images
together with a patch size of 3x3 and 3x3x3, respectively, has been found to be
sufficient to obtain good responses for the shape descriptor.

3 Registration Framework

Within the non-rigid registration, we aim to minimize the following cost function
w.r.t. the deformation field u = (u, v, w)T , consisting of a non-linear similarity
term S (dependent on u) and a diffusion regularization term:

argmin
u

=
∫

Ω

S (I1(x), I2(x + u))2 + α tr
(∇u(x)T∇u(x)

)2
dx (3)

Simple gradient descent methods show slow convergence, especially in homoge-
nous regions [10]. Since the objective function to be minimized is of the form
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(a) Modality 1 (b) Modality 2 (c) LNMI (d) NLSD

Fig. 2. Feature location in both images ((a) red and (b) blue channel of colour cryosec-
tion). Response in search window of (c) LNMI and (d) NLSD. Our proposed method
shows a more discriminative peak in the centre.

of
∑

i f
2
i , we can apply the Gauss-Newton optimization method, where f is

minimized iteratively with the update rule: (JTJ)ugn = −JTf , where J is the
derivative of f w.r.t. u. This can be adapted to our regularized cost function.
We simplify the notation to S = S (I1(x), I2(x)) and ∇S = ( δS

δu ,
δS
δv ,

δS
δw )T and

Δu = ∇ (∇(u(x)). The regularization term is linear w.r.t. u as the differen-
tial operator is linear. The resulting update step given an initial or previous
deformation field uprev is given by:(∇ST∇S + αΔ

)
ugn = −(∇STS + αΔuprev) (4)

Equation 4 is solved using an iterative solver. The final deformation field is
calculated by the addition of the update steps ugn. The parameter α balances
the similarity term with the regularizer. We set α = 1 in all experiments.

We have also implemented MI, the classic choice of a multi-modal similarity
criterion, within the same deformable registration framework. For the variational
optimisation we need to evaluate the similarity function at each location, there-
fore a local derivation of mutual information is used, as described in [11]. An
overview of the possibilities of variational implementations other statistical sim-
ilarity terms, as well as a discussion of a locally weighted computation of the
global measures, is given in [12].

Given the joint probability p12(i) of the co-occurrence of an intensity pair
i = (i1, i2)T in two images I1 and I2 and the two marginal intensity probabilities
p1(i1) and p2(i2), local normalised mutual information (LNMI) at location x is
defined as (using the global entropy of I1 for normalization):

LNMI(x) = log
(

p12(I1(x), I2(x))
p1(I1(x)) · p2(I2(x))

)
1∫

x
p1(I1(x)) log(p1(I1(x)))dx

(5)

The joint and marginal histograms are recalculated at each iteration and smoothed
with a Parzen window kernel of size 5x5 with a standard deviation of 0.5. We use
128 histogram bins.

4 Saliency and Robustness of Correspondences

We examine the ability of our new similarity metric to distinguish between
anatomical features in different modalities under the influence of local
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Fig. 3. (a,b) Saliency and robustness of both similarity metrics are compared. (c) TRE
of registrations of synthetic deformations (see text for details). LNMI is displayed with
solid lines and circles, NLSD with dashed lines and squares.

deformations, additive noise and non-uniform bias fields. A ground truth is pro-
vided by using two images of different colour channels taken from a cryosection
of the Visible Human Project, which are intrinsically aligned. A number of land-
marks were selected at the same location in both images using the Harris corner
detector. The similarity metric was then calculated between a point in the first
image and all locations in the second image within a window of 23x23 around
that location. Figure 2 shows one selected point and the search window in both
images. The proposed metric can better distinguish the local maximum in the
centre.

We run these comparisons over all feature locations and quantify the results
using two criteria. First, the distance of the maxima of the similarity function
is compared with the ground truth location. Deviations of more than 3 pix-
els are counted as false correspondences. We define the fractional amount of
false matches as robustness. Second, the saliency or discrimination between the
maximum and its surrounding values is quantified by convolving the similarity
response with a Mexican hat function (σ = 1), so that high positive values are
characteristic for a high saliency in the similarity function (see Fig. 3 (a,b)).

5 Results

We performed registrations, using a multi-resolution scheme, for the synthetic
test images on which a simulated deformation was applied. The deformations of
varying strengths are obtained using a uniform B-spline grid and random control
point displacements. In Fig. 3 (c) the average target registration error (TRE)
between ground truth deformations and registration are compared for LNMI
and NLSD for increasing magnitudes of deformations. For larger deformations,
NLSD shows higher accuracy, and the TRE remains almost unaffected, while for
LNMI the TRE strongly deteriorates. This demonstrates the disadvantages of
mutual information, when the initial estimate of the joint intensity distribution
is not close enough to the real distribution, due to large deformations, and the
similarity term is susceptible to local optima.
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(a) Detail view of slices of
CT target volume

(b) MRI, aligned using
LNMI

(c) MRI, aligned using
proposed metric (NLSD)

Fig. 4. Axial slices through CT and MR image of the lungs of two patients with
empyema. Contours of CT are shown for visual guidance. Landmarks in top row: de-
scending aorta (©) and carina (�) after non-rigid registration compared to the gold
standard (+) demonstrate a better alignment for NLSD. The example below shows a
substantial improvement for the dome of the diaphragm (arrow).

We then applied our proposed technique to a clinical dataset of 11 patients,
which were scanned with both CT and MRI. All patients suffered from empyema,
a lung disease where the pleura gets infected and excess fluid fills up the pleural
space. This causes the lung to collapse and the extra fluid turns into an abscess.
Both modalities are useful for detecting this pathology, but because the patients
are scanned in two different sessions and at different levels of breath-hold, there
are non-rigid deformations which make it difficult to relate the scans for the
clinician. A particular challenge for the registration are large slice thicknesses
of up to 8 mm used for the MRI acquisition. The background is removed using
a threshold and a morphological filter. For the registration, first a rigid body
transformation is estimated using a blockmatching algorithm [13]. In the second
step, the proposed non-rigid registration is performed, using a multiresolution
scheme with 3 levels. Similarity terms and their derivatives are recalculated
before each iteration of the Gauss-Newton optimisation method. The iterations
are stopped when the mean of the cost function does not further decrease.

We compare the results of our proposed metric, non-local shape descriptors
(NLSD), against local normalised mutual information (LNMI). The running time
for one 3D registration of images with a size of 253x253x132 voxels is 43 minutes
for NLSD and 24 minutes for LNMI on a single core. The range of values for the
determinant of the Jacobian of the deformation fields are [0.25, 1.81] for NLSD
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(b) Landmark registration error

Fig. 5. Quantitative evaluation of registration outcome: � before registration, � rigid-
body alignment, � non-rigid registration using LNMI, and � using the proposed metric
NLSD.

and [0.26, 1.81] for LNMI, thus no physically implausible folding occurred and
all transformations are invertible.

The registration outcome for two cases is displayed in Fig. 4. The target CT
volume is shown along with the aligned MR images with deformable registration
using LNMI and our proposed metric. Both the contours of the CT and man-
ual anatomical landmarks reveal the advantages and improved accuracy of the
presented method. To compare our findings quantitatively, we first calculated
the intensity-based similarity before and after registration using the presented
metrics. Although an improvement of a similarity function does not necessarily
ensure anatomical correspondence, it can highlight differences between meth-
ods. We use mutual information calculated within cubic blocks of 303 voxels
to reduce the influence of the non-uniform bias field in the MRI scans. Figure
5 (a) shows an improvement of this measure using NLSD, for all seven cases,
over MI. Additionally a clinical expert manually selected landmarks for the four
remaining cases. Between 12 and 15 corresponding landmarks were selected in
the four image pairs, containing both normal anatomical locations and disease
specific places. It must be noted that some of the landmarks are very challeng-
ing to locate, both due to low scan quality (motion artifacts) and changes of the
pathology in the diseased areas between scans. On average, the target registra-
tion error (TRE) could be further reduced by about 2 mm using our new metric
compared to LNMI (see Fig. 5 (b)).

6 Conclusion

In this work a new similarity metric for deformable multi-modal registration
is proposed. The non-local shape descriptor (NLSD) aims to extract the most
descriptive geometric features in medical images, while being nearly independent
of non-functional intensity relations, non-uniform intensity fields and additive
noise. This new metric can robustly find correspondences in different modalities
and strongly discriminate between salient points. The technique is implemented
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in a variational, diffusion-regularized registration framework and compared to
the most commonly used alternative - mutual information. We demonstrate that
NLSD achieves much improved and more accurate registration results, especially
in the case of large deformations. We validate our findings for the application
of deformable registration of clinical MR and CT scans of diseased patients.
Anatomical landmarks chosen by an expert clinician show improved alignment
using our metric. A more thorough evaluation, including more landmarks and
a comparison within different transformation models, will be addressed in the
future.
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Abstract. We present a stochastic optimisation method for intensity-
based monomodal image registration. The method is based on a Robbins-
Monro stochastic gradient descent method with adaptive step size esti-
mation, and adds a preconditioning matrix. The derivation of the pre-
conditioner is based on the observation that, after registration, the de-
formed moving image should approximately equal the fixed image. This
prior knowledge allows us to approximate the Hessian at the minimum
of the registration cost function, without knowing the coordinate trans-
formation that corresponds to this minimum. The method is validated
on 3D fMRI time-series and 3D CT chest follow-up scans. The experi-
mental results show that the preconditioning strategy improves the rate
of convergence.

Keywords: image registration, optimisation, stochastic gradient descent,
preconditioner.

1 Introduction

Image registration is an important technique in medical imaging applications. It
refers to the process of spatially aligning images. Extensive surveys on registra-
tion methods are presented in [2, 6] for example.

In this article, we focus on intensity-based image registration with a param-
eterised coordinate transformation. Let F (x) : ΩF �→ IR and M(x) : ΩM �→ IR
denote the fixed and moving image, respectively, with ΩF , ΩM ⊂ IRD, and D
the dimension of the images. Define the parameterised coordinate transforma-
tion T (x; μ) : ΩF × IRQ �→ ΩM with the parameter vector μ of dimension Q.
Examples of parameterisations include rigid, affine, and B-spline models. The
aim of image registration is to find transformation parameters μ̂ such that the
deformed moving image M(T (x; μ̂)) resembles the fixed image F (x). This can
be formulated as a minimisation problem:

μ̂ = argmin
μ

C(μ), (1)

� Corresponding author.
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where C(μ) represents the cost function. Examples of intensity-based cost func-
tions are mean squared difference (MSD) and mutual information (MI).

In [3–5] it was demonstrated that a Robbins-Monro (RM) type stochastic
gradient descent [9] method efficiently solves the minimisation problem (1). The
basic RM method uses the following iterative scheme:

μk+1 = μk − γ(k)g̃k, k = 0, 1, . . . ,K − 1, (2)

where g̃k denotes an approximation of the true derivative gk ≡ ∂C/∂μ(μk),
γ(k) is a scalar gain factor that determines the step size, and K is the number of
iterations. The approximated derivative g̃k is obtained by computing gk using
only a small subset of voxels x ∈ ΩF , randomly selected in every iteration k [5].
The step size γ(k) is defined as a slowly decaying function of k:

γ(k) = a/(k + A)α, (3)

with user-specified constants a > 0, A ≥ 1, and 0 < α ≤ 1. It is important to set
proper values for these constants. The optimal settings depend on the choice of
C, the transformation model, and the image content. To address this issue, an
adaptive stochastic gradient descent (ASGD) method was proposed in [3]:

μk+1 = μk − γ(tk)g̃k, tk+1 = [tk + sigmoid(−g̃′
kg̃k−1)]

+, (4)

where [x]+ stands for max(x, 0), the prime denotes the transpose operation, t0
and t1 are user-defined constants, and γ as above. The “time” variable tk realises
an adaptive behaviour, in which the step sizes are increased when consecutive
gradients g̃k point in a similar direction, and vice versa. Based on the theoretical
convergence conditions, reasonable values for a, A and α were estimated.

Both RM and ASGD are gradient descent type methods, which typically ex-
pose a low rate of convergence on badly scaled cost functions, characterised by
a high (	 1) condition number of the Hessian H ≡ ∂2C/∂μ∂μ at μ̂ [8]. In this
paper, we propose a preconditioning strategy for RM and ASGD, specifically de-
signed for monomodal image registration. The preconditioning is demonstrated
to accelerate convergence in both rigid and nonrigid registration problems.

2 Method

2.1 Preconditioned Stochastic Gradient Descent

The use of a preconditioning matrix is a well-known technique to accelerate
optimisation methods [8]. Based on the standard RM method, we define the
following preconditioned stochastic gradient descent (PSGD) method:

μk+1 = μk − γ(k)P g̃k, k = 0, 1, . . . ,K − 1, (5)

where the preconditioner P is a positive definite Q × Q matrix. It serves to
scale the derivative g̃k, and should be chosen such that larger steps are taken in
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directions where the cost function is flat, and smaller steps in directions where
the cost function has a high curvature. The theoretically optimal choice P =
H(μ̂)−1 makes (5) similar to the Newton-Raphson method. Unfortunately, since
μ̂ is unknown before registration, this choice of P is impossible to compute. It
is however possible to compute an approximation, as follows.

2.2 A Preconditioner for Monomodal Image Registration

In this subsection, a preconditioning matrix for monomodal image registration
problems is derived. For explanation, MSD is used as a cost function, but the
derivation is similar for other cost functions. The MSD cost function is given by:

C(μ) =
1
V

∑
x∈ΩF

(F (x) −M(T (x; μ)))2 , (6)

with V the number of x ∈ ΩF . For the derivative g(μ) and the Hessian H(μ)
we have:

g(μ) ≡ ∂C
∂μ

= − 2
V

∑
x∈ΩF

(F −M ◦ T )
∂T

∂μ

′ ∂M
∂x

, (7)

H(μ) ≡ ∂2C
∂μ∂μ

=
2
V

∑
x∈ΩF

[
∂T

∂μ

′ ∂M
∂x

∂M

∂x

′ ∂T

∂μ

− (F −M ◦ T )
(

∂2T ′

∂μ∂μ

∂M

∂x
+

∂T

∂μ

′ ∂2M

∂x∂x

∂T

∂μ

)]
,

(8)

where the compact notation M ◦T ≡ M(T (x; μ)) was introduced, and all func-
tion arguments were omitted. Our aim is to find an approximation H̃ to H(μ̂),
whose inverse can be used as a preconditioning matrix P .

When F and M are images of the same modality, we can exploit the fact that
M ◦ T will be approximately equal to F after successful registration: F (x) ≈
M(T (x; μ̂)). With this approximation, the following two identities are derived:

F −M ◦ T = 0,
∂M

∂x
=
[
∂T

∂x

′]−1
∂F

∂x
. (9)

Substituting (9) in (8) yields the following approximation of the Hessian at μ̂:

H̃ =
2
V

∑
x∈ΩF

∂T

∂μ

′[∂T

∂x

′]−1
∂F

∂x

∂F

∂x

′[∂T

∂x

]−1
∂T

∂μ
. (10)

Since μ̂ is unknown, we approximate the terms ∂T/∂μ(x; μ̂) and ∂T /∂x(x; μ̂)
by ∂T /∂μ(x; μ0) and ∂T /∂x(x; μ0), respectively. By setting ∂T /∂x ≈ I (as-
suming small deformations) the following expression is finally obtained:

H̃ =
2
V

∑
x∈ΩF

∂T

∂μ

′
(x; μ0)

∂F

∂x
(x)

∂F

∂x

′
(x)

∂T

∂μ
(x; μ0). (11)
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We then define the preconditioning matrix by P ≡ [H̃ + βλI ]−1, with 0 ≤
β ≤ 1 a user-defined factor, and λ > 0 the maximum eigenvalue of H̃, which can
be estimated using an iterative block-Lanczos method. By adding the identity
matrix, the condition number of P is limited to (β+1)/β, as a safeguard in case
of ill-conditioned H̃, which may arise in nonrigid registration problems. In rigid
registration problems, β ↓ 0 is a valid choice. Instead of explicitly computing the
matrix inverse, a Cholesky decomposition H̃ +βλI = LL′ is used, allowing fast
application of P ≡ L

′−1L−1 in each iteration. Note that H̃ is independent of
μk, so H̃ and the Cholesky decomposition only need to be computed once.

2.3 Preconditioned Adaptive Stochastic Gradient Descent

A preconditioned version of ASGD, called PASGD, is derived in this subsection,
which combines the adaptive step size mechanism of (4) with the preconditioner.

First we show that the PSGD method (5) is in fact a standard RM algorithm
performed in a different parameter space. Let us introduce a new parameter
vector ν = L′μ. The original minimisation problem (1) is equivalent to:

ν̂ = arg min
ν

D(ν), with D(ν) ≡ C(L
′−1ν). (12)

Define hk ≡ ∂D/∂ν(νk) = L−1∂C/∂μ(μk) = L−1gk. The basic RM scheme (2)
in terms of ν reads νk+1 = νk −γ(k)h̃k. Substituting h̃k = L−1g̃k and ν = L′μ
yields (13), and multiplying both sides of the equation by L

′−1 yields (14):

L′μk+1 = L′μk − γ(k)L−1g̃k, (13)

μk+1 = μk − γ(k)L
′−1L−1g̃k, (14)

in which we can recognise the preconditioner P ≡ L
′−1L−1.

Doing the same for the ASGD scheme (4) results in the PASGD method:

μk+1 = μk − γ(tk)P g̃k, tk+1 = [tk + sigmoid(−g̃′
kP g̃k−1)]

+. (15)

Since the PASGD scheme is essentially an ordinary ASGD method in the do-
main of ν, all convergence conditions given in [3] remain valid, but should be
interpreted in the space of ν. To estimate a, A, and α, a similar procedure as
presented in [3] can therefore be used. The main idea is explained here, but the
exact derivation is omitted for brevity. As suggested in [3], we set α = 1 and
A = 20. For a, the following expression was proposed in [3]:

a ≡ amaxη ≡ amaxE||g||2/ (E||g||2 + E||g − g̃||2) , (16)

where amax ≡ 2A/λ, with λ defined as the maximum eigenvalue of the Hessian of
the cost function, and E denotes the expectation. The η factor intuitively takes
into account that the step size should be reduced with increasing approximation
error of g̃. Whereas in [3] λ was unknown and had to be estimated from a
user-defined maximum allowed voxel displacement per iteration, in this work
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we can simply use λ = 1, as it can be derived that ∂2D
∂ν∂ν ≈ I. Applying the

reparametrisation to the definition of η changes the E||g||2 terms to Eg′Pg
(and similar for g − g̃). Like in [3], the expectations in the definition of η are
replaced by their empirical estimates. Since evaluating g (the exact cost function
derivative) is an expensive operation, we apply the approximation ||g − g̃||2 ≈
||g||2 + ||g̃||2 to decouple the g and g̃ terms. The term Eg′Pg is estimated by
a single measurement of g′P g (evaluated at μ0), and Eg̃′P g̃ is estimated by
averaging a few (N) measurements at random positions μn generated according
to μn − μ0 ∼ L

′−1N (0, σ2
1I), with σ2

1 = EgPg/Q.

3 Experiments and Results

The proposed PASGD method was compared to the standard RM method,
ASGD, and to a deterministic LBFGS quasi-Newton (QN) method [8]. All al-
gorithms were integrated in elastix [4], an open source software package for
image registration. The Cholesky decomposition was implemented using the
CHOLMOD library [1]. Two applications were considered: rigid registration of
3D functional MR images (fMRI) and nonrigid registration of 3D CT chest scans.

3.1 Rigid Registration of fMRI Series

Eight fMRI time-series were acquired in the context of research on brain-computer
interfaces (BCI). Seven series were recorded with a 2D EPI sequence; one with
3D PRESTO. Each time-series consisted of τ ≈ 200-400 scans. The image size
was 64×64× [20-40], with 4×4×4mm voxels. In the BCI experiments, real-time
rigid registration of each scan to the first scan is required [7]. For our experi-
ment, scans at time points t = 0, 1, 100, 200, (300, ) and τ were selected. All scans
with t > 0 were registered to the scan at t = 0, which resulted in a total of 37
registrations. Since the head’s motion was small in most cases, the experiments
were repeated with an extra initial offset to make the registration problem more
challenging. The applied translations and rotations were drawn from a uniform
distribution between ±8mm and ±6◦, respectively.

The parameter vector μ was formed by t and Sθ, where t is the translation
vector, θ represents the Euler angles, and S is a diagonal matrix with elements:

sii =

(∫
ΩF

∣∣∣∣∣∣∣∣∂T

∂θi
(x; μ0)

∣∣∣∣∣∣∣∣2 dx/∫
ΩF

dx

)− 1
2

. (17)

Matrix S scales the rotation parameters by the average voxel displacement
caused by a small perturbation of the rotation angle. This brings the values
of the elements of μ approximately in the same range, thus avoiding a very
badly scaled cost function. For PASGD, the rescaling step was omitted (S = I),
since the preconditioning matrix already should take care of this. To compute
H̃, V = 50 000 samples were used. To compute g̃k, V = 2000 random samples
were used (except for QN, which used all voxels). For P , β = 10−7 was used.
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Table 1. Results of the experiments with fMRI series

No additional offset With additional offset

||ΔT || [mm] nr. of it. ||ΔT || [mm] nr. of it.
avg± sd avg± sd avg± sd avg± sd

QN 0.00± 0.00 3± 2 0.01± 0.02 8± 2
RM a = 0.0025 0.14± 0.19 48± 68 1.15± 1.48 216± 63
RM a = 0.005 0.14± 0.14 25± 39 0.30± 0.40 156± 82
RM a = 0.01 0.13± 0.13 17± 30 0.14± 0.14 80± 54
RM a = 0.02 0.14± 0.13 40± 52 0.14± 0.13 63± 41
RM a = 0.04 0.41± 0.61 134± 83 0.38± 0.55 134± 84
ASGD 0.14± 0.14 15± 30 0.15± 0.15 102± 53
PASGD 0.14± 0.13 11± 33 0.13± 0.13 19± 36

The number of iterations was set to K = 250. The RM method was tested for
a ∈ {0.0025, 0.005, 0.01, 0.02, 0.04}, with A = 50 and α = 0.6.

The result of QN without additional offset was treated as gold standard. The
differences between the gold standard’s transformation T (x; μ̂gold) and the other
methods’ transformations were computed to verify that all methods converged
to the same solution. Table 1 presents for each method the average and standard
deviation of ||ΔT || ≡ ||T (x; μ̂gold)−T (x; μ̂)|| over all x in all images. Both with
and without additional offset, all differences were smaller than a voxel.

To compare the convergence rates, we chose ASGD as a baseline, and mea-
sured the performance improvement with respect to that method. For each
method, we counted the number of iterations before C(μk) ≤ 1.01 · C(μ̂ASGD)
occurred for the first time for at least 5 consecutive iterations. Note that C(μk)
was calculated based on all voxels of the fixed image (not only the V = 2000
random samples that were used to compute g̃k). The results are summarised in
Table 1 (nr. of it.) by the average and standard deviation over all images. The
QN method required the least number of iterations, as expected, since it uses
all voxels in each iteration (which makes it more expensive per iteration). RM
performed best with a ≈ 0.01, which gave similar results as ASGD. The PASGD
method outperformed RM and ASGD.
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Fig. 1. Cost function plot for one of the fMRI experiments with additional offset
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In Fig. 1, for one example image pair, the cost function C(μk) is plotted as a
function of k for all methods. All 37 graphs were visually inspected and the pattern
was fairly consistent. In a few cases the RM methods with a ∈ {0.02, 0.04} suffered
from instabilities (heavily fluctuating cost function values), indicating that the
step sizes were too large.

3.2 Nonrigid Registration of CT Chest Scans

CT chest scans of five patients were obtained from the Department of Radiology,
UMC Utrecht. For each patient a baseline and a follow-up scan, taken 3-9 months
later, were available. Each scan was manually cropped around the right lung, and
downsampled by a factor of two, which gave images of about 120 × 160 × 220
voxels, with voxel size approximately 1.4× 1.4× 1.4mm. As a region of interest
for registration, a dilated (kernel radius 10) lung segmentation was used.

Each follow-up scan was registered to the baseline scan using a B-spline trans-
formation model [10]. Initial experiments showed that a regularisation term needs
to be added to the cost function, to avoid foldings. The sum of second order spa-
tial derivatives of the deformation field was used as a regularisation term, with a
weighting factor of 5 · 107. The Hessian at μ0 of this term was also included in
the preconditioner. A three-level multiresolution strategy was employed. The dis-
tance between the B-spline control points was halved in each resolution level, such
that at the final level the control points were spaced 20mm in each direction. The

Table 2. Results of the experiments with CT chest scans. R3 is the finest resolution.

R1 R2 R3
||ΔT || [mm] nr. of it. nr. of it. nr. of it.
avg± sd avg± sd avg± sd avg± sd

QN 0.00± 0.00 11± 0 5± 3 3± 2
ASGD 1.26± 2.77 242± 3 214± 9 155± 28
PASGD β = 1 0.72± 1.47 52± 26 22± 11 25± 18
PASGD β = 0.1 0.36± 0.51 28± 36 5± 3 13± 10
PASGD β = 0.01 0.36± 0.38 39± 55 5± 3 13± 11
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images were smoothed using a Gaussian kernel with standard deviation of 2, 1,
and 0.5 times the voxel size, for each resolution level respectively. The matrix H̃
was computed using V = 100 000. PASGD was tested with β ∈ {1, 0.1, 0.01}. The
tests with RM were omitted in this section.

For evaluation the same approach was followed as in the fMRI experiments.
Table 2 summarises the evaluation results. The convergence results (nr. of it.) were
calculated for each resolution separately (R1-R3). The numerical results in Table 2
indicate that PASGD achieved faster convergence than ASGD. The influence of
β was moderate. Figure 2 plots the cost function series for one of the image pairs.
PASGD with β = 0.01 was omitted for clarity, since it was very similar to β = 0.1.

4 Conclusion

The experiments with fMRI and CT data show that the proposed precondition-
ing technique has a beneficial effect on the rate of convergence, both in rigid and
nonrigid registration problems. The PASGD method is, just as RM and ASGD,
designed to work with stochastic estimates of the cost function derivatives, which
leads to low computational costs per iteration [5]. The PASGD method couples
this with a good rate of convergence by using second order information of the
cost function.

References

1. Chen, Y., Davis, T., Hager, W., Rajamanickam, S.: Algorithm 887: CHOLMOD,
supernodal sparse cholesky factorization and update/downdate. ACM Trans.
Math. Softw. 35(3), 1–14 (2008)

2. Hill, D.L.G., Batchelor, P.G., Holden, M., Hawkes, D.J.: Medical image registra-
tion. Phys. Med. Biol. 46(3), R1–R45 (2001)

3. Klein, S., Pluim, J.P.W., Staring, M., Viergever, M.A.: Adaptive stochastic gradi-
ent descent optimisation for image registration. Int. J. Comput. Vis. 81(3), 227–239
(2009)

4. Klein, S., Staring, M., Murphy, K., Viergever, M.A., Pluim, J.P.W.: elastix:
a toolbox for intensity-based medical image registration. IEEE Trans. Med.
Imag. 29(1), 196–205 (2010)

5. Klein, S., Staring, M., Pluim, J.P.W.: Evaluation of optimization methods for
nonrigid medical image registration using mutual information and B-splines. IEEE
Trans. Image Process. 16(12), 2879–2890 (2007)

6. Maintz, J.B.A., Viergever, M.A.: A survey of medical image registration. Med.
Image Anal. 2(1), 1–36 (1998)

7. Mathiak, K., Posse, S.: Evaluation of motion and realignment for functional mag-
netic resonance imaging in real time. Magn. Reson. Med. 45, 167–171 (2001)

8. Nocedal, J., Wright, S.J.: Numerical optimization. Springer, New York (1999)
9. Robbins, H., Monro, S.: A stochastic approximation method. Ann. Math.

Stat. 22(3), 400–407 (1951)
10. Rueckert, D., Sonoda, L.I., Hayes, C., Hill, D.L.G., Leach, M.O., Hawkes, D.J.:

Nonrigid registration using free-form deformations: Application to breast MR
images. IEEE Trans. Med. Imag. 18(8), 712–721 (1999)



Random Walks for Deformable Image
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Abstract. We introduce a novel discrete optimization method for non-
rigid image registration based on the random walker algorithm. We dis-
cretize the space of deformations and formulate registration using a
Gaussian MRF where continuous labels correspond to the probability
of a point having a certain discrete deformation. The interaction (regu-
larization) term of the corresponding MRF energy is convex and image
dependent, thus being able to accommodate different types of tissue elas-
ticity. This formulation results in a fast algorithm that can easily accom-
modate a large number of displacement labels, has provable robustness
to noise and a close to global solution. We experimentally demonstrate
the validity of our formulation on synthetic and real medical data.

1 Introduction

Image registration is a fundamental problem in medical imaging, central for
many clinically relevant applications like statistical studies on a population of
patients, analysis of disease progress and multi-modality fusion for better diag-
nosis and treatment. The registration problem can be formalized as finding the
optimal transformation that aligns a source with a target image, based on a sim-
ilarity score. Depending on the type of transformation, registration methods can
be classified into global (rigid, affine) and local (non-linear, non-rigid). Global
registration methods involve few parameters to be optimized and are thus well-
posed, being constrained in the parameter space. Non-rigid registration methods
estimate a dense deformation field that defines, for every location, a vector that
locally aligns the two images. This is an inherently ill-posed problem due to the
high dimensionality of the parameter space and therefore relies on regularization.

Several ways of imposing regularization have been proposed in the litera-
ture [1]. The popular free form deformation model (FFD) [2] restricts the pa-
rameter space to a set of control points that define a smooth interpolation field
for the rest of the image. Alternative methods explicitly add a regularization
term (e.g. fluid, elastic) in the registration energy, that is either optimized to-
gether with the data matching term [3,4], or applied as a separate smoothing
process (demon’s [5]). One other way of imposing regularization is to restrict
the space of deformations to a Sobolev space [6]. Some effort has been made
to adapt the regularization of deformations to local image content [7,8]. This is
particularly important considering that different tissue deform differently and
parts of the image might contain an abnormality that does not match the atlas.

G. Fichtinger, A. Martel, and T. Peters (Eds.): MICCAI 2011, Part II, LNCS 6892, pp. 557–565, 2011.
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Nonlinear registration is traditionally formulated in a continuous domain and
the optimal transformation is recovered using gradient descent. This estimation
is often slow and suboptimal due to non-convexity of the energy functional that
is optimized. Recently, few works have formulated deformable registration as a
discrete labeling problem [9,10]. The space of deformations is discretized and the
registration energy is formulated as a Markov random field (MRF) optimization.
If the interaction energy is submodular, a graph cut method guarantees a good
quality solution [11,10]. For more complex interaction terms, Glocker et al. [9]
proposed a linear programming method that uses the primal dual principle.

In this paper we proposed an alternative discrete formulation of the registra-
tion problem based on the random walker algorithm [12,13]. Our formulation is
equivalent to a Gaussian MRF with an interaction (regularization) term that is
convex and image dependent, thus being able to accommodate different types of
tissue elasticity. Following the formulation from [13], we incorporate data simi-
larity terms as ’priors’ for the displacement labels. Unlike the graph cuts [10] or
the primal dual method [9] that would only guarantee a good quality solution for
the discrete registration, the random walker method finds a unique global mini-
mum. Probabilities of a particular displacement label are calculated by solving
a combinatorial Laplace equation. The random walker formulation of the regis-
tration problem results in a fast algorithm that can easily accommodate a large
number of displacement labels and has provable robustness to noise [12].

2 Methods

2.1 An Energy Formulation of Deformable Registration

Let I and J respectively be the reference (target) and the floating (source) d-
dimensional images I, J : Ω → R, Ω ⊂ R

d . Image registration seek an optimal
transformation T : Ω → Ω that aligns the two images based on a similarity
measure. In deformable registration, T is usually expressed in terms of a dis-
placement field u as T = Id + u, with the identity operator Id. u is found as the
minimum of an energy functional:

u∗ = argminuED(I, J ◦ T ) + αER(u) (1)

where ED is a data term that measures the similarity between the two images
and ER is the regularization energy term. Expanding the two energy terms, and
denoting the similarity measure with Φ and an image-dependent (adaptable)
regularization function with Ψ we get:

u∗ = argminu

∫
x∈Ω

Φ (I(x), J(x + u(x))) dx + α

∫
x∈Ω

Ψ(∇J(x),∇u(x))dx (2)

2.2 Discrete Formulation for the Random Walker Algorithm

Regarding I and J as discrete representations for the target and source image,
we next formulate registration as a discrete optimization. We consider a discrete
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set of labels L = {u1, u2, ..., uK} corresponding to a quantized version of the
deformation space ui ∈ D = {d1,d2, ...,dK}. The registration problem becomes
a labeling problem that seeks to assign an optimal label for each image location.
A common model for representing such problems are MRFs. The pixel locations
of the image are mapped on a graph G = (N , E), where N represents the set of
nodes (image locations) and E represents a neighboring system of the image grid
(typically 4 or 8 in 2D). The labeling problem is then solved by minimizing:

E(u) =
∑
i∈N

Φi(ui) + α
∑

(i,j)∈E
Ψij(ui, uj) (3)

where ui ∈ L denotes the displacement label for location i, Φi(.) is the unary
potentials representing the data term and Ψij(., .) are the pairwise potentials rep-
resenting the interaction (smoothing) term. Due to the independence assumption
of the unary data potentials Φi, we require a point-wise similarity score. This
constraint was relaxed in [9] by approximating a local score (e.g. mutual infor-
mation) in neighborhoods defined by control points. There are few formulations
of the traditional MRF for solving the discrete registration problem. When the
smoothing term Ψij is a metric, the MRF energy can efficiently be optimized
using graph cuts [10,8]. For more complex interaction terms, Glocker et al. [9]
use a linear programming method (based on the primal-dual principle).

We make few modifications to the traditional MRF from Equation 3 to be
able to map the registration problem to a random walker with priors [13]. First,
we relax the labeling system to continuous variables uk

i that represent the prob-
ability of node i having the label uk. Next, we consider a Gaussian MRF, where
the interaction term has the form Ψij(uk

i , uk
j ) = wij(uk

i − uk
j )2, with wij be-

ing an image dependent edge weight (e.g. wij = exp(−β(Ji − Jj)2) where Ji

represents the image intensity for location i). Last, for defining the data term
Φi(uk

i ), we consider a set of real-valued nodewise priors λk
i that represents the

probability density that the displacement vector at location i has the value dk,
λk

i = exp(−γ(Ii − Ji+dk)2). By Ji+dk we denoted the intensity of image J at
location i displaced with dk.

With these three modifications, following [13], we can define the registration
energy corresponding to the label uk as the continuous-valued Gaussian MRF:

Ek(uk) =
∑
i∈N

⎛⎝ K∑
l=1,l 
=k

λl
i(u

k
i )2 + λk

i (1 − uk
i )2

⎞⎠+ α
∑

(i,j)∈E
wij(uk

i − uk
j )2 (4)

While space does not allow a rigorous interpretation of the above equation (de-
tails in [13]), intuitively, we see that when λk

i is large (meaning that the dis-
placement dk matches the similarity score at location i) the data energy term
encourages high probability values for label uk and small probability values for
all other labels ul, l �= k. Compacting notations, we denote L, the combinatorial
Laplacian matrix of the graph:
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Algorithm 1. Random walker nonlinear registration

1. generate multi-resolution images I1(= I), I2, I3 and J3, with a factor r(= 2)
2. for i=3:1 do
3. define a set of discrete labels {d1, . . . ,dK}
4. setup the image graph, compute Laplacian L and priors Λ
5. solve for deformations labels uk for every k (Eq. 7)
6. assign ui = dk where k = argmax(u1

i , . . . , u
K
i )

7. if i > 1 then
8. compute source at next level Ji−1 = warp(upsample(Ji), interp(rui))
9. end if

10. end for
11. registered image = warp(J1, u1)

Lij =

⎧⎨⎩di =
∑

k wik degree of i if i = j
−wij if (i, j) ∈ E
0 otherwise

(5)

and by Λk = diag(λk), the matrix having the values of λk on the diagonal.
Equation 4 can be written as:

Ek(uk) =
K∑

l=1,l 
=k

ukT Λluk + (1 − uk)T Λk(1 − uk) + αukT Luk (6)

where uk collects all nodes probabilities for label k in a vector. The minimum
of this energy is obtained when uk is the solution of this equation:(

αL +
K∑

l=1

Λl

)
uk = λk (7)

which is a combinatorial Laplace equation of a graph augmented with a node for
each label uksuch that the weights on the new edges (k, i) have value λk

i . The
combined matrix on the left side of the equation is guaranteed to be positive
definite and therefore the equation has a unique global solution that gives the
nodes probabilities for the displacement labels uk.

2.3 Multi-resolution Framework and Implementation Details

The random walker algorithm is computationally expensive as well as memory
expensive. The number of equation systems to be solved is the same as the
number of displacement labels, and each of these equations has the number of
variables equal to the number of pixels in the image. As the number of displace-
ment labels can be quite large, especially in 3D, not only the solution of the
linear systems is time-consuming, but also their assembly. We obtained an effi-
cient approximation of the solution using a multi-resolution framework. Due to
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target deformed reg. with demon reg. with RW

color coding orig. def. rec. def. demon rec. def. RW

Fig. 1. Comparative results of recovered deformations for checkerboard image. From
left to right, the top row shows the target image, the deformed image and the SSD
error of the registered images with demon’s and RW methods. Bottom row shows the
angle and magnitude color coding convention, the ground truth deformations and the
recovered deformations using demon’s and RW methods.

this multiresolution approach, even though the RW solution is optimal at each
resolution level, the composite solution is no longer guaranteed to be optimal.

The multi-resolution images were obtained by downsampling the original im-
ages based on nearest neighbor interpolation. We defined deformations in an
incremental way propagating deformations obtained at a lower resolution to the
next higher resolution level. This approximation is carried out by an interpo-
lation based on Delaunay triangulation after scaling the low resolution field by
the multi-resolution scale factor. At each resolution we compute the remaining
deformations by solving the sparse linear equation system 7 for each discrete la-
bel (in practice only K −1 times as we impose sum of unity for the probabilities∑

k uk
i = 1). At each level the magnitude and number of expected deformations

encoded as discrete labels {d1,d2, ...,dK} decreases. The final displacements ui

are taken as the ones with maximum probability among all labels ui = dk where
k = argmax(u1

i , . . . , u
K
i ). The algorithm is summarized in Algorithm 1.

3 Experiments

We present results of our experiments on real and synthetic data. We compared
the performance of the proposed RW registration with a traditional demon’s
implementation [14]. The set of parameters are optimized to achieve best SSD
scores (ex. α = 1, Gaussian weights wij with β = 0.005, priors λk

i with γ = 10−5

for real data). For all experiments we used 3 levels of resolution generated by
a scale factor of 0.5 and 0.25. The number of displacement labels at each level
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Table 1. Comparative numerical results for the three datasets

Deformation field err SSD err Dice coef
ang. magn.

D RW D RW D RW D RW

checkerboard 1.58 ± 1.20 0.45 ± 0.97 1.12 ± 1.54 1.65 ± 2.89 10.88 5.01 - -
brain MRI - - - - 8.82 3.38 WM: 0.82 0.84

GM: 0.79 0.81
CSF: 0.83 0.84

abdominal CT - - - - 15.46 9.64 muscle: 0.62 0.79

is dependent on the initial image size (ex. low-high resolution : 60, 40, 30 for an
initial 256×256 image, corresponding to a displacement range of about [−15, 15],
[−10, 10], [−7, 7] pixels, respectively). The experiments were run on MATLAB
using Intel Core 2 Duo Processor of 2.10 GHz with 4 GB RAM. The algorithm
took about 200 sec. to complete on a 256 × 256 image. Most time was taken by
MATLAB’s sparse linear equation solver.

3.1 Quality of Recovered Deformations

For testing the accuracy of the recovered deformation field we synthetically de-
formed a checkerboard image with a known deformation field. We tested how
deformations are recovered by the RW registration method and the demon’s
algorithm. We measured the angular and magnitude errors of the recovered de-
formation fields as well as the SSD error between target and registered images.
Qualitative results are presented in Figure 1 and numerical scores in Table 1. We
color coded deformations using the same convention as for optic flow as shown
in bottom-left of Figure 1. We notice that the recovered deformation fields using
RW registration has less artifacts, and the recovered deformations are closer in
orientation to the original ones. The magnitude of recovered deformations using
RW is slightly larger than the ones recovered using demons, probably due to
the fact that regularization is imposed at the energy level for which we obtain a
global solution as opposed to demon’s iterative approach.

3.2 Results on Real Medical Data

For the experiments with real data, we again compared our RW method and
demon’s algorithm. To quantify results we measured SSD error between regis-
tered images and the target image. Also, both datasets had some ground truth
segmentations (WM/GM/CSF for brain MRI data and muscle in the abdominal
CT data). We calculated the dice coefficients between ground truth segmenta-
tions in the target image, and segmentations from the source image warped on
the space of the target image using the recovered deformation field. Note that a
larger, closer to 1 value for a dice coefficient indicates a better segmentation.

The first experiment uses the brain MRI dataset from Internet Brain Seg-
mentation Repository1. We performed registration between two patients, both
1 http://www.cma.mgh.harvard.edu/ibsr/data.html
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source target reg. demons reg. RW

Fig. 2. Results for real data. Left to right: (row 1) brain MRI data - source, target,
SSD error between target and registered image (bright for small, dark for large errors);
(row 2) segmentations on source and target images,warped segmentations on registered
images; (row 3,4) same for abdominal CT data.

from the database. The dataset contains WM,GM and CSF labels. As shown
in the first two rows of Figure 2 and in Table 1, the RW method has better
performance both visually and quantified compared to the demon’s algorithm.

In a second experiment we registered two abdominal CT images from a local
cancer institute. Notice the large difference between the two datasets. Demon’s
method was not able to recover the large deformations but the RW’s registration
that recovers a global minimum was much better. As the muscle exist in both
images, and is therefore the part that is expected to match, we measured the dice
coefficient on the muscle segmentation. Ground truth segmentation was provided
by a medical student. Figure 2 and Table 1 present the results.
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4 Discussion

We have presented a discrete method for non-rigid image registration based
on the random walker method. The new formulation has several advantages: at
each resolution level, we globally minimize a convex energy, with a regularization
term that is image dependent thus being able to accommodate different elasticity
depending on the tissue type.

As future work, we are looking into a more efficient implementation of our
method. One option is to use a lower-dimensional deformation model like the
FFD model that computes displacements only at control points. This approach
would also allow approximating non-local data potentials (e.g. mutual informa-
tion) in neighborhoods around the control points (similar to [9]). This technically
violates the independence assumption, but practically the loss of optimality at
a particular resolution may be compensated by the richer non-local measure.
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Abstract. The identification of anatomical landmarks in medical im-
ages is an important task in registration and morphometry. Manual la-
beling is time consuming and prone to observer errors. We propose a
manifold learning procedure, based on Laplacian Eigenmaps, that learns
an embedding from patches drawn from multiple brain MR images. The
position of the patches in the manifold can be used to predict the loca-
tion of the landmarks via regression. New images are embedded in the
manifold and the resulting coordinates are used to predict the landmark
position in the new image. The output of multiple regressors is fused in a
weighted fashion to boost the accuracy and robustness. We demonstrate
this framework in 3D brain MR images from the ADNI database. We
show an accuracy of ∼0.5mm, an increase of at least two fold when com-
pared to traditional approaches such as registration or sliding windows.

Keywords: Manifold Learning, Laplacian Eigenmaps, Landmarks.

1 Introduction

The detection of landmarks is a crucial step in many medical imaging appli-
cations, including registration, shape modeling and morphometry. Approaches
to landmark detection can be roughly classified into three main categories:
geometric-, classification- and regression-based techniques.

Geometric-based techniques identify significant points, lines, surfaces or vol-
umes based on features from differential geometry. In [1], 3D differential opera-
tors are used to detect salient feature points in brain Magnetic Resonance (MR)
images. Using features of two- and three-point combinations, e.g. pairwise and
radial distances, angles, etc., a geometrical probability approach is used in [2] to
analyze the structure of 3D chromatin in interphase cell nucleii. Rosten et al. [3]
used machine learning techniques to develop a high-speed corner detector, that
is used to track corner features in real-time video. One of the main disadvantages
with the use of geometric-based features is that geometrical saliency does not
necessarily imply anatomical relevance. Another popular approach common in
the computer vision community includes the use of SIFT and similar types of
feature descriptors [4]. Unfortunately, some of these feature detectors cannot be
easily extended to 3D.
� This project was partially funded by CONACyT, SEP and the Rabin Enzra trust.
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In the classification-based approach to landmark detection the general idea is
to use a classifier to test an image, either exhaustively [5] or in a reduced space [6],
whether a patch contains the landmark or not. In [5] the authors used a variation
of AdaBoost in combination with Haar-like features to detect human faces. To
locate the faces in real time in 2D images a cascade of classifiers is constructed
which is applied to a window sliding over the entire image. Instead of sliding
a window exhaustively across the image, Lampert et al. [6] proposed a branch
and bound algorithm to reduce the search space. In [7] a probabilistic boosting
tree is used to learn a discriminative model based on contextual features, with a
marginal space learning strategy, for landmarks detection in cardiac MR images.

In Zhou et al. [8], a boosted regression approach is formulated for medical
images. Amongst other applications, the authors test their approach for the
detection and localization of anatomical structures. However, as explained in
[9], the approach has two major drawbacks: First, it assumes that the output
variables have a multivariate Gaussian distribution, which for real data is seldom
the case. The second drawback is that the weak learner in the boosted regression
is generally too weak. Therefore, the training requires the combination of a
very large number of weak regressors to converge, making the training time
computationally unfeasible, even for 2D images. In [9] the authors address these
shortcomings, by adding more representational power to the weak learner.

In this work we propose a manifold learning approach that is capable of learn-
ing a low-dimensional embedding of image patches. The assumption is that the
local anatomy around a particular landmark is well-represented in this embed-
ding. We can then learn a regressor that predicts the displacements between
the patch and the landmark. Patches from unseen images are mapped to the
learned manifold using an out-of-sample approach and the regressor is then used
to obtain an estimate of the landmark position. Finally, a consensus from the
predictions made by several patches (from the same image) is reached, using a
weighted average of all the estimates. The approach has been trained on a large
dataset of 100 brain MR images from cognitively normal subjects (CN), patients
with mild cognitive impairment (MCI) and Alzheimer’s disease (AD) from the
Alzheimer’s Disease Neuroimaging Initiative (ADNI1) study database. A differ-
ent set of 100 images from ADNI is used for testing the proposed approach.

2 Method

2.1 Laplacian Eigenmaps Manifold Learning

Given a set of NI MR brain images, we extract NP equally sized patches from
each image in a region of interest (ROI) around a landmark. Each patch con-
sisting of D voxels is stored as an intensity vector xn = {x1, ..., xD} in R

D,
and X = {x1, ...,xN}, where N = NI · NP . Our aim is to learn the underlying
manifold in R

d (d � D) that represents the relationship between patches in the
vicinity of a given landmark. We intend to learn a manifold that can be used
1 www.loni.ucla.edu/ADNI



568 R. Guerrero, R. Wolz, and D. Rueckert

to predict the displacement Δn = {δx, δy, δz} between the center of any patch
and a landmark. Manifold learning offers a powerful approach to find a represen-
tation of images that facilitates the application of machine learning techniques
such as regression. Since the patches lie on or near to a non-linear manifold,
the Euclidean distance between patches in the original space is not necesarilly
meaningful and cannot be used for regression. After uncovering the manifold
structure in the data, the Euclidean distance in the embedded space provides a
more meaningful approximation of the geodesic distance in the original space.

Laplacian Eigenmaps can be used to find a low-dimensional representation of
the data f : X → Y, yi = f (xi) while preserving the local geometric properties
of the manifold [10]. Laplacian Eigenmaps uses a local neighbourhood graph
to approximate geodesic distances among data points. In our work we use the
Euclidean norm as a distance (similarity) metric to identify the k-neighbourhood
around each point. From these distances a sparse neighbourhood graph G is
constructed. Furthermore, a weight matrix W assigns a value to each edge in G,
and is computed using a Gaussian heat kernel K(xi,xj) with standard deviation
σ. Laplacian Eigenmaps aims to place points xi and xj close together in the
low-dimensional space, if their weight wi,j is high, i.e. if they are close in the
high-dimensional space. This is done by minimizing the cost function given by

φ(Y) = argmin
∑
i,j

‖yi − yj‖2wi,j , (1)

under the constraint that yT Dy = 1 which removes an arbitrary scaling factor
in the embedding and prevents the trivial solution where all yi are zero. The
minimization of Eq. (1) can be formulated as an eigenproblem [11], through the
computation of the degree matrix M of W, and the Laplacian L, where mi,i =∑

j wi,j and L = M−W. Hence, the low-dimensional manifold Y that represents
all the data points can be obtained via solving a generalized eigenproblem, Lν =
λMν, where ν and λ are the eigenvectors and eigenvalues, and in turn the d
smallest (non-zero) eigenvectors ν represent the new coordinate system.

2.2 Approximate Nearest Neighbors

Since we are learning a manifold comprised from a relatively large number of
examples (219,700, see Sec. 3), the similarity matrix W that needs to be cal-
culated in Laplacian Eigenmaps is very large (∼50 billion elements), and even
though it is strictly k-sparse, calculating exact nearest neighbours would mean
that a non-sparse matrix would need to be calculated first, in order to find the k
nearest neighbours and then sparsify W; making the calculation of all the exact
pairwise distances computationally unfeasible. We therefore, instead calculate
approximate nearest neighbors (ANN) using a hierarchical k-means tree, which
is constructed by splitting the data points into km distinct regions using k-means
clustering, then applying the same method recursively. The recursion stops once
the number of data points in each region is below km [12], as implemented in
the FLANN library [13].
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2.3 Out of Sample Extension

For the application considered in this work, it is necessary to map new patches
into the manifold in order to use the embedded coordinates to make a prediction
via regression. For linear dimensionality reduction techniques like PCA this is
straightforward, as they provide a projection matrix for exact transformation
between the original space and the embedded space. Unfortunately, this is not
the case for non-linear methods. Therefore, approximation techniques must be
used. We address this problem by using an out of sample technique that employs
the Nyström approximation [14], which approximates the eigenvectors of a large
matrix based on the eigendecomposition of a submatrix of the large matrix.
Laplacian Eigenmaps are based on an initial kernel K, as explained in Sec. 2.1.
An equivalent, training set dependent normalized kernel, is:

K̃(x′
i, xj) =

1
N

K(x′i, xj)√
EX′ [K(x′

i,X)]EX[K(xj ,X)]
, (2)

where xj and x′
i are points from the training X and test X′ datasets, respectively,

the expectations are taken over the empirical data and N is the number of
training samples (see [15] for full analysis).

2.4 Spatial Prior Probabilities

Assuming that the brain is in some approximately known orientation and possi-
tion, a landmark’s spatial location is bounded, to a certain extent, to a particular
volume within the brain. Once the images are affinely registered, the possible
locations of each landmark are bounded within this space. Thus, we can restrict
the search for each landmark to those locations which have a non-zero probability
(ROI) for the location of the landmark. We model the spatial prior probabilities
of each landmark, based on the position of the landmark in the training set,
using kernel (or parzen window) density estimation. This can be formulated as

P (x) =
1
n

n∑
i=1

1
hd

n

Kp

(
x − xi

hn

)
(3)

where x are the 3D voxel coordinates (x, y, z), xi are all the landmark’s coor-
denates, Kp(·) is the window function or the kernel in a d-dimensional space
such that

∫
�d Kp(x)dx = 1, n is the number of observations and hn > 0 is the

bandwidth parameter that corresponds to the width of the kernel. The kernel
function Kp(·) is modelled as a Gaussian function.

2.5 Landmark Prediction

Using the low-dimensional coordinates Y = {y1, ...,yN} of each patch (that
came from the training set) and their corresponding displacements Δn (between
the centre of the patch in image space and the position of the landmark), we
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fit a linear regressor, using Y as independent variables and Δn as dependant
variables, to obtain an estimated displacement Δ′

n = {δ′x, δ′y, δ
′
z}.

A test dataset X′ is built from patches belonging to a test image’s ROI.
These patches are embedded in the landmark specific manifold, to obtain their
low-dimentional representation Y′. Using the learned regressor coefficients β, an
estimate of the displacement from patch n to the landmark is obtained. For each
test image we randomly sample 100 image patches and average the prediction
results for all the patches. Since patches that predict small displacements have a
higher accuracy, a weighted average was calculated, where predictions’ weights
are based on the magnitude of Δ′

n. A Gaussian kernel K(Δ′
n) with σ = 0.65,

and mean zero was used for the weighting.

3 Data and Results

The images that were used to evaluate the proposed method were obtained from
the ADNI database [16]. In the ADNI study, brain MR images were acquired at
regular intervals after an initial baseline scan from approximately 200 cognitively
normal older subjects (CN), 400 subjects with mild cognitive impairment (MCI),
and 200 subjects with early Alzheimers disease (AD). In this work, we used a
subset of 1.5T T1-weighted baseline images of 100 randomly chosen subjects for
training and another 100 randomly chosen subjects for testing. In both (training
and testing) datasets there are 24 AD, 48 MCI and 28 healthy subjects, to
faithfully represent the full ADNI dataset. All brain images were skull stripped,
affinely aligned to the MNI space and normalized using linear intensity rescaling.

The high-dimensional training set X = {x1, ...,xN}, is obtained by collecting
3D image cubic patches of 213 voxels around a regular grid that is centred
at the landmark, from 100 different brain MR images. The grid has a spacing
of 3 voxels and a displacement of ±18 voxels in each dimension. This volume
is chosen so that it includes the non-zero probability volume obtained from the
PDF estimation. For each image, we exhaustively sample from this grid: For each
image in the training set we sample 133 (2197) patches. Doing this for the 100
images in the trainings set and rearranging them so that each patch is represented
as column vector (with 213 values) yields a 219,700 by 9161 (N, D) matrix that
contains all the patches, from all the training images, around the landmark in
question. For both the training and testing datasets a total 20 landmarks (table
1) were manually selected by an expert observer using 3 orthogonal views.

From the training set X we learn the underlying low-dimensional manifold,
using Laplacian eigenmaps (Sec. 2.1). The parameters k (nearest neighbors in
the neighborhood graph), d (the output dimensionality of the data) and σ from
the Gaussian heat kernel, were empirically set to 50, 200 and 1, respectively.
The parameter k was chosen to yield a fully connected neighbourhood graph,
ensuring that all distances from the landmark were equally represented. The co-
efficient of determination, R2, for the linear regression was used as an indicative
to determine the final dimensionality d of Y, with values of around 0.9 obtained
for 200 dimensions. Finally, tuning the parameter σ shows little improvement.
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Fig. 1. Diagram of method’s training and testing steps

Similarly, for each new test image, we took 100 patches at random locations,
within a non-zero probability in the PDF and not necessarily belonging to the
grid used in the training. We then embed the new points (patches) into the
learned low-dimensional manifold, using the technique described in Sec. 2.3, and
use the regression coefficients to obtain a prediction from each point. A final
landmark prediction for each image is obtained, using a weighted average, as
described in Sec. 2.5. A diagram of the whole process is shown in Fig. 1.

Table 1 shows results of the proposed method (landmark specific manifold,
LM) and two other possible approaches: a 3D adaptation of the sliding window
algorithm (SW) [5], and non-rigid registration (REG). The 3D sliding window, is
trained using 400 positive and 4000 negative examples (taken from the vicinity
of the positives), and it is build as a monolithic 100 feature (3D Haar features)
classifier. In the registration approach, a non-rigid B-spline registration algo-
rithm (as proposed in [17]), with a final control point spacing of 5mm, was used
to propagate the landmarks from the MNI template back to the baseline images,
using the transformations obtained from the registration process. A five by two
cross validation of the method was carried out in order to asses the results and
ensure repreducibility (the average of the five tests is showned, with a varriabil-
ity among tests of ∼0.19mm). Our methods shows its poorest performance on
the lower aspect of the cerebellum (point 16), this is mainly attributed to the
fact that this particular landmark is very close to the edge of the image and
the surface of the brain, meaning that relatively few patches in its vicinity con-
tain useful information. A statistical comparison, between the three classes of
patients (AD, MCI and CN), of the landmark positions in the training dataset
and the landmark prediction error using our method offered no intra class dis-
tinction. It was also observed that landmarks with a higher location variability
tend to have a higher prediction error then those with a lower variability.

4 Discussion and Future Work

We have proposed a method that uses Laplacian Eigenmaps to learn a low-
dimensional manifold that represents local anatomy around a specific landmark
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Table 1. Accuracy of the proposed method on the ADNI database, for the Splenium
of corpus callosum (outer aspect, inferior tip and inner aspect (1,2,3)), Genu of corpus
callosum (outer and inner aspect (4,5)), Superior and inferior aspect of pons (6,7),
Superior and inferior aspect cerebellum (8,16), Fourth ventricle (9), Putamen posterior
and anterior (10,11)(left), (12,13)(right), Anterior and posterior commissure (14,15),
Anterior tip of lateral ventricle (left and right) (17,18), Inferior tip of lateral ventricle
(left and right) (19,20).

Mean Std. dev.
L SW ML REG SW ML REG

1 1.75 0.75 3.95 1.04 0.31 1.43
2 1.46 0.52 2.1 0.75 0.23 0.89
3 1.81 0.51 2.31 0.99 0.25 1.31
4 1.58 0.55 1.73 1.09 0.24 1.01
5 1.28 0.52 1.47 0.67 0.25 0.64
6 1.22 0.52 2.79 0.63 0.26 1.26
7 1.86 0.59 1.7 0.92 0.25 0.85
8 2.27 0.7 2.99 1.71 0.33 1.64
9 1.09 0.48 5.57 0.65 0.22 2.7
10 2.21 0.54 4.36 1.22 0.21 1.81

Mean Std. dev.
L SW ML REG SW ML REG

11 1.86 0.53 2.48 1.13 0.25 1.29
12 2.2 0.49 3.53 1.22 0.22 1.78
13 2.31 0.53 2.79 1.61 0.26 1.43
14 1.27 0.45 1.05 0.72 0.22 0.42
15 0.79 0.46 1.85 0.6 0.2 0.48
16 2.13 1.08 3.71 1.69 0.43 1.68
17 1.86 0.62 3.67 1.14 0.33 1.72
18 1.84 0.62 3.65 1.2 0.4 1.73
19 2.28 0.57 4.44 1.42 0.3 2.07
20 2.18 0.54 4.01 1.18 0.28 1.79

in brain MR images. The landmark specific low-dimensional manifolds were
learned using image patches (around the vicinity of the landmark) from 100
brain MR images belonging to the ADNI dataset. Prior knowledge of the spatial
distribution of the landmarks was used to reduce the search space. Our results
show that the proposed method significantly outperforms a 3D sliding window,
B-spline registration and a naive average, in the landmark localization task.

Anatomical landmarks of the brain have a constrained position within the
brain and to the relative position of other landmarks. The inferior tip, inner and
outer aspect of the splenium of the corpus callosum, are part of the same anatom-
ical structure, so their locations with respect to each other is strongly correlated.
A graphical model of the joint spatial distribution probabilities of related land-
marks, in the form of a Markov random field, could be used to represent spatial
dependencies. Joint spatial probabilities between related landmarks can be mod-
eled as a continuous multivariate Gaussian. The most probable configuration of
all the landmarks, according to the graphical model, where the marginal spatial
probabilities of the landmarks (possibly a Gaussian fit to the output from all
the predictions made from the proposed method or a SW approach) could act
as a weight on the joint spatial probabilities, would yield sub-pixel accuracy.

Other possibilities for improvement could be the use of more powerful regres-
sion techniques such as support vector regression or a multiple output regression.
An interesting path to explore, would be to learn a manifold of the whole brain,
this would enable to locate any landmark (or pseudo landmark) within the brain,
allowing to determine the position of hundreds or thousands of pseudo landmarks
in every new image, allowing for a good fast first stage registration.
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Abstract. Accurate slice positioning of diagnostic MR brain images
is clinically important due to their inherent anisotropic resolution. Re-
cently, a low-res fast 3D “scout” scan has become popular as a pre-
requisite localizer for the positioning of these diagnostic high-res
images on relevant anatomies. Automation of this “scout” scan align-
ment needs to be highly robust, accurate and reproducible, which can
not be achieved by existing methods such as voxel-based registration.
Although recently proposed “Learning Ensembles of Anatomical Pat-
terns (LEAP)” framework [4] paves the way to high robustness through
redundant anatomy feature detections, the “somewhat conflicting” accu-
racy and reproducibility goals can not be satisfied simultaneously from
the single model-based alignment perspective. Hence, we present a data
adaptive multi-structural model based registration algorithm to achieve
these joint goals. We validate our system on a large number of clinical
data sets (731 adult and 100 pediatric brain MRI scans). Our algorithm
demonstrates > 99.5% robustness with high accuracy. The reproducibil-
ity is < 0.32◦ for rotation and < 0.27mm for translation on average
within multiple follow-up scans for the same patient.

1 Introduction

The inherent MR imaging characteristics of high “in-plane” and low “out-of-
plane” resolution warrant high accuracy requirements on the positioning of di-
agnostic imaging slices. Moreover, there is significant intra- and inter-patient
variation in the starting orientations and axes of the scanning volumes. Hence,
the use of low-res isotropic 3D “scout” scans as a pre-requisite sequence to im-
prove the positioning accuracy has become a necessity prior to all clinical brain
studies. In the current MR brain workflow (Fig.1(a)), a well-trained technician
positions the imaging planes for the following high-res scans based on anatomy
information in this fast low-res “scout” scan. For example, the axial plane of a
standard high-res brain scan should be positioned parallel to the bicommissural
line linking the landmarks of anterior and posterior commissure.
� This research was conducted while the authors were at Siemens Healthcare, USA.
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Fig. 1. (a) The 3 steps of the current MRI examination workflow. The goal of our is
to develop an automatic algorithm for the 2nd step. (b) Accuracy (left): a precise and
standardized anatomy for all patients characterized by vertical brainstem and correct
middle sagittal plane (MSP). Reproducibility (right): a consistent alignment for the
follow-up scans of the same patient characterized by “no motion” in rigid structures
when switching between aligned re-scan “scout” images. (c) Atlas and subject scans
with different relations between brain stem and corpus callosum.

The inaccuracy, irreproducibility and time consumption limitations of manual
alignment make automatic alignment algorithms greatly desirable. For these
automatic alignment algorithms to be clinically acceptable, they need to be
not only robust and accurate, but also reproducible, i.e., the alignment of the
follow-up scans of the same patient should be identical with respect to relevant
anatomies. Fig.1(b) illustrates the accuracy and reproducibility requirements for
standardized brain alignment.

In [1], Andre et al. proposed an automatic slice positioning technique by reg-
istering the scout scan with a pre-aligned one. This method is not robust when
the images contain large growing tumor, field of view change, severe noise, image
artifacts or missing structures, etc. In addition, it is well known that the voxel-
based image registration methods show high reproducibility in registering scans
of the same patient, but are not as good for aligning scans from different pa-
tients, especially under the constraints of rigid or affine transformation for brain
images. We experimentally validated this by registering several pair of re-scans
(A1 and A2) from the same patient to a model scan (B) from a different patient
using mutual information (MI) based image registration. Unfortunately, when
both scans (A1 and A2) achieve “best” matching with the model scan (B), i.e.,
MI is maximized, the reproducibility is not good - larger motion was observed
when switching between the two aligned scans (A′

1 and A′
2).

Sharp et al. [2] proposed another approach jointly based on feature landmarks
and image registration that relies on the availability of previous scans of the same
patient. This method obtains remarkable accuracy and efficiency, however, their
assumption on previous scan availability may not be applicable in real practice.
In [3], Zhang et al. presented an auto-align system using image registration and
active shape model, however, the “reproducibility” issue is not well addressed.
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Recently, “Learning Ensembles of Anatomical Patterns (LEAP)” [4] has shown
high robustness in anatomy detection through learning redundant local appear-
ance cues and sparse configurational models. Hence, an auto-align system based
on LEAP [7] achieves extremely high robustness in the presence of severe arti-
facts/diseases. However, as [7] rigidly aligns scout scans to a single atlas/model,
it fails to fully accomplish the “somewhat conflicting” “accuracy” and “repro-
ducibility” goals simultaneously. To illustrate this, a schematic example is shown
in Fig. 1(c). Here the brain stem and corpus callosum have different articula-
tion angles (between blue and red dash lines) in the atlas and subject scans.
If the alignment relies on all landmarks (3 from brain stem and 3 from cor-
pus callosum), higher reproducibility is expected as small variations of landmark
detections can be averaged out by robust point set registration techniques.

However, the accuracy requirement would be hard to meet (the aligned brain
stem is not vertical) owing to the compromise of corpus callosum (note that only
rigid alignment is allowed in MR auto-align). On the contrary, if the alignment
relies only on the 3 landmarks of brain stem, one might achieve accurate align-
ment (vertical brain stem); but reproducibility is sacrificed as variations of brain
stem landmarks have larger impact on the final alignment. Clearly, this conflict
will not exist if the articulations between brain stem and corpus callosum are
similar in atlas and subject scan or in other words, if the atlas constructed is
adaptive to the detected anatomical feature landmarks in the subject scan. In-
deed, this is the motivatation behind our Data-adaptive Multi-structural Model
(DMM). It aims to compose a virtual atlas using learned exemplars of differ-
ent local brain structures, based on the auto-detected anatomies in the subject
scan. The constructed virtual atlas might not exist in real world, but it is the
best approximation of the subject brain structure. Therefore it is a much better
solution than picking from multiple models directly, given the limited data in
practice. Additionally, multiple models would not be able to capture the local
structure variations as well as the DMM. The philosophy behind our method is
similar to [8]. However, our method differs significantly from [8] in terms of multi-
structural model (landmark based vs. image based) and objectives (alignment
reproducibility vs. segmentation accuracy).

2 Methodology

Our auto-align system consists of three major steps. First, a set of anatomi-
cal landmarks are detected using LEAP [4] algorithm. Briefly put, LEAP is a
learning-based algorithm that exploits “redundant” local appearance cues and
sparse configuration models to achieve highly robust anatomy detections. Sec-
ond, by querying the Data-adaptive Multi-structural Model (DMM) database, a
virtual atlas is composed to optimally match the detected landmark set. Finally,
a landmark-based rigid alignment is performed to register the landmark set with
the virtual atlas, which brings the scout scan to the standard position. Since the
major contribution of this work lies in the Data-adaptive Multi-structural Model
(DMM), we will focus on it in the remainder of this section.
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Fig. 2. Flowchart for learning multi-structural clusters. We demonstrate the images in
2D while the data is actually in 3D.

Notations. Define I = {1, 2, . . . , M} be the labels for M anatomical landmarks.
Given N training scans with all these M landmarks annotated, assume xj

i is the
ith landmark in the jth image, X j = {xj

i |i = 1, 2, . . . , M} denotes a set including
all landmarks from the jth image and Xi = {xj

i |j = 1, 2, . . . , N} denotes a set
including the ith landmark from all N images.

Construction of Multi-structural-Model. The basic idea of multi-structural-
model is to group anatomical landmarks into different clusters. During the run-
time, the “optimal” exemplars from different cluster can be composed to form a
virtual model which has the similar brain structure spatial configuration as the
subject’s. To leverage the spatial correlations between landmarks, the construc-
tion of multi-structural-model starts from calculating the spatial variations.
Calculate spatial variations of each landmark: (Fig.2 (2)) To remove the vari-
ations from global transformation, we first register landmarks from different
training images, i.e., X j , j = 1, . . .N , to a common canonical space. The spa-
tially normalized point set is defined by X̃ j = Rj(X j) , where Rj is a similarity
transformation estimated using group-wise point set registration [5], which is a
pre-step to align the training subjects. Given the average position of the ith land-
mark across all subjects X̄i = E(X̃ j), the spatial variation of the ith landmark
can be captured by a displacement field Ui = {uj

i = x̃j
i − X̄i|j = 1, . . . , N}.

Build 3D histogram of displacement fields: (Fig.2 (3)) To reveal the statistical
insight of the spatial variations, a 3D histogram hi is built on each displace-
ment field Ui. More specifically, the whole space of displacement field is di-
vided into 9 × 9 × 9 bins along x, y and z dimensions and hi(x, y, z) is ob-
tained by counting the occurrences of uj

i in bin (x, y, z). As cumulative density
function (cdf) is more robust than histogram, we convert hi(x, y, z) to cdf as
Fi(s, t, l) = Σs,t,l

−∞hi(x, y, z). It is used in the similarity measure in the next step.
Landmark clustering using affinity propagation: (Fig.2 (4)) The clustering of
anatomy primitives(landmarks) is finally accomplished by Affinity Propagation
[6] method. Compared to other clustering methods, affinity propagation shows
advantages in its less sensitivity to bad initialization and no requirement for a pre-
set cluster number which is often unknown in our problem. Here, each landmark
is considered as a data point in the affinity network and the similarity between
label pairs v and w are defined as:
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A(v, w) = −α
∑
s,t,l

||Fv(s, t, l) − Fw(s, t, l)||22 − (1 − α)||X̄v − X̄w||22 (1)
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Fig. 3. This figure illustrates the Data-adaptive
Multi-structural Model Database

The second term measures the
average distance between two
landmarks. It ensures that two
nearby landmarks have higher
probability to be clustered to-
gether (in accordance with our
observations of the brain anatomy).

As shown in Fig.3, we now
have a multi-structural database
that consists of a set of clus-
ters. In other words, brain is
divided into multiple pseudo sub-
structures (here “pseudo” indi-
cates that a cluster might not
strictly correspond to the well de-
fined sub-structures in the medical atlas). Each sub-structure has N instances
coming from the N training images. More specifically, each X j is now parti-
tioned into a set of {Sj

k}, k ∈ {1, 2, . . .K}, each of which contains a subset of
landmarks from X j . These pseudo-sub-structures provide the flexibility of com-
posing a virtual atlas while still maintaining the connections of closely related
anatomy primitives.
Extraction of representative exemplars: Given the landmarks detected in a test-
ing scout image, a naive way to compose an “optimal” virtual atlas from the
multi-structural-model is to go through all instances in all clusters. Clearly,
when the number of training samples become large, the runtime efficiency will
be greatly degraded. Therefore, we propose to extract representative exem-
plars for each cluster Sk. Principal Component Analysis is applied to all in-
stances belonging to Sk, i.e., {S1

k ...SN
k }. The first few principal variation modes

Ŝj
k, j ∈ {1, 2, . . .L}; L � N , are used as representative exemplars of Sk.

Adaptive Composition of Virtual Atlas. During run-time, multi-structural
model is employed to derive optimal virtual atlas. Given a testing scout scan, our
auto-align system starts by detecting a set of landmarks T = {ti}, i = 1 . . .N us-
ing LEAP. As LEAP algorithm has specific detectors for every anatomical land-
mark, the correspondences between detected landmarks and our multi-structural
model are automatically built. T is then decomposed into pseudo-sub-structures
as {Tk}, k = 1 . . .K according to the built-in landmark label clusters in the
multi-structural model. For each Tk, it queries the multi-structural model and
finds the most similar exemplars as Ŝopt

k ← minj ‖R(Tk) − Ŝj
k‖2. Here R(·) de-

fines the transformation that brings Tp to the multi-structural model space.
Finally, a virtual atlas V is obtained by integrating all these optimal sub-

structural exemplars as V =
⋃

k=1...K Ŝopt
k . As a result, each sub-structure of

this atlas has the most similar spatial configurations with the detected anatomy



Automatic Alignment of Brain MR Scout Scans 579

Fig. 4. Auto-align results on challenging cases, i.e., severe artifacts (Left), tumors
(Center) and pediatric (Right). Please refer to Fig. 1(b) for alignment requirements.

primitives in the same local regions. As discussed in Section 1, if spatial config-
urations between different anatomy primitives are similar in atlas and subject,
the accuracy and reproducibility requirements are no longer in conflict. Thus the
virtual atlas derived from the multi-structural model paves the way to achieve
accurate and reproducible alignment simultaneously.

3 Experiments

Experimental Setting. Our validation data set includes a large number of T1-
weighted 3D scout scans: 731 adult (age: 15-87 years) and 100 pediatric (age:
months to 14 years). Some adult volunteers are scanned multiple times to test the
reproducibility of the algorithm. 90 adult and 40 pediatric scans were selected
as training data. 22 anatomical landmarks are annotated for constructing the
DMM model and training the LEAP algorithm. The regularization parameter
α in Eqn. (1) was set to 0.7. We compare our method with the landmark-based
alignment using Single Fixed Model (SFM), wherein the model is the average
constructed by group-wise point set registration [5].

Accuracy. Our method provides accurate alignment on 690 cases out of the
701 testing cases. It was verified qualitatively by the experts who checked the
correctness of the MSP and the verticality of the brainstem (as indicated in
Fig. 1(b)). Some example alignment results on challenging cases in Fig.4 to
demonstrate the robustness and accuracy of our algorithm. In Fig. 5, our method
shows superiority accuracy with little (< 1◦) or no tilt, as compared to SFM,
wherein brains brainstems are visibly slanted by 3◦-5◦.

Reproducibility. We validate the reproducibility of our method on 5 volun-
teers, each with 14-18 re-scans. For better visualization, we overlayed two aligned
re-scans in a checkerboard pattern in Fig.6. The edges of the brain structure (e.g.,

Fig. 5. Comparisons of DMM(red) and SFM(blue) methods (in coronal views)
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Fig. 6. Checkerboard visualization of aligned re-scans. Brainstem regions are zoomed-
in for a better visualization of reproducibility.

Fig. 7. Each figure shows the rotation or translation errors for each re-scan subject from
the 5 data sets. The errors are estimated by registering each re-scan MRI localizer to
a selected template from the same data set.

Table 1. Percentage of the re-scan data set with rotation error ≤ 0.1, 0.2 and 0.5
degrees, and the translation error ≤ 0.1, 0.2 and 0.5 mm (first three rows). The last
three rows show the average rotation and translation errors along with the standard
deviation and the improvements of DMM w.r.t SFM method.

Rotation Error (degree) Translation Error (mm)
DMM SFM DMM SFM

Statistics θ1 θ2 θ3 θ1 θ2 θ3 tx ty tz tx ty tz

≤ 0.1◦/mm 34.7% 20.8% 27.8% 22.0% 10.3% 22.1% 25.6% 29.6% 26.8% 15.3% 26.4% 31.9%
≤ 0.2◦/mm 52.8% 38.9% 52.8% 38.2% 30.9% 36.8% 39.4% 53.5% 50.7% 37.5% 47.2% 59.7%
≤ 0.5◦/mm 86.1% 80.6% 89.0% 75.0% 67.7% 69.1% 85.9% 90.2% 93.0% 83.3% 93.0% 91.6%
Abs. Mean 0.238 0.318 0.231 0.313 0.580 0.379 0.268 0.226 0.244 0.309 0.253 0.277

Improvement 23.96% 45.17% 39.05% 13.27% 10.67% 11.91%
STD 0.093 0.174 0.108 0.074 0.260 0.107 0.143 0.037 0.092 0.157 0.098 0.134

brain stems in the zoomed up images) crossing checkerboards are well preserved,
which shows the good reproducibility of our method. To quantitatively evaluate
the reproducibility of our algorithm, we obtain the “ground truth” transforma-
tion between re-scans using MI-based image registration, since it is well known
that MI-based image registration is almost perfect in aligning scans from the
same person. The quantitative “reproducibility” is shown in Fig.7. Table.1 shows
the reproducibility of our method compared to SFM. For each re-scan dataset,
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we listed the percentage of scans at different error levels, the average translation
and rotation errors, and the percentage of improvement from SFM to DMM.

Runtime Efficiency. Our method is implemented by Python2.5 and C++.
Running on an Intel(R) Xeon(R) machine with 2.33GHz CPU and 3GB RAM,
it takes about 5 seconds to align one 192× 192× 144 brain MRI. This serves to
anecdotally illustrate the computational time involved.

4 Conclusions

In this paper, we presented a method to automatically align MR brain “scout”
scans with high accuracy, reproducibility and robustness. The joint goals of
accuracy and reproducibility were met by using a data-adaptive multi-structural
model. Our system, validated on a large number of clinical cases, automates the
manually positioning procedure, which can highly improve the quality and speed
of the brain MR examination workflow.

Acknowledgement. The authors would like to thank Martin Harder for a lot
of valuable discussions and data collection.
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Abstract. The reconstruction of histology sections into a 3-D volume
receives increased attention due to its various applications in modern
medical image analysis. To guarantee a geometrically coherent recon-
struction, we propose a new way to register histological sections simulta-
neously to previously acquired reference images and to neighboring slices
in the stack. To this end, we formulate two potential functions and as-
sociate them to the same Markov random field through which we can
efficiently find an optimal solution. Due to our simultaneous formulation
and the absence of any segmentation step during the reconstruction we
can dramatically reduce error propagation effects. This is illustrated by
experiments on carefully created synthetic as well as real data sets.

1 Introduction

Today, histology is still the gold standard for assessing anatomical information on
a cellular level. Tissue samples are cut into ultra thin slices, stained, and viewed
under a microscope. While traditional histology involves only a few slices to be
analyzed, there is an increasing need to reassemble consecutive slices into a 3-D
volume. Given such a volume, novel high-resolution in-vivo imaging techniques
(e.g. micro-CT, high-field MRI, or phase contrast X-ray CT) can be validated,
atlases can be created on a micron level, or 3-D micro-structures can be quan-
tified for analysis. However, the geometrically coherent creation of such a 3-D
histological volume is difficult to achieve, since the histological sectioning process
introduces artifacts and distortions like holes, foldings, and tears.

There are currently two major approaches to create 3-D histological volumes:
registration between consecutive sections [12,9,10,4,11] and registration of sec-
tions to external reference images coming from e.g. 3-D in-vivo imaging or 2-D
block-face images acquired during histological sectioning [2,6,5]. A comprehen-
sive overview of recent techniques is given by Cifor et al. [4]. When registering
solely consecutive sections, the reconstructed structures are homogeneous but
the aperture problem leads to drifts in the stack direction. These drifts cancel
out real changes between neighboring sections, in particular for curved anatom-
ical structures. This can be avoided by external reference images, but usually
those images feature a smaller resolution or contrast than their corresponding

G. Fichtinger, A. Martel, and T. Peters (Eds.): MICCAI 2011, Part II, LNCS 6892, pp. 582–589, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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(a) (b) (c)

Fig. 1. Sample block-face image (a), its corresponding histology section (b), and a
histology section that was heavily disrupted during cutting (c).

histological sections. Furthermore, the structural homogeneity between consec-
utive sections can hardly be guaranteed when aligning histological to reference
images slice-by-slice.

To benefit from the advantages of both approaches, their sequential utilization
has been proposed [13,3]. This can result in more homogeneous histological vol-
umes of higher resolution, but comes at the cost of multiple sequential processing
steps and may require a large number of empirically determined parameters.More-
over, the nature of sequential processing can easily annihilate improvements of a
previous step and again worsen the overall structural homogeneity or continuity.

Our approach tackles this problem by registering histological sections simul-
taneously to their corresponding reference images and to their neighboring sec-
tions. We explicitly avoid any segmentation step during the registration process
to keep propagated errors low. In order to efficiently solve the simultaneous align-
ment problem, we employ discrete optimization techniques for dense deformable
registration using Markov random fields (MRFs) [7]. In our MRF, unary poten-
tials account for the registration to reference images, and two distinct pairwise
potentials account for the registration to neighboring slices and for regularizing
transformations, respectively. This model allows us to jointly register all sections
to their respective reference while maintaining structural homogeneity. To the
best of our knowledge, this is the first time where histology re-stacking is per-
formed in a single process and solved efficiently by intensity-based registration
using discrete optimization.

2 Method

Given a set of histology images I = {I1, . . . , In} and their corresponding block-
face images J = {J1, . . . ,Jn} (cf. Fig. 1a, b) we seek a set of sufficiently smooth
transformations T = {T1, . . . , Tn}, which align each Ii to Ji and to its adjacent
neighbors Ii−1, Ii+1. This can be modeled by an energy minimization as

T∗ = argmin
T

ER(I,J ,T) + EC(I,T) + ES(T), (1)
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where ER(I,J ,T) =
∑n

i=1 ER(Ii ◦ Ti,Ji) computes the energy between histol-
ogy images and block-face images, EC(I,T) =

∑n−1
i=0 EC(Ii◦Ti, Ii+1◦Ti+1) com-

putes the energy between consecutive histology slices, and ES(T) =
∑n

i=1 ES(Ti)
acts as an independent in-plane regularizer on each transformation Ti.

In the remainder of this section we will first explain the steps taken to pre-
align the given image stacks. Subsequently, we will focus on how to solve the
optimization problem in a discrete framework.

2.1 Rigid Pre-alignment

To initialize and speed up our discrete optimization framework, we first rigidly
align all pairs of histological sections and their corresponding block-face images.
This can be fully automated by extracting and aligning the 2-D contours of
our sample for each image pair, followed by a rigid registration. As our tissue
sample is embedded in black paraffin as in [3] and hence clearly distinguishable
from its background in both the histological and block-face images, we can use
Otsu’s automatic thresholding method to obtain all 2-D contours. For each pair
of contours we compute their semi-major axes and centers based on moments
and align them to obtain an initial rotation and translation for rigid registration.
To be robust against the variability of intensities and visible structures between
block-face and histological images, our rigid registration uses normalized mutual
information.

2.2 MRF Formulation of the Deformable Stack Registration

We will now explain our MRF model for optimizing Eq. (1). In order to build an
MRF model we first parameterize the transformations T. We use a set of uniform
free-form deformation (FFD) grids, i.e. the displacement field representing each
Ti is parameterized using 2-D FFDs based on cubic B-splines. Please note that we
choose a stack of 2D FFD grids to model the independent transformations that
happen while cutting each slice individually. The MRF is then constructed by
assigning a node to each control point pi of an FFD grid Gi. We create two types
of links between nodes: (a) between neighboring in-plane control points, which
are located in the same FFD grid Gi, and (b) between neighbors in consecutive
FFD grids Gi,Gi+1, see Fig. 2.

We define a labeling l as the assignment of discrete values to nodes. We as-
sociate each label assignment lp to a corresponding displacement dlp of control
point p. For a given labeling l we can then cast ER as a sum of unary terms,
and EC ,ES as sums of pairwise terms, respectively, leading to an overall MRF
energy E(l):

E(l) =
n∑

i=1

∑
p∈Gi

Θi
R(lp)+γ

n−1∑
i=1

∑
p∈Gi,

q∈Gi+1

Θi,i+1
C (lp, lq)+λ

n∑
i=1

∑
p∈Gi

∑
r∈N (p)

Θi
S(lp, lr),

(2)
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Ii
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in-plane grid nodes/

FFD control points p;q
labels lr, displacements dlr

consecutive link

in-plane link

Fig. 2. MRF for two section images

where γ and λ are weighting factors to relate the three terms and N (p) denotes
the set of in-plane neighbors of control point p.

We can now compute costs for each term:

Θi
R(lp) =

∫
Ωi

η(x,p)D1(Ii(x + dlp)),Ji(x))dx (3)

Θi,i+1
C (lp, lq) =

∫
Ωi

η(x,p)η(x,q)D2(Ii(x + dlp), Ii+1(x + dlq))dx (4)

Θi
S(lp, lr) =

∫
Ωi

R(dlp ,dlr)dx, (5)

where D1(., .), D2(., .) compute intensity-based dissimilarity measures and R(., .)
computes a regularizing penalty to achieve in-plane smoothness of transforma-
tions. η(x,p) is a weighting factor, which controls the influence of control point
p to pixel x.

Given the discrete energy formulation E, we can perform the simultaneous
deformable registration using two specific dissimilarity measures D1, D2, a regu-
larizer R, and a discrete optimization algorithm. In our particular application, we
use normalized mutual information for D1 and normalized cross correlation for
D2 assuming only linear intensity changes between consecutive slices. We choose
to penalize the squared difference between neighboring displacement vectors, i.e.
R(dlp ,dlr) = ||dlp − dlr ||2. For solving the discrete labeling problem (involving
unary and pairwise terms only) we use the iterative quadratic pseudo-boolean
optimization (QPBO) algorithm [8].
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3 Results

We evaluated our method on synthetic data as well as histological sections of a
rat kidney. To demonstrate the effect of our data term, we compare our method
to a sole histology-to-block-face registration utilizing normalized mutual informa-
tion, a registration only using consecutive histological sections utilizing normalized
cross correlation, and a sequential, but not simultaneous combination of the two.

During deformable registration, we set most required parameters to the de-
fault values proposed in [7], i.e. the maximum allowed displacement of each level
of the multi-scale approach is bound to the grid resolution, the sampling rate
from the zero-displacement to the maximum displacement is 5, sparse sampling
is used, and 5 optimization cycles are performed on each pyramid level. We
however use two image and control point resolution levels. Our label set scaling
factor is set to 2/3. We use 12 bins for the histograms needed for the computa-
tion of mutual information. Our weighting factors γ and λ are set to 0.2 and 2,
respectively. These factors are determined experimentally and altering them did
not vastly change the reconstruction results.

3.1 Synthetic Data

Our synthetic ground truth data resembles an ellipsoidal tissue sample embedded
with skew tubular structures of varying diameter. To simulate the histological
cutting process, we arbitrarily tear some of the sections and apply random FFDs
to each section.

For realistic tearing we model each tear by its center, direction (pointing to-
wards the closest point on the contour of the sectioned sample), and its apex
angle. A tear symmetrically opens the sample within the apex angle and de-
scribes an elliptic sector whose pixels are all nullified. It also linearly affects its
neighboring pixels within a specified influence angle, the further away from the
direction vector, the less influence a pixel gets. The corresponding deformation
field is stored as backward warping and has its maxima along the two vectors
defining the elliptic sector. Deformations are linearly decreasing towards the
direction vector as well as towards the vectors defined by the influence angle.
Figure 3a shows a teared and deformed section.

We model staining and inherent intensity variabilities between block-face and
histological images by inverting all original voxel intensities. We also add Gaus-
sian noise to the ground-truth images (≡block-face images) and to the deformed
inverted images (≡histology sections) to imitate the image acquisition process.
Eventually we store the 2-D ground truth deformation fields for all pairs of
deformed and ground truth images and run our method.

In order to quantitatively evaluate our method, we apply the performance
measures commonly used for optical flow evaluation by the vision community
[1]. In detail, we compute the absolute endpoint error (EE) and the relative
angular error (AE) between the ground truth and resulting deformation fields as
well as the interpolation error (IE) and normalized IE (NE) between the ground
truth and deformed images. Table 1 shows the measured errors for all compared
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(a) source (b) reference (c) result (d) endpoint error

Fig. 3. Synthetic experimental data showing one section (top) and a cut through the
stack (bottom) of the ground truth data (a, b) and our registration results in terms of
the deformed image (c) and its corresponding endpoint error (d)

methods, where relative improvements compared to the initial situation (where
sections are assumed to be rigidly aligned) are included. Fig. 3d shows the EE
of our simultaneous approach.

It can be seen that our proposed method achieves the largest relative im-
provement of each error measure. The registration only comprising consecutive
sections performs worst - this is due to a drift of the stack images, which in-
creases errors in the deformation fields (AE, EE) and hence differences between
the ground truth reference and deformed images (IE, NE). Moreover, it should
be noted that a sequential application of histology-to-block-face and consecu-
tive registration can decrease the quality of the alignment: the results are worse
than a registration based on block-face images only, which is again related to
the global drift mentioned above.

3.2 Rat Kidney

The rat kidney sample was cut into 9 μm thin sections (see Fig. 1b for a sample
image). Before each cut we acquired a block-face image (cf. Fig. 1a) using an
Olympus E-620 SLR camera with a 50 mm 1:2 macro objective. About 5% of
our sections were disrupted during cutting, which is usually unavoidable in the
histological sectioning process (cf. Fig. 1c for an example). After staining all
sections with hematoxylin and eosin, we digitized them using a MIRAX MIDI
whole slide scanner by Carl Zeiss. Using a grid spacing of 1 mm, we exemplarily
run our registration algorithm on a stack of 580 sections (including the disrupted
sections) of 1008 x 756 pixels and a pixel spacing of 33.38 μm, which took about
2.5 hours to complete on a workstation with 24 GB memory and 8 cores.

Figure 4 shows a cut in the middle of the volume orthogonal to slicing direc-
tion. Out of all techniques, ours produces the most similar structures compared
to the uncut situation. In the close-ups, it can be observed that our method
(Fig. 4h) performs satisfactory even in the presence of disrupted slices, while
the consecutive (Fig. 4f) and sequential (Fig. 4g) methods fail and histology-to-
block-face registration (Fig. 4e) produces large jitter.
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Table 1. Experiments on synthetic data. The values in brackets are the relative im-
provements compared to the initial alignment.

error measure

method AE EE IE NE

initial alignment 50.84 1.57 26.06 13.28

histology-to-block-face
registration

36.26
(+28.68%)

1.22
(+22.29%)

17.70
(+32.08%)

9.13
(+31.25%)

consecutive registration
57.41

(-12.92%)
1.91

(-21.66%)
25.76

(+1.15%)
12.35

(+7.00%)

sequential approach
36.56

(+28.09%)
1.23

(+21.66%)
24.97

(+4.18%)
11.72

(+11.75%)

simultaneous approach
34.30

(+32.53%)
1.17

(+25.48%)
16.69

(+35.96%)
8.66

(+34.79%)

(a) block-face (bf) (b) rigid pre-alignment (c) simultaneous

(d) block-face (e) histo-to-bf (f) consecutive (g) sequential (h) simultaneous

Fig. 4. First row: sagittal cuts through the kidney. The first image is generated from
block-face images, middle and right show histology images before and after simultane-
ous registration. Second row: exemplary close-up of a vessel structure.

4 Conclusion

In this paper we develop a method for the fully automatic reconstruction of 3-D
histology stacks. Our approach guarantees geometrical coherence by combining
the registration of sections to block-face images with a registration between
neighboring slices. This allows us to undo deformations induced by cutting while
aligning anatomical structures that are not apparent in the block-face images.
Experimental results show that our simultaneous registration algorithm is not
only accurate, but also robust against artifacts produced during the cutting
process. Moreover, its sensitivity to misalignment due to grossly corrupted slices
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is almost negligible. Motivated by our excellent results, we intend to extend
our current implementation with adequate streaming techniques to be able to
increase the resolution of input and output data in the future.
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Abstract. Log-euclidean polyaffine transforms have recently been intro-
duced to characterize the local affine behavior of the deformation in prin-
cipal anatomical structures. The elegant mathematical framework makes
them a powerful tool for image registration. However, their application is
limited to large structures since they require the pre-definition of affine
regions. This paper extends the polyaffine registration to adaptively fit a
log-euclidean polyaffine transform that captures deformations at smaller
scales. The approach is based on the sparse selection of matching points
in the images and the formulation of the problem as an expectation max-
imization iterative closest point problem. The efficiency of the algorithm
is shown through experiments on inter-subject registration of brain MRI
between a healthy subject and patients with multiple sclerosis.

Keywords: Registration, Polyaffine, Log-Euclidean, Structure Tensor.

1 Introduction

Medical image registration is used in a variety of applications, from atlas con-
struction to intraoperative navigation. The goal is to find a transform T that
maps an image I onto another image J . A valuable property of the transform is
diffeomorphism which guarantees invertibility and topology preservation [9].

Different models can be chosen for T [4]. Dense field models, as returned
by diffeomorphic demons [9], are very flexible. However, models with fewer pa-
rameters are typically more robust. Log-euclidean polyaffine transforms (LEPT)
[2,6] are compact and diffeomorphic transforms. They are built by composing
affine transforms in the log-domain, and have been successfully used to register
predefined anatomical structures [6].

The nature of tissues suggests that higher order deformations could also be
modeled by LEPT with more degrees of freedom. However, predefining affine
regions at a lower scale would be too cumbersome or impossible.

This paper introduces a registration method that adaptively fits a LEPT based
on matching points sparsely selected in the image. The main contribution is the
extension of the expectation-maximization iterative closest point (EM-ICP [7])
to use LEPT. This scheme accounts for matching ambiguities due to regularities
in the image and naturally integrates regularization as a prior on T .
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The rest of this paper is organized as follows. Section 2 introduces the elements
of the algorithm. Section 3 shows results on brain inter-subject registration.
Section 4 concludes and presents some directions for future work.

2 Methods

The proposed method, summarized in Table 1, aims at optimizing the param-
eters of a LEPT to map image J onto I. The location of the anchors of the
affine components are first defined. The parameters of the affine components are
then estimated in a multi-scale approach. At each scale, corresponding points
are selected and their prior matching probabilities are recorded. The optimiza-
tion then alternates between updating the posterior matching probabilities and
optimizing the transform parameters. The image structure tensor is used in the
definition of these probabilities to account for matching ambiguities.

Table 1. Summary of the proposed method

1: Define the anchor locations ak in I .
2: for r = 0 to R − 1
3: Compute the structure tensor S of image I at scale r.
4: Compute the LEPT weights w(x) at scale level r.

5: Select the K best matches C = {(mi, si,j , πij)} between I and T (r−1) ◦ J .
6: for i = 1 to Nit do

7: E-Step Update the probabilities: C(r) ← Update(C(r−1); T (r−1),S).

8: M-Step Optimize the affine corrections δL(r) ← Optimize(T (r); C(r),S).

9: Composition of the affine components: exp(L
(r)
k ) ← exp(L

(r−1)
k ) exp(δL

(r)
k ).

10: Interpolation of the transform: T (r) ← Interpolate(L(r), w(x)).
11: end for
12: end for

2.1 Log-Euclidean Polyaffine Transforms

Log-euclidean polyaffine transforms (LEPT) are defined as a weighted composi-
tion of N affine transforms in the logarithm domain [2]. In other words, under
the action of an LEPT, the point x is transformed to x + T (x) with

T (x) = exp

(
K∑

k=1

wk(x)Lkx̃

)
, (1)

where exp(.) is the exponential-map, Lk ∈ R
3×4 is the principal logarithm of an

affine matrix in homogenous coordinates (with the last line ignored), wk(x) are
the weights which depend on the anchor location ak, and x̃ = [x, 1]T . LEPT
have remarkable properties. They are invertible and their inverse is a LEPT [2].

In this paper, the location of the anchors are determined a priori based on the
local intensity heterogeneity of the image. More precisely, a measure of hetero-
geneity hI(x) is computed at every x (see Sec. 2.3). The anchors are defined as
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the K-means centroids of the point cloud spanned by all x s.t. hI(x) > h̄I(x),
where h̄I(x) is a sliding mean of heterogeneity. Hence, the anchors will tend
to concentrate more in areas with high local contrast. Given K anchors ak, we
want to optimize the 12K parameters corresponding to the Lk’s.

2.2 Block Matching

Block matching is used to establish a dense correspondence between points in
image I and J . As a similarity measure, the correlation coefficient (CC) is used
because of its invariance under any linear mapping of intensities. Let Bm (resp.
Bs) be the block centered at mi (resp. si,j) in image I (resp. J), the CC is:

ρ(mi, si,j) =
Cov(Bm, Bs)√

Var(Bm)Var(Bs)
.

For each block in I, the CC of the best match ρmax(mi) is compared to the mean
of all CC for this block ρ̄(mi). The N points with the highest ratio ρmax/ρ̄ are
selected. The prior matching probability is modeled as a normal distribution of
the root mean squared error (MSEn=2−2ρ) between normalized blocks (zero
mean, unit variance):

πij =
1√

2πσ2
e

exp
(
−2 − 2ρ(mi, si,j)

2σ2
e

)
.

Block matching is not robust to noise and suffers from the aperture problem.
To deal with this issue, M matches in J are recorded for each of the N selected
points in I, and we will choose N  K. The remaining of this paper explains
how the LEPT can be robustly estimated based on this set C of matching pairs.

2.3 Image Structure Tensor

The location of the matches can be ambiguous due to the regularity of the inten-
sity profile around the point. This problem can be addressed by anisotropically
weighting the error with the structure tensor [5].

The structure tensor at xk, S(xk) ∈ R
3 is defined as the autocorrelation of

the intensity gradient ∇I(x) in a neighborhood Ωk:

S(xk) = EΩk

{∇I(x)∇I(x)T
}

=
1

|Ωk|
∑

x∈Ωk

∇I(x)∇I(x)T .

The normalized structure tensor, S(x)=S(x)/||S(x)||2, is positive semidefinite
with a maximum eigenvalue of 1 and an eigenvector aligned with ∇I(x) in Ωk.

Consequently, the norm of e′ = Se is more affected by the component of e
parallel to ∇I(x). In other words, the overall error is less affected by matching
ambiguities due to regular structures than by errors made in the direction of
∇I(x).

Besides weighting the errors, the structure tensor is also used to define anchor
locations. Indeed, its highest eigenvalue λ3 is significantly higher than zero only
for heterogenous areas, making it natural to define hI(x) = λ3(x).
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2.4 Transformation Estimation

Given the set C of matching pairs with prior probabilities πij , we propose to
estimate the transform T by maximizing the joint log-likelihood of C and T [7,1]:

T ∗ = arg max
T

E {log P (C, T )} = argmax
T

E {log P (C|T )}+E {log P (T )} . (2)

The first term of (2) tends to honor the detected correspondences. The second
term is a prior on T . This term favors some transforms over others, based on
intrinsic properties of the transforms only. This is a statistical interpretation of
the regularization energy used in [4,6,9]. We will use the following prior:

log P (T ) = −λ2
∑
k,l

ak,l||Lk − Ll||2 + cst,

where ||.||2 is the Frobenius norm and ak,l =
∑

x wk(x)wl(x)
(

1∑
x wk(x)+

1∑
x wl(x)

)
is an overlapping coefficient. This expression states that transforms are more
likely if nearby affine components (components that share a common affecting
area) are close to each other. Interestingly, this term is equivalent to the regu-
larization energy defined in [6].

An efficient method to optimize (2) is EM-ICP [7]. This algorithm consists in
alternatively optimizing the criterion for C considering T fixed (E-step) and for
T considering C fixed (M-step). If enough matching pairs are selected, EM-ICP
is very robust to noise. It is thus well suited to cope with the block matching
issues. The E-step simply results in computing the matching probabilities:

(C)ij =
πijp(si,j |mi, T )∑
k πikp(si,j |mk, T )

, (3)

where the expression of p(si,j |mi, T ) is accounts for the matching ambiguities:

p(si,j |mi, T ) = exp
(
−||S(mi)(mi − T ∗ si,j ||2

2σ2
n

)
.

The M-step then consists in optimizing the parameters of T :

T ∗ = argmax
T

N∑
i=1

M∑
j=1

(C)ij log p(si,j |mi, T ) − λ2
K∑

k,l=1

ak,l||Lk − Ll||2. (4)

Unlike affine transforms, this equation does not have an obvious solution for the
parameters Lk, due to the exponential map of (1). Therefore, we propose a first
order approximation in which T (x) is approximated by:

T (x) ≈ I +
N∑

k=1

wk(x)Lkx̃.



594 M. Taquet, B. Macq, and S.K. Warfield

In that case, optimizing (4) amounts to the quadratic programming (QP):

l∗ = argmin
l

(Hl − D)T S(Hl − D) + λ2lT Al, (5)

where:

l ∈ R
12K is the vector of the elements of Lk taken row-wise and concatenated,

H ∈ R
3N×12K is the interpolation matrix. Each 3 × 12 block [H ]ij corre-

sponds to point mi = (xi, yi, zi) and the jth anchor aj and is equal to
I3 ⊗ (wj(mi)m̃i)T , where I3 is the 3 × 3 identity matrix and ⊗ stands for
the Kronecker product,

D ∈ R
3N is the vector obtained by taking, for each mi, the barycenter of its

matches si weighted by (C)ij (the equivalence between criterion (4) and the
use of barycenters is justified in [7].),

S ∈ R
3N×3N is the block diagonal matrix of the structure tensor. Each 3 × 3

block on the diagonal corresponds to the structure tensor at point mi,
A ∈ R

12K×12K is the prior matrix with (A)k 
=l = −ak,l and (A)kk =
∑

l ak,l.

In practice, the weights wi and overlapping coefficients ak,l are thresholded out,
so that H , S and A are sparse. Taking the derivative of (5) w.r.t. l and setting
it to 0 yields the linear system:

(HT SH + λ2A)l = HT SD. (6)

Interestingly, the regularization term is optimized simultaneously with the simi-
larity term, unlike [6] where an ad-hoc one step gradient descent is performed on
the regularization energy. Alternating the estimation of matching probabilities
(3) and the estimation of parameters (6) until convergence results in a globally
optimal LEPT that best fits the observations of the block matching.

2.5 Weights: The Kriging Estimator

In [6,2], the weights wk(x) are simply a normalized Gaussian function of the
distance between the point and the anchor. Here we use the Kriging estimator
(KE) to define these weights, as in [8]. The KE has the advantage of adapting
the weights to the spatial distribution of anchors in a statistically sound way.

Let us interpret LEPT as random fields of matrix logarithms L(x) for which
Lk are observations at locations ak. In this interpretation, the weights are the
coefficients of a linear estimator of L at x. KE is a best linear unbiased estimator
for the field L(x), given a (presumably valid) model of its spatial correlation en-
coded in a variogram: γ(x, y)=E

{|L(x) − L(y)|2/2
}
. Given (γa(x))i=γ(ai, x),

the weights w(x)=(w1(x)...wK(x))T are obtained by solving the linear system:[
w(x)

μ

]
= Γ (x)−1γa(x), with Γ (x) =

[
(γ(ai, aj)) 1

1T 0

]
∈ R

(K+1)×(K+1)

where μ is the Lagrange multiplier ensuring unbiasedness of the estimate. In this
paper an exponential isotropic variogram is used: γ(x, y) = 1 − e−||x−y||/t.
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Fig. 1. (Left) LEPT (displayed as checkpoints) are able to accurately recover the syn-
thetic field (deformed grid) within the brain volume (Middle) Influence of N on the
recovering accuracy (the x−axis is logarithmic) (Right) Influence of K on the recover-
ing accuracy.

3 Experiments and Results

The method was tested on a dataset of ten brain T1-MRI (resolution: 256×256
×176). A synthetic experiment was first carried out. Inter-subject registration
was then performed. Unless otherwise mentioned, parameter values are: K=500,
N=(20+5r)3 at scale r, R=5, M=20, Nit=5, t=40, λ2=0.3, σe=σn=5. For block
matching, blocks of 53 voxels and searching region of 93 voxels are used.

3.1 Synthetic Experiments

The knowledge of a ground true deformation helps understanding how the algo-
rithm behaves. A synthetic field T (x) = sin(πx

50 ) cos(πy
50 )(3, 3, 3)T was applied to

the image. Both adaptive LEPT and diffeomorphic demons accurately recovered
T within the brain volume, with mean absolute error of 0.21 and 0.12 respectively
(Fig. 1) and were invertible (min. jacobian of 0.67 and 0.65 respectively).

The registration was then performed for different number N of sparse matches
and K of anchors. The evolution of the accuracy with N (Fig. 1) suggests that
the method is not sensitive to the number of selected matches as long as this
number is high compared to K. For lower N , the affine transforms can no more be
robustly estimated and the performances collapse. The evolution of the accuracy
with K (Fig. 1) tells us that no loss of accuracy is observed between K = 700
and K = 300, suggesting that the number of selected matches is the bottleneck
here. For lower K, the performance decreases, but the method does not diverge,
since all affine components can still be robustly estimated.

3.2 Inter-subject Registration

The method was then applied to register ten multiple-sclerosis (MS) patients to
one healthy subject. Each brain was skull stripped and affinely registered to the
subject. Images were manually segmented by an expert in a validated protocol,
providing an external validation criterion for the registration. More precisely,
the Dice’s coefficient between the subject label image and the label image of the
patients after alignment were computed for each tissue (Fig. 2).
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Fig. 2. Dice’s coefficient with a 95% CI. Adaptive LEPT aligns structures better than
diffeomorphic demons. The difference is especially significant for low contrast structures
such as the putamen and the insluae.

Fig. 3. (Left to right) Subject with labeled tissues, projected labels of the patient’s
tissues after diffeomorphic demons registration and after adaptive LEPT registration,
patient image with the deformed grid overlaid

As a whole, adaptive LEPT aligns tissues better than diffeomorphic demons.
For high contrast regions (e.g. lateral ventricles), both methods achieve com-
parable results. However, diffeomorphic demons tend to excessively favor these
regions at the cost of a very poor alignment of low contrast structures (e.g.
putamen). For these structures, the difference of performance between the two
algorithms is strongly significant.

Fig. 3 depicts the aligned contours for one slice, along with the deformed
grid. Again, the Jacobian of the field never fell under 0 (min. jacobian of 0.12).
However, a strong pinching effect appeared in the lobe regions. These regions are
typically subject specific and, while good pairs of local matches can be detected,
they may be misleading in the transform estimation. Finally, note that the non-
rigid deformation of the structures (as seen e.g. by the bending of the lateral
ventricles) would not be captured if a single affine region was defined for them
as in the previous LEPT registration framework.

4 Conclusion and Future Work

This paper introduced a registration algorithm that adaptively fits a LEPT based
on a set of sparse matches. Results on inter-subject registration show that LEPT
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are able to capture the local affine deformations occurring at small scales. In a
future work, we want to investigate an adaptive way of incrementally defining
the anchor locations such as in [3]. The choice of location could include a cost
related to the confidence of the estimation in order to avoid the pinching effect
observed in Fig. 3.
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Abstract. This paper presents a new approach for reconstructing a
patient-specific shape model and internal relative intensity distribution
of the proximal femur from a limited number (e.g., 2) of calibrated C-arm
images or X-ray radiographs. Our approach uses independent shape and
appearance models that are learned from a set of training data to encode
the a priori information about the proximal femur. An intensity-based
non-rigid 2D-3D registration algorithm is then proposed to deformably
fit the learned models to the input images. The fitting is conducted it-
eratively by minimizing the dissimilarity between the input images and
the associated digitally reconstructed radiographs of the learned models
together with regularization terms encoding the strain energy of the for-
ward deformation and the smoothness of the inverse deformation. Com-
prehensive experiments conducted on images of cadaveric femurs and on
clinical datasets demonstrate the efficacy of the present approach.

1 Introduction

Constructing a personalized three-dimensional (3D) model from a limited num-
ber of calibrated C-arm images or X-ray radiographs and a statistical model has
drawn more and more attention. The reported techniques can be split into two
main categories: those based on statistical models of shape [1][2][3] and those
based on statistical models of shape and intensity [4][5][6][7][8][9]. The methods
belonging to the former category typically require an implicit or explicit image
segmentation which is error-prone and hard to achieve automatically. The errors
in segmentation may lead to errors in the final reconstruction. In contrast, shape-
intensity statistical model based methods directly compare the input reference
images with the floating simulation images called digitally reconstructed radio-
graphs (DRR), which are obtained by ray casting of a volume data instantiated
from the learned model. No segmentation is required.

Most of the shape-intensity statistical model based methods are closely re-
lated with the Active Appearance Models (AAM) pioneered by Cootes et al.
[10]. According to Matthews and Baker [11], there are basically two types of
linear shape and appearance models, those model shape and appearance inde-
pendently, and those which parameterize shape and appearance with a single
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set of linear parameters. They referred the first set as independent shape and
appearance models and the second as combined shape and appearance models.
One good property associated with the independent formulation is that given
a hypothesized shape the associated optimal appearance/intensity parameters
may be determined analytically.

The contribution of this paper is a new approach for reconstructing a patient-
specific shape model and internal relative intensity distribution of the proximal
femur from sparse calibrated X-ray images. Unlike existing approaches, where
they used either combined shape and appearance models [7] or a shape statisti-
cal model together with a density model approximated by Bernstein polynomials
[4][6][8][9], our approach uses independent shape and appearance models that are
learned from a set of training data. An intensity-based non-rigid 2D-3D regis-
tration algorithm is then proposed to deformably fit the learned models to the
input images. The fitting is conducted iteratively by minimizing the dissimilar-
ity between the input images and the associated DRRs of the learned models
together with regularization terms encoding the strain energy of the forward
deformation and the smoothness of the inverse deformation.

2 Construction of the Statistical Models

We constructed two independent shape and appearance models of the proximal
femur, one for the left side and the other for the right side. Each independent
shape and appearance model was constructed directly from CT data of 20 dry
cadaveric proximal femurs of the associated side based on a two-stage procedure
as described below.

Our two-stage independent shape and appearance model construction proce-
dure follows the idea introduced by Rueckert et al. [12]. In the first stage, we
chose one of the proximal femur volumes as the reference volume I1st

0 and the
diffeomorphic Demons algorithm [13] was used to establish the dense correspon-
dences between the reference volume and each one of the 19 floating volumes.
The output from the diffeomorphic Demons algorithm include: (1) the dense
deformation fields {d1st

i ; i = 1, ..., 19}; and (2) the 19 non-rigidly deformed float-
ing volumes {I1st

i ; i = 1, ..., 19}. Each deformation field d1st
i was expressed as

a concatenation of 3D vectors describing the deformation at each voxel of the
reference volume and each non-rigidly deformed floating volume I1st

i as a con-
catenation of gray values of each voxel in the reference volume. From these data,
we computed the average deformation field d̄1st = (n−1) ·∑n

i=1 d1st
i and the

average intensity distribution Ī1st = ((n + 1)−1) ·∑n
i=0 I1st

i .
The purpose of the second stage is to remove the possible bias introduced

by the reference volume selection. To achieve this goal, we applied the average
deformation field d̄1st to the reference volume I1st

0 to create a new volume s0

and assigned the average intensity distribution Ī1st to this newly created volume.
This new volume s0 was then used as the new reference volume in the second
stage and all input 20 proximal femur volumes were regarded as the floating
volumes. The diffeomorphic Demons algorithm [13] was used again to establish
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Fig. 1. Projections of the mean and the first two modes of variations of the shape (left)
and the intensity (right) statistical models

the dense correspondences between the new reference volume and the other
20 floating volumes.We thus obtained a set of 20 new dense deformation field
{di; i = 1, ..., 20} and a set of 20 non-rigidly deformed floating volumes {Ii; i =
1, ..., 20}. We could then separately construct the shape statistical model and the
intensity statistical model. The shape statistical model was constructed using
following equations.

SD = ((m − 1)−1) ·∑m
i=1 (di − d̄)(di − d̄)T

d̄ = (m−1) ·∑m
i=1 di

PD = (p1
D,p2

D, ...); SD·pi
D = (σi

D)2 · pi
D

d = d̄ +
∑MD

k=1 αk
Dσk

Dpk
D

(1)

where m = 20 is the number of training samples; d̄ and SD are the average
and the covariance matrix of the displacement fields, respectively; {(σi

D)2} and
{pi

D} are the eigen values and the eigen vectors of the shape statistical model,
respectively; {αi

D} are the model parameters; MD is the cut-off points.
Fig. 1 shows the projections of the mean and the first two modes of variations

of the shape (left) and the intensity (right) statistical models. Each instance
of the shape statistical model was generated by evaluating Is = Ī(s0 + d̄ +
αDσi

Dpi
D), with αD ∈ {−3, 0, 3}. Each instance of the intensity statistical model

was obtained by evaluating II = Ī+αIσ
i
Ip

i
I , with αI ∈ {−3, 0, 3}, where {(σi

I)
2}

and {pi
I} are the eigen values and the eigen vectors of the intensity statistical

model, respectively; Ī = (m−1) ·∑m
i=1 Ii is the average intensity distribution.

From the instances of the shape statistical model (Fig. 1, left), it can be
observed that although the instantiated intensity model is the same (here it
is the average intensity distribution Ī), the change of shapes already encode
the change of the relative intensity distribution inside the instantiated shape
model (e.g., the thickness of the cortical bone along the shaft is different across
the instantiated volumes). Thus, we argue that it is sufficient to search only in
the space of shapes in order to estimate the personalized shape model and its
internal relative intensity distribution. Based on this argument, we developed an
intensity-based non-rigid 2D-3D registration algorithm as presented below.
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3 Intensity-based Non-rigid 2D-3D Registration

In this work, we assume that we have a set of Q ≥ 2 X-ray images and that all
images are calibrated and co-registered to a common coordinate system called
c. Given an initial estimation of the registration parameters, our algorithm iter-
atively generates a volume and update the parameter estimation by minimizing
the dissimilarity between the input images and the associated DRRs that are
created from the instantiated volume.

Volume Instantiation and Alignment. The volume instantiation and align-
ment process is parameterized by two sets of parameters, i.e., the set of shape
parameters b = (α1

D, α2
D, ..., αMD

D )T determining the forward deformation from
the reference volume s0 to an instantiated volume s and the set of parameters
a = (Λx, Λy, Λz, β, γ, θ, tx, ty, tz)T determining the scaled rigid transformation
from the space of the instantiated volume s to the common coordinate system
c, where the first three are scaling parameters; the middle three are rotational
parameters and the last three are translational parameters. An instantiated vol-
ume that is aligned to the common coordinate system c is defined by following
equation:

Ī(xc(a,b)) = Ī(A(a) ◦ W(b) ◦ x0) (2)

where A(a) is the scaled rigid transformation and W(b) is the forward
deformation.

Eq. (2) describes a forward warping that should be interpreted as follows.
Given a voxel x0 in s0, the destination of this voxel under the forward transfor-
mation is xc(a,b) = A(a) ◦W(b) ◦ x0. The aligned instance at voxel xc(a,b) is
set to the intensity Ī(x0), which then allows creating DRRs by simulating X-ray
projection.

Implementing this forward warping to generate the model instance without
holes is tricky and is best performed by backward warping. More specifically, as
all the input images are calibrated, we can compute a back-projection ray for
each pixel in the input images. We then do a sampling to get a set of discrete
points along each ray. The intensity values at these points are then obtained by
the backward warping with following inverse transformation:

x0 = (W(b))−1 ◦ ((A(a))−1 ◦ xc(a,b)) (3)

It is straightforward to compute the inverse of the scaled rigid transforma-
tion A(a). However, it is tricky to compute the inverse of the forward de-
formation W(b). In this paper, given an estimation of the shape parameters
b = (α1

D, α2
D, ..., αMD

D )T , we use the fixed-point approach as proposed by Chen
et al. [14] to invert the forward deformation field.

Energy formulation. Given an instantiated volume, the two sets of parameters
are updated iteratively by minimizing following energy function:

E(a,b) = EImage(a,b)+ρ1 ·
∑MD

k=1
(αk

D)2(σk
D)2+ρ2·

∫
s

||∇((W(b))−1)||2dx (4)
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Fig. 2. Validation on a clinical dataset. The left two images show the projections of
the reconstructed volume while the right two images show the original C-arm images
superimposed by the contours detected from the left two images.

where the first term is the image dissimilarity energy term; the second term is the
strain energy of the forward deformation, which, according to Cootes and Taylor
[15], can be used to enforce the prior probabilities on the shape’s deformations;
the last term is a diffusion-like regularization term; ρ1 and ρ2 are regularization
parameters.

We have chosen to use the robust dissimilarity measure that we introduced in
[16] to compare the floating DRRs to the associated reference X-ray images. This
dissimilarity measure is defined by modeling the qth observed difference image
as a Markov random field with respect to the rth order neighborhood system
N = {N r

i,j} and is described by following equation:

EImage(a,b) =
Q∑

q=1
[λ

I,J∑
i,j

D2
q;(i,j)(a,b)+

(1 − λ)
I,J∑
i,j

1
card(Nr

i,j)

∑
(i′,j′)∈Nr

i,j

(Dq;(i,j)(a,b) − Dq;(i′,j′)(a,b))2]
(5)

where I × J is the size of each X-ray image; Dq = {Dq;(i,j)} is the qth observed
difference image. We refer interesting readers to [16] for the details about how
the difference images are computed and about the details of above equation. The
advantage of using such an energy function is that it has a least-squares form
and can be effectively minimized by a Levenberg-Marquardt optimizer.

The registration Algorithm. Considering the fact that regularization on a
vector field can be implemented as a kernel convolution [18], we developed fol-
lowing intensity-based non-rigid 2D-3D registration algorithm.

Algorithm (Intensity-based non-rigid 2D-3D Registration). The follow-
ing two stages are executed until the convergence of the algorithm.

– Scaled rigid registration stage: The shape parameters are fixed to the current
estimation bt and the Levenberg-Marquardt optimizer is used to iteratively
minimize the image dissimilarity energy Eimage(a,bt) in order to obtain a
new estimation of the scaled rigid transformation parameters at+1.

– Non-rigid registration stage: The scaled rigid transformation parameters are
fixed to at+1 and the Levenberg-Marquardt optimizer is used again to iter-
atively estimate the new shape deformation parameters bt+1. At each iter-
ation, following two steps are performed.
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Fig. 3. Results of applying the present approach on sparse calibrated X-ray images.
Top row: a reconstruction example as well as the errors of reconstructing all 10 femurs
in Group I; bottom row: a reconstruction example as well as the errors of reconstruct-
ing all 21 femurs in Group II. In this example, the surface model (yellow) extracted
from the reconstructed volume and its silhouettes are superimposed on the X-ray
images.

• Step 1: Following the Levenberg-Marquardt optimizer, compute the gra-
dient and the regularized Hessian of the first two terms of Eq. (4) with
respect to the shape parameters, and then calculate an additive update
Δbt of the shape parameters to get a new estimation b′

t = bt + Δbt.
• Step 2: Compute the forward deformation based on b′

t and then invert
the forward displacement fields using the fixed-point approach [14]. To
implement the third term of Eq. (4), the inverse displacement fields are
further regularized by applying a Gaussian kernel convolution. The regu-
larized inverse displacement fields will then be used to instantiate a new
volume to generate DRRs for the next iteration.

For all the experiments reported below, the scaled rigid transformation parame-
ters a were initialized with an anatomical landmarks based registration. All the
shape parameters b were initialized to zeros.

4 Experiments and Results

We conducted comprehensive experiments on 31 cadaveric femurs with different
shape (none of them belongs to training population) and 3 clinical datasets to
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validate the present approach. The 31 cadaveric femurs were divided into two
groups. Group I consists of 10 left dry cadaveric femurs. For each femur in
this group, we acquired two calibrated C-arm images around the proximal fe-
mur region. Group II contains the rest 21 femurs (7 left and 14 right) where
5 of them are connected with hips. For each femur in this group, we acquired
two calibrated X-ray radiographs. Each one of the 3 clinical datasets contains
two calibrated C-arm images of a patient. The cut-off point MD was chosen
to be 9 such that more than 90% of the total amount of variations is ex-
plained. The registration algorithm was implemented with CPU computation
and no attempt was made to optimize its performance. Thus, one registra-
tion can take about 15 minutes. It can be accelerated by using modern GPU
technology.

Experiment on 3 Clinical Datasets. In this experiment, due to the lack
of ground truth, we mainly used these datasets to demonstrate qualitatively
the performance of the present approach in clinical settings. Fig. 2 shows a
reconstruction example when the present approach was applied to one of the
three clinical datasets.

Experiment on 10 Cadaveric Femurs in Group I. In this experiment, the
reconstruction accuracies were evaluated by randomly digitizing dozens points
from the surface of each femur and then computing the distances from those
digitized points to the associated surface model which was segmented from the
reconstructed volume. A reconstruction example and the errors of reconstructing
volumes of all 10 femurs in this group are shown in the top row of Fig.3. An
average mean reconstruction accuracy of 1.5 mm was found.

Experiment on 21 Cadaveric Femurs in Group II. In this experiment,
we used the method proposed by Aspert et al.[17] to compute the reconstruc-
tion errors, where the ground truth surface models were either obtained with a
CT-scan reconstruction method or with a hand-held laser-scan reconstruction
method (T-SCAN, Steinbichler, Neubeuern, Germany). The surface models seg-
mented from the reconstructed volumes were then compared to the associated
ground truth models to evaluate the reconstruction accuracies. A reconstruction
example and the errors of reconstructing volumes of all 21 femurs in this group
are shown in the bottom row of Fig. 3. An average mean reconstruction accuracy
of 1.4 mm was found.

5 Conclusions

We presented a new approach to reconstruct a personalized shape model and
internal relative intensity distribution of the proximal femur from sparse cal-
ibrated X-ray images. Our approach used independent shape and appearance
models to encode the a priori information. An intensity-based non-rigid
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2D-3D registration algorithm was then developed to fit the learned models to
the input images. Results from our comprehensive experiments demonstrated its
efficacy.
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Abstract. Registering CT scans in a body atlas is an important tech-
nique for aligning and comparing different CT scans. It is also required for
navigating automatically to certain regions of a scan or if sub volumes
should be identified automatically. Common solutions to this problem
employ landmark detectors and interpolation techniques. However, these
solutions are often not applicable if the query scan is very small or con-
sists only of a single slice. Therefore, the research community proposed
methods being independent from landmark detectors which are using
imaging techniques to register the slices in a generalized height scale.
In this paper, we propose an improved prediction method for register-
ing single slices. Our solution is based on specialized image descriptors
and instance-based learning. The experimental evaluation shows that the
new method improves accuracy and stability of comparable registration
methods by using only a a single CT slice is required for the registration.

Keywords: Computer Tomography, Similarity Search, Retrieval,
Localization.

1 Introduction

CT scans play an important role in the field of medical imaging. Even though CT
scans often comprise the complete thorax or even the complete body of a patient,
the clinician often only requires a small sub volume of a scan. For example, if a
body region should be compared between two scans for a differential diagnosis.
In the state of the art work flow both volume scans (each up to more than 1 GB)
have to be loaded completely from the clinical PACS (Picture Archiving and
Communication System) over the network before they can be aligned manually
by the clinician. If instead the clinician could load just the relevant part of a
scan from the PACS, this would reduce loading time and also the time needed
for navigating through the scans and aligning the positions.

In this paper, we want to address this problem and apply a radial image
descriptor [2] for the identification of similar body regions. In the above use
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case, the clinician then only needs to load the relevant sub volume. Also he
would not have to navigate through the complete scan as this task could be
sped up by the similarity search using the radial descriptor.

The key contribution of this paper is the application of a radial image descrip-
tor for the identification of similar body regions. The descriptor is independent
from any landmark detectors and provides a smaller prediction error as well as
an improved stability of the similarity search compared to the reference algo-
rithm [4] that deals with the same problem. Also the descriptor outperforms the
algorithm proposed in [5] which requires volumes as query objects. Finally, the
descriptor is more robust in body regions where the reference algorithm shows
large errors.

The rest of this paper is organized as follows: We describe related work in
Sec. 2, then the process of the feature extraction is described in Sec. 3. In Sec. 4
the localization is described. The evaluation is shown in Sec. 5. The paper ends
with a conclusion and an outlook on future work (Sec. 6).

2 Related Work

The localization problem could be solved by using the meta data of the DICOM
header of a CT image. However, the available information is often error-prone.
Gueld et al [6] report that several entries in the DICOM header are often im-
precise or even completely wrong. To find a more appropriate solution to the
problem, the research community proposed some methods for registering slices
to a general atlas with standardized height. The authors of [3] propose to predict
the body region from a topogram based on landmarks with invariant positions.
A similar approach is proposed in [7] where the mapping is based on a look-up
table using 8 landmarks which are detected in various fashions. Seifert et al [9]
propose a method to detect up to 19 invariant slices and single point landmarks
in full body scans by using PBT and HAAR features. Nevertheless, applying
this method requires the availability of a sufficient part of the landmarks and
the corresponding landmark detectors. Recently the authors of [4] published a
new method using a single slice of a CT scan for registration by using a multi-
represented feature descriptor (MR-Descriptor). Feulner et al [5] deal with a
similar localization problem. They propose a solution using SURF features with
visual words and require sub volumes with a minimum height of 44mm for the
registration. Both [4] and [5] are used for the evaluation of the radial descriptor
proposed in this paper.

3 Feature Extraction

The process of generating the compound radial image descriptor consists of the
following steps: unifying the image resolutions, extracting the patient’s body and
combining the two image descriptors to a single radial descriptor.

The resolution of a CT image is determined by the setting of the associated
recording device and may vary depending on several external factors. Thus it
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is needed to scale the image I to a common resolution (1.5 px/mm) to obtain
scale invariance between different scans. The resulting image is defined as IS .
In order to separate the body from the rest of the image, a compound region
detection is performed on IS . A compound region is defined as an area of pixels
which is enclosed by a contour of pixels with p(x, y) > τ . p(x, y) defines the
Hounsfield Unit (HU) value of a pixel at the position (x, y) and τ defines the
according threshold (-500HU). The resulting compound regions are extracted
by starting a contour tracing algorithm from each pixel ∈ IS with p(x, y) > τ .
The applied algorithm is implemented by using the analyze particles function of
ImageJ [1] which adapts the well known contour tracing algorithm of Pavlidis [8].
Afterwards the bounding box of the largest compound region defines the region
of interest (ROI) represented by the area of the patient’s body on the image
IS(cf. Fig. 1(b)). IS is then cropped to this ROI, building the image IROI .

Next, a radial sector/shell model comparable to [2] (c.f. Fig. 1(c)) is created
from which the two descriptors representing dense structures (bones) and soft
tissues (like organs etc.) are extracted. Both descriptors are represented by the
circumcircle of IROI with radius r. They consist of ny shells and nx sectors
resulting in nx ·ny = i bins. For each bin i, both the number of pixels of interest
(POI) pi and the number of other pixels (NPOI) ni is calculated. A POI is
defined as a pixel with p(x, y) ≥ ψ1 or p(x, y) ≤ ψ2 (depending on the type of
descriptor, which are described subsequently). The values of bins /∈ IROI are
set to a penalty value (−0.25) to achieve a larger difference between descriptors
from regions with different aspect ratios.

The first descriptor represents the distribution of bones. Thus, ψ1 is set 300HU
and the set of all POIs is defined by pi = | {p(x, y) ∈ IROI |p(x, y) ≥ ψ1} |. Re-
garding the spatial distribution of the bones, it can be said that the outer shells of
the descriptor are more relevant than the shells in the middle of the body where
hardly any bones are detected. Thus each bin of the descriptor is weighted w.r.t.
the shell index i ∈ [1, nx], so that pi = pi · shell(i)2. Evaluating the parameters
nx and ny showed the slightly best results with nx = 24 and ny = 11. Neverthe-
less, the impact to εmean and σ (if nx and ny are changed by ±4) are less than
2mm in case of εmean and less than 6mm for the standard deviation σ, so that
the choice of these parameters is not very critical.

Some areas in the human body like the abdomen show a comparatively small
amount of dense structures. Therefore, a descriptor representing the location and
arrangement of soft tissues is created. The threshold for this descriptor is set to
ψ2 = −500HU. The set of POIs is defined by pi = | {p(x, y) ∈ IROI |p(x, y) ≤ ψ2} |
in this case. For this descriptor the amount of shells and sectors were set to
nx = 18 and ny = 8. Same as above, the impact of changing the parameter
values on the accuracy is very small. In contrast to the previous descriptor, the
weighting is fixed for this descriptor, so that pi = pi · n2

y.
Finally, both descriptors are concatenated to a single feature vector q. An

additional step is the application of a principal component analysis to reduce
the dimensionality of the feature vectors. In our experiments, the dimensionality
could be reduced to 50 dimension without losing accuracy.
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Table 1. Parameter setting for both descriptors

Type ψ Sectors nx Shells ny Angle φ Weighting Bins

Bones ≥ 300 HU 24 11 15◦ quadratic 240
Soft ≤ −500HU 18 8 20◦ equal 144

(a) (b) (c)

Fig. 1. Visualization of the feature extraction process for a neck scan image Fig. 1(a):
the image is rescaled and the body (in this case the head) is detected Fig. 1(b) and
approximated by a bounding box. Afterwards the sector/shell model is created Fig. 1(c)
from which the features are extracted.

4 Localization

The task of the prediction method is to localize the query vector q representing
the query slice with unknown position qz to a value z ∈ [0, 1] in the standardized
height model. For this task, we use a database DB containing all feature vectors
fv to the corresponding CT slices of n volume scans. DB can thus be regarded
as the atlas of the method. Additionally, each fv ∈ DB is annotated with the
position fvz ∈ [0, 1] of the according CT slice. For the prediction, we propose
a two level knn search, in order to avoid overfitting to a single CT scan: First,
the k1nn to q are computed for each of the n scans ∈ DB, so that k1 · n results
are returned, building the set S. This limitation of k1 results per volume scan is
done to avoid that all results origin from a single CT scan. Next, the k2nn to q
in S are computed and stored in set T . The result qz of the prediction is defined
by the mean of all position labels in T ’s feature vectors: qz = 1

k2

∑
fv∈T

fvz.

5 Evaluation

All experiments were conducted on a database consisting of 98 CT scans (38 neck
and 60 thorax scans) with the collection covering the complete area between
the top of the head to the end of the coccyx. The scans were recorded from
71 different patients (43 male, 31 female, 1 unknown) with the age of 4 to 86
years. Each of the patients contributed no more than 1 thorax and 1 neck scan.
The data set was recorded with 120kVp from 5 different types of Siemens CT
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scanners1 and comprises 53 437 DICOM images using more than 27GB disk
space. The resolution along the z-axis varies between 66 and 1 749 slices per
scan (= 0.5 - 5mm/slice). The resolution along the x- and y-axis varies between
1.09 - 2.32 px/mm.

The ground truth was created by a manual annotation of all scans with the
following landmarks which were selected by a medical expert. In neck scans:
cranial crista galli, cranial sella turcica, cranial dens axis, caudal plate of cervical
vertebrae #4, caudal plate of cervical vertebrae #7. In thorax scans: cranial
sternum, caudal xiphoid process, caudal plate of thoracic vertebrae #12, sacral
promontory, caudal os coccygis. The positions of slices are defined in a standard
model ∈ [0; 1].

All experiments were conducted using a leave-one-out scheme on each of the
97 scans in the database. Each slice of a scan was used as test object while DB
did not contain the volume scan which q belongs to. Therefore, overfitting to
the same patient could be excluded. The error is determined by the difference
between the predicted height qz and the annotated position of the slice, from
which q was extracted. In order to obtain an interpretable result, a height of
1.80m for each patient was assumed so that all error measurements are relative
to this height. We used k1 = 1 and k2 = 3 which proved the best results. Larger
values for k1 and k2 only result in a very minor decrease in performance.

The feature extraction takes 55ms/70ms for the bone/soft descriptors. Cross
validation was accomplished in less than 39minutes (40ms/slice). More advanced
feature reduction techniques combined with spatial index structures could fur-
ther decrease the search time, yet we mainly focused on minimizing the predic-
tion error in this paper.

To measure the prediction quality of the radial descriptor, we measured the
mean error εmean and standard deviation σ of the prediction. Applying the pre-
diction method introduced in Sec. 4, we were able to reduce the mean error to
εmean = 1.8 cm and the standard deviation to σ = 2.81 cm. Compared to the
MR-Descriptor proposed in [4], this means a reduction of the mean error and
standard deviation by a factor of almost 2.5 (cf. εmean = 4.45 cm, σ = 9.15 cm).

The improvement of σ is visualized by the box plots of Fig. 2: It can be seen
that the upper whiskers in the lower diagram of Fig. 2 are clearly lower through-
out the whole dataset than in the case of the MR-Descriptor. The improvement
of εmean is most significant in the areas between 0-10 cm (representing the head)
and > 70 cm (region of the hips). Only in the small region of [66 cm, 71 cm],
the radial descriptor is outperformed by about 1.8 cm w.r.t. εmean by the MR-
Descriptor. Nevertheless the large errors values are still much smaller in this
region using the radial descriptor.

In order to evaluate the distribution of the error value, we calculated the
cumulative distribution function (CDF) of ε, FE(ε) = F (E ≤ ε). Comparing
to the MR-Descriptor, we observed an improvement on the complete CDF: The
probability for errors less than 1 cm (FE(≤ 1 cm)) was 0.51 compared to 0.3.
FE(ε) ≥ 0.9 was hit at ε = 4 cm for the radial descriptor and ε = 8 cm for the

1 Definition AS+, Sensation 10/16/64, Volume Zoom.
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Fig. 2. Comparison of εmean of the MR-descriptor (upper plot) to the radial descriptor
(lower plot). The x-axis displays body regions of 1 cm width starting with the head at
x = 0. The y-axis displays the amount of errors in cm. The dashed line in the lower
diagram indicates the upper whiskers of the upper diagram for easier comparison.
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Fig. 3. CDF of errors from the radial descriptor (red) compared to the MR-Descriptor
Fig. (a). Fig. (b) compares our descriptor (1 slice/query) to the work of [5] (4.4 cm
query volumes) on all volumes containing the required landmarks

MR-Descriptor. This means that we could guarantee 90% of the errors to be
less than ±4 cm, while the MR-Descriptor could only garantee ε to be less than
±8 cm with the same confidence. The complete CDF can be seen in Fig. 3(a).

Comparing the scatter plots of Fig. 4 it can clearly be seen that the result of
the localization is much more stable in Fig. 4(b) than in Fig. 4(a). Especially
large errors in the region [0 cm, 20 cm] and > 75 cm could almost be eliminated.
The problematic regions [20 cm, 30 cm] (shoulder) and [60 cm, 75 cm] (abdomen)
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can still be identified as a source for larger errors but the overall amount of errors
in these regions was also lowered significantly (c.f. CDF in Fig. 3(a)).

We also compared the approach to the work of Feulner et al [5]. As their
proposed algorithm is designed for query volumes instead of query slices, we
chose sub volumes with a size of 4.4 cm for their algorithm and single slice
queries for the radial descriptor. This means of course, that the radial descriptor
is using less slices and thus less information for the retrieval. Also, the approach
of Feulner et al is based on landmarks, so that we had to reduce the data set
to 17 volumes (12 male, 5 female, 6 547 slices) which contained the according
landmarks. In Fig. 3 the CDFs for both approaches can be compared. It can
be seen that the break even for the radial descriptor is at 4.5 cm. In case of
ε ≤ 4.5 cm, the work of Feulner et al performs better. Nevertheless ε ≤ 5 cm
are measured with a confidence of 0.9, whereas Feulner et al yield the same
confidence at 6.5 cm. This means that the amount of larger errors is smaller in
the case of the radial descriptor even though only a single query slice is used.
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Fig. 4. Scatter plots displaying the results of the prediction. (a) shows the plot of the
MR-Descriptor, (b) shows the plot of the Radial Descriptor. The x-component of a
pixel denotes the true position of an image, the y-component describes the prediction.

6 Conclusion

In this paper, we proposed to apply a combined radial descriptor for registering
single CT slices in a generalized height scale of the human body. The descriptor is
independent of any landmark detectors and combines a descriptor regarding bone
structures with a descriptor regarding soft tissues. Both descriptors are based
on a sector/shell partitioning schema to provide locality sensitivity. Experiments
were conducted on a large real world dataset, which was manually annotated by
consulting a clinical expert. The descriptor was compared against two state of
the art methods. One, based on landmarks and volume queries, another based on
single slice queries. Using the radial descriptor significantly reduces the average
prediction errors and the likelihood of large prediction errors by up to 2.5× for
the method having the identical setting. For future work, we plan to extend
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the prediction method in a way to support query volumes as well as single
slice queries. We also plan to apply boosting and instance selection for further
improvement of the feature representation.
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Abstract. Ultrasound-Fluoroscopy fusion is a key step toward intra-
operative dosimetry for prostate brachytherapy. We propose a method
for intensity-based registration of fluoroscopy to ultrasound that obviates
the need for seed segmentation required for seed-based registration. We
employ image thresholding and morphological and Gaussian filtering to
enhance the image intensity distribution of ultrasound volume. Finally,
we find the registration parameters by maximizing a point-to-volume
similarity metric. We conducted an experiment on a ground truth phan-
tom and achieved registration error of 0.7±0.2 mm. Our clinical results
on 5 patient data sets show excellent visual agreement between the reg-
istered seeds and the ultrasound volume with a seed-to-seed registration
error of 1.8±0.9 mm. With low registration error, high computational
speed and no need for manual seed segmentation, our method is promis-
ing for clinical application.

1 Introduction

Low dose rate prostate brachytherapy is a treatment for prostate cancer in-
volving permanent implantation of radioactive seeds of 125I or 103Pd inside the
prostate and periprostatic tissue. The seeds are implanted using needles that
pass through a guiding template, according to a plan, to create an appropri-
ate dose distribution. The procedure is performed under transrectal ultrasound
(TRUS) visual guidance. C-arm fluoroscopy images are frequently used for gross
visualization of the implant. The treatment quality depends on accurate seed
placement which is a challenging task due to problems such as prostate motion
and deformation during insertion, needle deflection and edema. Seed misplace-
ment can cause excessive radiation to the healthy tissue that leads to consequent
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complications, or can result in insufficient radiation to the cancerous prostate
(producing “cold spots”) that leads to treatment failure.

Intraoperative dosimetry and planning can improve the treatment quality by
intermittently calculating the delivered dose and optimizing the treatment plan
in order to compensate for the emerging cold spots [1].

Although TRUS enables visualization of prostate boundary, seed segmenta-
tion in TRUS is not robust due to significant number of seed-like artifacts (false
positives) created by calcifications and needle tracks, and also missing seeds [2].
However, C-arm images can be used to localize the seeds in 3D space (henceforth,
called reconstructed seeds) [3,4]. Spatial registration of reconstructed seeds to
the prostate – delineated in the TRUS - can combine the benefits of these two
imaging modalities and provide intraoperative dose evaluation.

Lead markers attached to the probe [5] or radio-opaque fiducials attached
to the guiding template [6] have been proposed in the past for ultrasound-
fluoroscopy registration. However, markers or fiducials need segmentation and
their images may overlap with the seeds. Moreover, radio-opaque fiducials cannot
compensate for the prostate motion caused by probe retraction. As a solution,
Su et al. [7] and Tutar et al. [8] used point-to-point registration and registered
the reconstructed seeds to a set of manually segmented seeds from TRUS im-
ages. Manual seed selection in TRUS is tedious as TRUS images are rife with
false positives. Fallavollita et al. [9] proposed intensity-based registration of CT
or fluoroscopy to TRUS. Their method showed successful registration between
CT and TRUS in a phantom study and qualitative agreement between the re-
constructed seeds and TRUS for a single patient data set.

In this paper, we introduce a point-to-volume intensity-based rigid registration
method with application to prostate brachytherapy. We use image thresholding
combined with morphological and Gaussian filtering to enhance the quality of
TRUS images – without removing the false positives. Except for manual selection
of the region of interest, our algorithm is fully automatic and eliminates the need
for seed segmentation.

Our registration results on phantom and patient data sets not only show
excellent visual agreement between the reconstructed seeds and TRUS images,
but also show quantitative registration errors below clinically acceptable levels.
In contrast to the work of Fallavollita et al. [9], we use different preprocessing
steps, similarity metric, and optimizer. In addition, our trials on patient data
show smaller registration error and faster computational speed. Considering its
low registration error, robustness, and high computational speed, our method is
suitable for intraoperative dosimetry.

2 Methods

The following work-flow is envisioned for data acquisition for intraoperative
dosimetry. The physician acquires several slices of TRUS images by retracting
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the probe from the prostate base to its apex (41-57 slices with spacing of 1 mm in
this work). In a preprocessing step, these slices are processed and compounded
into a volume. The probe is fully retracted and several C-arm images are taken
from different angles. The seeds are reconstructed from 5-6 images in 3D using
available seed reconstruction methods [3,4]. The reconstructed seeds comprise a
set of 3D points that should be registered to the ultrasound volume.

2.1 Preprocessing

In the preprocessing phase, we follow several steps to enhance the quality of
TRUS images (see Fig. 1). A region of interest is manually selected from a mid-
gland slice of the TRUS volume to limit the search region during optimization
and increase the likelihood of convergence. This is the only manual intervention
needed in our registration method. Corresponding regions are cropped in all the
slices and compounded together to create the volume of interest (VOI).
Although calcifications and air bubbles trapped in the needle tracks have strong
reflections, most of the bright areas in TRUS images belong to seeds. Based on
this intuition, we apply a threshold (T ) to the images to enhance seed visibility
(see Fig. 1(b)). We define:

T = μ + ασ, (1)

where, μ and σ are the mean and standard deviation of intensity in the VOI,
respectively, and α is a parameter chosen based on the characteristics of the
TRUS images (α = 3 in this work). Note that we do not try to remove false
positives such as calcifications or air bubbles. The thresholded images are then
dilated using a disk structural element (r = 3 pixels in this work) to increase
the size of the bright areas (see Fig. 1(c)). Finally, the dilated images are filtered
using a Gaussian filter (standard deviation = 10 pixels) in order to spread the
bright areas (see Fig. 1(d)). The Gaussian filter is applied to provide a smooth
change of intensity in the image in order to increase the capture range and
enhance the convergence of the optimization algorithm (details in Sec. 2.2). The
image dilation and Gaussian filtering are applied slice by slice. We sub-sample
the filtered TRUS slices with a factor of 2 to gain computational speed.

2.2 Intensity-Based Point-to-Volume Registration

Since transformation of a set of points is computationally faster than the trans-
formation of a volume, we consider the ultrasound VOI as the fixed volume and
register the reconstructed seeds to this volume.

The transformation from the C-arm homogeneous coordinate system to the
TRUS homogeneous coordinate system is defined as T (θ, δ),where θ=[θR, θP, θY]
represents the roll, pitch and yaw angles, and δ = [δx, δy, δz] represents the trans-
lation along x, y and z axes, respectively. We assume that the x axis is parallel
to the horizontal axis of the template, the y axis is parallel to the vertical axis
of the template from bottom to the top, and the z axis is parallel to the long
axis of the probe from the base of the prostate to its apex. Now, consider a
mapping Ψ from every point in the TRUS coordinate system to the indices of
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(a) One slice from VOI (b) Thresholded slice

(c) Dilated slice (d) Gaussian filtered slice

Fig. 1. Preprocessing steps

its corresponding voxel in the VOI. The indices of the voxel corresponding to
each reconstructed seed (henceforth a seed voxel) can be calculated as:
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system and N is the number of implanted seeds. We assume rectangular cuboids
with dimensions of (2qi + 1) × (2qj + 1) × (2qk + 1) voxels centered at each
seed voxel. The integers qi, qj and qk are calculated so that each cuboid has
dimensions of approximately 2 × 2 × 6mm3 (slightly thicker and longer than a
seed). The similarity metric is evaluated as:
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where, I(·) is the VOI intensity at given indices. In other words, the similarity
metric is the summation of the intensities of the voxels inside all cuboids around
all the seed voxels. This similarity metric quantifies the overlap between the
cuboids and bright regions in the VOI and hence, guides the reconstructed seeds
toward the center of the bright regions.

We employ the Covariance Matrix Adaptation Evolution Strategy (CMA-
ES) [10] in order to maximize the similarity metric. CMA-ES is a stochastic
optimization method suitable for nonlinear and non-convex problems and was
previously used for registration in [11]. This algorithm samples the search region
using a normal distribution, the covariance matrix of which is adapted iteratively.
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If the bright regions in the VOI are not expanded and spread using image
dilation and Gaussian filtering, the changes in the optimization parameters may
result in insignificant or no change in the similarity metric since the bright regions
are sparse. Therefore, it is difficult for the optimization algorithm to select the
path to improve the similarity metric. However, image dilation and Gaussian
filtering provide a smooth and discernible change of similarity metric over the
VOI and help the optimization algorithm to hone in on the optimal parameters.

3 Results

3.1 Phantom Study

First, we tested our registration method on a phantom implanted with 48 dummy
seeds. Both TRUS and CT images of the phantom were acquired. The registra-
tion ground truth between the TRUS and CT volumes was established using
a tracked probe and fiducials that were attached to the phantom box [9]. The
seeds in the CT volume were segmented using thresholding to yield a set of points
similar to the outcome of seed reconstruction using C-arm imaging. These seed
positions were assumed to be the ground truth. We applied independent pertur-
bations of -10 to 10mm, with steps of 1mm, along each axis and rotations of -10◦

to 10◦, with steps of 1◦, around each axis to the ground truth seeds and tried the
registration algorithm. The registration algorithm successfully converged close
to the ground truth for all of the perturbations. The registration error defined
as the distance between the registered seeds and the ground truth was on av-
erage 0.7mm (STD = 0.2mm). Successful convergence of the algorithm to the
global optimum despite the applied perturbations shows its robust performance
and wide capture range. Figure 2(a) shows the ground truth and registered seeds
overlaid on a slice of ultrasound volume.

3.2 Study on Clinical Data

We also applied our algorithm to clinical data sets. We collected data from 5
patients implanted with 64 to 105 103Pd seeds. The transverse images – acquired
using a BK Pro Focus (BK Medical, Peabody, MA) ultrasound machine - were
automatically captured at 1mm intervals by reading the TRUS stepper position
from the encoder while the surgeon continuously retracted the TRUS probe from
the prostate base to apex. Several C-arm images were acquired from different
angles within a 20◦ cone around the anterior-posterior axis (AP-axis) using a
pre-calibrated GE OEC 9600 mobile C-arm. The C-arm poses were computed
using a radio-opaque fiducial [12] that was attached to the guiding template. The
C-arm images were preprocessed to correct the image distortion, segment the 2D
seed locations and estimate the image poses. The seeds were reconstructed in
3D from 5-6 images by solving a seed matching problem using a dimensionality
reduced linear programming algorithm (called REDMAPS) [4].

The registration algorithm was initialized by coinciding the center of mass of
the reconstructed seeds with the center of the VOI. The initial rotation angles
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(a) (b)

Fig. 2. Registered seeds overlaid on TRUS images. (a) Phantom result. Green diamonds
are ground truth seeds, yellow squares are registered seeds. (b) Patient result. Yellow
squares are registered seeds.

were provided by the radio-opaque fiducial which was attached to the guiding
template. The registration results showed excellent visual agreement between the
reconstructed seeds and the TRUS images as it can be seen in Fig. 2(b). Since
no ground truth was available at this stage, we manually identified several seeds
from the TRUS images (henceforth called the selected seeds) and measured their
distances from the closest registered seed. The average and standard deviation of
these seed-to-seed distances are reported in Table 1. The registration error had
an overall average of 1.8mm (STD = 0.9mm). We also reported the mean and
standard deviation of the magnitude of the registration error vectors projected
along each axis as shown in Table 1. The registration error along the long axis
of the probe (the z axis) is the most significant error.

4 Discussion

Su et al. showed that the deviation in D90 (the minimum dose delivered to
90% of the prostate volume) is less than 5% for seed localization uncertainties
of less than 2mm [13]. Our registration errors for 4 of the 5 patients studied
are below this limit. Patient 3 had an average registration error slightly greater
than 2mm. This patient had a relatively large prostate that was significantly
deformed by the probe pressure. Such patients require a deformable registration
between the reconstructed seeds and the TRUS volume. We expect to describe
the statistical pattern of deformation from a handful of patients, as the boundary
conditions are fairly similar across cases. We also suspect that a simple model,
such as a 1D deformation model along the AP-axis suffices to compensate for
the primary effect of probe pressure. Alternatively, as recommended in [14], the
physician can lower the probe posteriorly in order to decrease the pressure on
the prostate. The prostate deformation for the other patients was negligible as
the small registration errors along x and y axes confirm.

As it can be seen in Table 1, the error along the z axis is on average 1.2mm,
while the error along x and y axes are on average less than 1 mm. It should
be noted that our TRUS volume has a slice spacing of 1 mm along the z axis.
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Table 1. Clinical results, showing the mean and standard deviation of registration
error, and mean and standard deviation of absolute error along each axis

Abs. Proj. Error (mm)

Patient Total Selected Reg. Err. (mm) x y z
Num. Seeds Seeds Mean±STD Mean±STD Mean±STD Mean±STD

1 81 12 1.3 ± 0.4 0.5 ± 0.3 0.7 ± 0.4 0.7 ± 0.7
2 76 33 1.7 ± 0.7 0.5 ± 0.5 0.6 ± 0.4 1.3 ± 0.8
3 90 37 2.1 ± 1.2 0.6 ± 0.5 1.3 ± 1.1 1.1 ± 0.9
4 64 20 1.9 ± 1.2 0.5 ± 0.3 0.4 ± 0.3 1.7 ± 1.3
5 105 23 1.5 ± 0.5 0.7 ± 0.4 0.7 ± 0.5 0.8 ± 0.5

Total 416 125 1.8 ± 0.9 0.6 ± 0.4 0.8 ± 0.7 1.2 ± 0.9

In addition, it is difficult to accurately select the center of a 5 mm long seed
image which is usually elongated by needle tracks. Therefore our manual seed
segmentation can have an error of the same order of magnitude along the z axis,
that contributes to the measured registration error.

The algorithm was programmed in MATLAB on a computer with an Intel
Core 2 CPU (2GHz) with 2GB of RAM. The registration – excluding the man-
ual VOI selection - runs, on average, in approximately 40 s. Our seed-to-seed
registration error is less than or equal to the results reported in [7,8] which are
based on manual seed segmentation. Our registration error is also smaller than
2.8mm reported by Fallavollita et al. [9]. The registration speed, accuracy and
robustness are vital in a clinical setting.

We reported our results based on 5 patient data sets. We expect to get similar
results for a larger number of patients. However, we will test our algorithm on
a statistically more significant number of patient data sets in the future as data
collection is currently underway.

5 Conclusions and Future Work

We presented an intensity-based method for registration of ultrasound to flu-
oroscopy for intraoperative dosimetry in prostate brachytherapy. Our method
obviates the need for tedious manual seed segmentation required for seed-based
registration. We applied thresholding, and morphological and Gaussian filter-
ing to the TRUS images to enhance the quality of the images and increase the
capture range of the algorithm without removing the false positives or identify-
ing the missing seeds. On a ground truth phantom, the algorithm converged to
an average registration error of 0.7mm despite perturbations of -10 to 10mm
along each axis and -10◦ to 10◦ around each axis. This demonstrates the wide
capture range and robustness of our algorithm. In a clinical study on 5 patient
data sets, we achieved average registration error of 1.8mm in approximately 40 s.
Our registration method with low registration errors, wide capture range and
fast computational speed is promising for clinical application.
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Extensive tests on more clinical data sets, automatic selection of region of in-
terest and accommodation of prostate deformation as well as sensitivity analysis
to the chosen parameters are parts of the future work.
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Abstract. MR-guided High Intensity Focused Ultrasound is an emerg-
ing non-invasive technique capable of depositing sharply localised en-
ergy deep within the body, without affecting the surrounding tissues.
This, however, implies exact knowledge of the target’s position when
treating mobile organs. In this paper we present an atlas-based predic-
tion technique that trains an atlas from time-resolved 3D volumes using
4DMRI, capturing the full patient specific motion of the organ. Based
on a breathing signal, the respiratory state of the organ is then tracked
and used to predict the target’s future position. To additionally com-
pensate for the non-periodic slower organ drifts, the static motion atlas
is combined with a population-based statistical exhalation drift model.
The proposed method is validated on organ motion data of 12 healthy
volunteers. Experiments estimating the future position of the entire liver
result in an average prediction error of 1.1 mm over time intervals of up
to 13 minutes.

1 Introduction

Respiratory organ motion is a complicating factor in the treatment of patho-
logical tissue with MR-guided High Intensity Focused Ultrasound (MRgHIFU).
Focused ultrasound has the unique capability to deposit sharply localised energy
deep into the tissues, producing thermal ablation. Accurate spatial and rapid
temporal beam spot focusing in the range of millimetres and within millisec-
onds, respectively, is reachable and hence increasing the demand of more exact
knowledge about the organ’s position. Accurate tracking of pathological tissue in
mobile organs would not only increase patient safety, but also reduce the treat-
ment time, as the gating window can be increased without sacrificing precision.
Although the patient is located within the MR system during sonication, the
scan-time is mainly required for the temperature feedback control of the HIFU
system to determine the thermal dose given to a tumour. Non MR-based exter-
nal surrogate markers would thus be ideal for the prediction of the respiratory-
induced organ motion. Several techniques have been proposed in the literature
to handle respiratory organ motion. Existing approaches that ensure compre-
hensive target coverage with minimal damage to the surrounding tissue include
the optimisation of safety margins, voluntary or forced breath-hold, respiratory
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gating or full tracking of the target. These methods were discussed in depth and
compared in recent publications [1,2]. The holy grail of three-dimensional mo-
tion compensation in free-breathing awake patients is still out-of-reach, though.
On the one hand, this goal could be reached by using ultrasound for real-time
tracking [3]. On the other hand, Ries et al. [4] proposed only recently a real-time
tracking method that observes the target on a 2D image plane combined with a
perpendicular acquired pencil beam navigator, finally obtaining 3D information
of the targets trajectories. The future target position is then estimated by a
3D Kalman filter. The method was tested in phantom experiments on human
kidneys and in vivo with kidneys of ventilated pigs, both following a regular and
stable breathing pattern. The tracking quality is evaluated by comparing tem-
perature distribution obtained after 60 s of HIFU application with and without
motion compensation, resulting in higher final temperatures in the target area
with enabled motion compensation.

In this paper, we present a novel atlas-based respiratory motion prediction
method for free breathing patients. In contrast to the state-of-the-art, the slower
modes of non-periodic organ deformation, that occur in addition to the fitful res-
piratory motion and that are not detectable by external sensors, are compensated
by means of a population-based statistical drift model. Although the proposed
generic framework is applicable to any abdominal organ, e.g. the kidney, the
prediction technique is evaluated on real 4DMRI motion data of the liver.

2 Materials and Methods

2.1 Data Acquisition

To learn the patient setup specific breathing characteristics and organ motion,
4DMRI [5] sequences of 12 healthy volunteers (6 female, 6 male, average age 31,
range 17-75) were acquired. During roughly one hour acquisition sessions, 14-
26minutes of time-resolved motion data was captured. MR volumes consisting
of 25-30 slices covering the right liver lobe with a voxel size of 1.4× 1.4× 4 mm3

and with a temporal resolution of 300-400 ms were obtained. The retrospectively
reconstructed stacks cover the entire range of observed breathing depths. The
vector fields describing the motion between the different respiratory states of
the liver were estimated by means of 3D non-rigid registration [5,6] between the
reconstructed volumes. In order to estimate the liver’s future position we need
to keep track of the current respiratory state on the basis of a breathing signal
(surrogate marker). Regardless whether we measure the breathing signal by a
breathing belt, by an optical chest wall tracker or by a pencil beam navigator
placed on the diaphragm, the different respiratory states of the liver can reliable
be tracked over a short period of time, as has been shown in [7]. In this work,
we extracted a pencil beam navigator by tracking a manually defined region
(Fig. 1(a)) on the navigator slice. The inferior-superior motion of the diaphragm
was persistently tracked by template matching the dedicated region with all
subsequent navigator frames throughout the acquisition sequence, providing one
respiratory position per reconstructed volume (Fig. 1(b)).
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Fig. 1. (a) Sagittal view of a navigator slice with 4 marked regions used for slice
stacking and drift compensation. The region indicated by the thicker frame is dedicated
to track the diaphragm’s position, providing the respiratory signal (b).

2.2 Atlas Creation

Using the 4D organ motion data of all 12 volunteers, we simulated a realistic
MRgHIFU scenario. In particular, the first 7-13minutes of 4DMRI scan time
were used to build the motion atlas. This initial training time was long enough
to cover all typical respiratory cycles. The remaining 4D motion data was used as
ground truth to validate our prediction scheme. In order to keep correspondence
between the acquisition of the atlas and the final treatment, the volunteers were
asked not to move over the course of the entire sessions.

For each patient, a specific atlas and ground truth dataset is created, wherein
both the breathing signal and corresponding 3D vector fields are stored pair-wise
for each time step. An example of such an atlas is illustrated on the left side
of Fig. 2 as well as the ground truth data for the validation on the right, both
containing the respiratory signal and the associated organ displacement depicted
by the black arrows between the reconstructed volumes. The breathing signal
and the 3D vector fields describing the motion covering 150-400 breathing cycles
or 1200-2000 time steps, respectively, serve as the atlas’ database.

2.3 Motion Prediction

To readjust the treatment focus, any breathing-controlled tracking method must
be able to estimate the target’s position at some future time. This estimation
must be based on measurements of the past breathing signal. Since our approach
deals with a rather low sample rate, we use the atlas as combined breath and
3D motion look-up-table instead of an on-line learning based algorithm. How-
ever, only realistic, already seen motion patterns are being generated. Let S be
the respiratory signal given as the sequence S = sj | j =1,...,m, with the indices
denoting the running time steps t. At a given point in time j, the prediction
provides an estimate sp = s′j+Δ of S and of the corresponding 3D motion vector
field up = u′

j+Δ, describing the future displacement of the organ for a later
time point (Fig. 2). In the following experiments, we predicted Δ = 1 time
step into the future. One time step corresponds to roughly 300ms, given by the
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Fig. 2. Schematic illustration of the combined breath and motion atlas. Based on
the signals history length h, the prediction yields the 3D displacement field up that
estimates the organ’s future position, Δ time steps ahead.

4DMRI sequence. Note, that although the experiments are performed and vali-
dated on the temporal resolution of 3-4Hz, Δ can be chosen arbitrary. In that
case, the breathing signals and the vector fields are interpolated, allowing any
predictive time gap and smooth beam re-focusing. For the prediction, we propose
using the last h values of the breathing signals history denoted by the vector
aj = (sj−h, . . . , sj). The reference signal Sref basically serving as the atlas is
represented by similar vectors ai for prior time points ai = (si−h, . . . , si). The
prediction of S at the time point j is chosen by finding the best match of the
current breathing signal vector aj within the reference signals from the atlas:

imin = argmin
i
|ai − aj | . (1)

The future run of aimin with minimum aberration from the history aj is chosen
to estimate the organ’s prospective respiratory state and corresponding displace-
ment field, Δ time steps ahead:

sp = simin+Δ and up = uimin+Δ . (2)

Finally, the task of predicting the organ’s motion is handled by estimating the
breathing signal’s future evolution, yielding the well adapted displacement fields
for the prediction. Since the algorithm is continuously adjusting to new input
data, it can quickly adapt to the irregularity of the periods and amplitudes of
the respiratory signal of a free breathing person.
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2.4 Drift Compensation

Besides the displacements of the liver caused by respiratory motion, additional
deformation independent of the fitful breathing motion can occur within a few
minutes. Since the proposed prediction method base on collecting the patient-
specific liver motion during the initial training phase of a couple of minutes, these
organ drifts can not be captured during the short acquisition of the atlas. These
drifts can quickly invalidate the applicability of the static atlas with the con-
sequence of increasing systematic prediction errors. However, during sonication
within the MR system, the functionality of the scanner is used for temperature
feedback of the HIFU device and therefore, a scan time intensive 3D drift track-
ing is hard to achieve. On the other side, measuring a one dimensional breathing
signal only, tracking the inferior-superior motion of the diaphragm respectively,
is not sensitive to drifts in the inferior part of the liver (Fig. 3(a)). We propose
to acquire one update-navigator slice after every 60 s to capture the exhalation
position of the liver based on the breathing signal. Comparing the displacements
of the tracked regions with the regions on the actually acquired slice provides the
needed information used for the correction of the previously acquired static atlas.
In order to compensate these drifts, we introduce a population-based statisti-
cal drift model describing the inter-subject variations of exhalation positions
in a shared shape-free coordinate system [8]. Shape-free means, that only the
relative differences to the first exhalation position of each subject, the drifts,
respectively, are used for modelling. Thereby, we assume that the drift is in-
dependent of the respiratory motion and is similar for all subjects. From each
subject, 200 exhalation positions (m = 11 × 200) with N = 290 corresponding
points per liver (n = 3N), placed on a 3D regular grid with a 15 mm reso-
lution, are mean-free concatenated in a data matrix X = (x1,x2, . . . ,xm) ∈
R

n×m with xk = vk − v̄ and sample mean v̄ = 1
m

∑m
k=1 vk. Applying Principal

(a) (b)

Fig. 3. (a)View of a sagittal placed navigator slice before (edges) and 20 minutes later
after an exemplary drift displacement. The position of the diaphragm remains almost
constant while the inferior part of the liver is drifting. (b) Ground truth motion field
(black), prediction with static atlas (light grey) and with updated atlas (dark grey).
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Component Analysis on the data, the vectors x are defined by the coefficients ck

and the eigenvectors sk of S = (s1, s2, . . . ) of the covariance matrix of the data:

x =
m−1∑
k=1

ckσksk = S · diag(σk) c . (3)

Hereby, σk are the standard deviations within the data along each eigenvector sk.
As elaborated in [9], the full vector x can be found by an incomplete measurement
r ∈ R

l, l < n that minimises

E(x) =‖ Lx − r ‖2 , (4)

where L represents a subspace mapping L : R
n �→ R

l such that r = Lx. The
reduced version of S can be written as Q = LS · diag(σk) ∈ R

l×m−1, yielding
eigenvectors of the form qk = σkLsk ∈ R

l. The most probable organ deformation
v given the incomplete measurements r is then

v = S · diag(σk) c + v̄, where c = Q+r . (5)

Hereby Q+ is the pseudoinverse of Q. The vector r describes the relative dif-
ferences from a few grid points at the beginning of the data acquisition to the
actual exhalation position. These displacements are captured again by template
matching the defined regions (Fig. 1(a)) with the update-navigator slice, measur-
ing the distinct distances between the matching regions. Tracking 4 individual
regions enables the detection of non-rigid deformations. As the centers of the
templates may rarely coincide with the grid points of the model, the shifts of
the templates have been adopted to the 3 closest points of the grid (12 out of
290 points), used as inputs for the drift model. The prediction from the static
atlas up (Eq. 2) is updated by the non-rigid correction field (Fig. 3(b)) provided
by Eq. (5):

ûp = up + v. (6)

3 Results

3.1 Motion Prediction without Drift Compensation

In a first approach we evaluated the capability of organ motion compensation by
means of a static atlas without drift compensation. Based on the data mentioned
in Sec. 2.2, motion prediction experiments were performed on 4DMRI datasets
of all 12 volunteers. The parameter h introduced in Sec. 2.3 was optimised and
found to work best for h = 3 time steps (≈ 1 s). The prediction experiments were
evaluated for all subjects, covering 75-200 full respiratory breathing cycles. The
error in prediction for Δ = 1 time step (≈ 300 ms) was calculated point-wise over
all grid points and time steps. The results are plotted in Fig. 4(a), characterised
by the median, 5th and 95th percentiles. The dashed line is set to 2mm, marking
an acceptable precision limit for HIFU treatments [10]. The impact of the liver’s
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Fig. 4. (a) Resulting deviations between predicted and ground truth liver motions for
12 different subject over time intervals up to 13minutes. Error bars around the median
show the 5th and 95th percentile deviation. (b) Mean (black) and maximum error
(grey) of motion prediction based on the static atlas for the drifting liver of subject 4.

drift is clearly visible in Fig. 4(b), when monitoring the prediction performance
over several minutes. The average error over all subjects is 1.6mm.

3.2 Motion Prediction with Drift Compensation

With equal settings as in Sec. 3.1, the same experiments but with drift compen-
sation as elaborated in Sec. 2.4, were realised (Fig. 5(a)). The statistical drift
models were built from 11 of 12 livers in leave-one-out experiments. Although
the residual MR time during HIFU treatment is rather sparse, we allowed the
acquisition of one 2D navigator slice every 60 s, capturing the actual exhalation
position. This time interval is based on the maximal observed drifting speed of
0.5 mm/min. Following Eq. (5) and (6), the most probable drift deformation of
the left-out liver is provided by the model and used as a drift-update of the
previously acquired static atlas. Taking the drift into account, the prediction
performance remains constant over time as shown in Fig. 5(b). The error aver-
aged over all subjects improved by 30% to 1.1mm, with a notable impact for
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Fig. 5. (a) Residual error of motion prediction with drift compensation and median

error without any motion compensation (♦). (b) Mean (black) and maximum error
(grey) of the prediction with drift compensation every 60 s (black-dotted lines).
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the subjects 4,9 and 12. Without any motion compensation, the mean prediction
error would be 4.7mm.

4 Discussion and Outlook

Despite frequently occurring organ drifts, our proposed method proved to be
reliable enough for the application in MRgHIFU systems. Using the R software
package (Version 2.11.1), we used the Kolmogorof-Smirnov test to test the mean
errors of both experiments for normality. Assuming a significance level of 0.05,
the t-tests showed that the statistical drift model significantly improved the pre-
diction accuracy (p<0.05). By replacing the pencil beam navigator with a faster
low lag signal, such as the breathing belt or a spirometer, the prediction quality
should further improve, as the time span the system has to predict into the fu-
ture decreases.
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Abstract. Non-linear image registration is an important tool in many
areas of image analysis. For instance, in morphometric studies of a pop-
ulation of brains, free-form deformations between images are analyzed
to describe the structural anatomical variability. Such a simple deforma-
tion model is justified by the absence of an easy expressible prior about
the shape changes. Applying the same algorithms used in brain imaging
to orthopedic images might not be optimal due to the difference in the
underlying prior on the inter-subject deformations. In particular, using
an un-informed deformation prior often leads to local minima far from
the expected solution. To improve robustness and promote anatomically
meaningful deformations, we propose a locally affine and geometry-aware
registration algorithm that automatically adapts to the data. We build
upon the log-domain demons algorithm and introduce a new type of
OBBTree-based regularization in the registration with a natural mul-
tiscale structure. The regularization model is composed of a hierarchy
of locally affine transformations via their logarithms. Experiments on
mandibles show improved accuracy and robustness when used to initial-
ize the demons, and even similar performance by direct comparison to
the demons, with a significantly lower degree of freedom. This closes the
gap between polyaffine and non-rigid registration and opens new ways
to statistically analyze the registration results.

1 Introduction

In orthopaedic research, and particularly in reconstructive trauma of mandibles,
there are a number of surgical interventions such as tumor resection, fracture
reconstructions, osteomyelitis or other bone loss repair, which requires implanta-
tion of a reconstructive plate. Conventional plate designs, based on shape analy-
sis of a typically small cohort of cadaver specimens or computerized tomography
(CT) derived data, fail at capturing the anatomical complexity of the mandible
and its shape variation as encountered in a population. In many cases, the re-
sults are unsatisfactory and complications such as plate exposure, plate fracture,
and screw failure may occur. For instance, it has been reported that suboptimal
plate design leads to plate fracturing in 2.9 to 11% of implantations [4]. Addition-
ally intra-operative bending and re-bending of a plate leads to residual stresses,
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which affect the mean stress in fatigue loading. The solution is to manufacture
the plate as close to the human anatomy as possible. For this the morphometry
of the mandible should be analyzed in 3D. In the last years, methodologies based
on computational anatomy techniques have been explored for shape analysis of
the mandible [8], and for population-based orthopaedic femural plate design [7].
A common key step in these works is the need to capture the shape variability
as encountered in a population, which is typically performed through non-rigid
image registration.

Many existing non-linear registration algorithms for medical images require
target deformations to be smooth and invertible. In absence of more precise
priors, this could be a reasonable assumption, but it often leads to many local
minima far from the optimal deformation. The complexity of the shape (e.g.
condyle and coronoid process in the mandible) and the encapsulated popula-
tion shape variability makes the registration a challenging task, which calls for
improvements in non-rigid registration for orthopeadic research. Whenever ad-
ditional knowledge about the anatomy is known, we should exploit it to guide
the search of the deformation towards anatomically more meaningful ones.

We hypothesized that a hierarchical anatomically-based characterization of
the structure under study can improve the quality of non-rigid registration re-
sults. In this paper we present a novel method, which incorporates such a de-
scription of the geometry of the anatomy into the registration process. The
method builds on the work of [9], where the authors presented a polyaffine-
regularized demons algorithm, however we believe that defining the regions for
the locally affine deformations should not be left to the user. This becomes even
more evident in the case of a multiscale representation of the geometry, where
the definition and division process is not clear, not to mention the time aspect.
Thus we propose an automatic and anatomically motivated hierarchical scheme.

Our contributions are three-fold: First, we demonstrate that registration ac-
curacy and robustness can be improved by incorporating a locally affine and
anatomy-aware hierarchical scheme. Second, we demonstrate that the complex-
ity of the target deformation can be reduced, which is of great interest in statis-
tics for computational anatomy. The complexity reduction stems from the fact
that in contrast to standard multilevel schemes we introduce a higher degree of
freedom per region by allowing the region to undergo an affine transformation
as opposed to a mere translation. Furthermore, the affine transformation pro-
vides important information about the anatomy since it is implicitly defined by
the geometry of the anatomical structure. Third, we visualize that our approach
opens new ways for multiscale statistics in medical imaging.

2 An OBBTree-Based Polyaffine Log-Demons

Our main contribution in this paper is to show that the demons algorithm can be
enhanced in orthopedics applications with an appropriate model. The main idea
of the proposed algorithm is to introduce a multiscale regularization implicitly de-
fined via the geometry of the anatomical structure under study. In the following
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sections we review three methods that will be important to formulate our regis-
tration: Log-demons, polyaffine registration and polyaffine log-demons. Then we
present the new multiscale scheme and the integration into the log-demons.

Log-Demons Registration. To setup correspondences between anatomical
images, a set of images are registered to a reference. We use the recent diffeomor-
phic log-domain demons registration approach described in [10]. One interesting
point of this registration framework is the efficient optimization in the domain of
stationary velocity fields. These velocity fields can be looked at as generators for
diffeomorphic deformations through the group exponential map that can be very
efficiently computed using the scaling and squaring method [2]. This property
explains the denomination of log-domain (or simply log-demons) registration.

Polyaffine Registration. Polyaffine transformations were introduced in [3] to
fuse locally rigid and affine transformations into a diffeomorphism. The basic
idea is to consider each local affine transformation as the flow of a speed vector
field obtained through the log of the affine transformation. Then, instead of
averaging the affine matrices, one averages these vector fields with spatial weights
describing the influence of each region. The flow of the resulting vector field
automatically gives a diffeomorphic transformation. In [5] the authors introduced
an efficient approximation of that framework. However, the regions are manually
defined on the reference prior to the registration procedure.

Polyaffine Log-Demons Registration. The polyaffine framework was later
enhanced in [1] to work with stationary vector fields. This new formulation
suggested that polyaffine transformations could be compatible in some sense with
the log-demons. In [9] the authors present a marriage of the two approaches and
showed a specific application to femur bones with three fixed regions, head, shaft
and condyles. However manually choosing the number of regions is a difficult
process which is not easy for new applications. In case of hierarchical schemes,
this is an intractable task, due to the need to find regions for each level, and the
fact that the number of regions usually grows at least quadratically with levels.

Now let us introduce a general formulation of [9] for n regions. Let Mi be the
3 × 4 non null components of the log of the affine transformation and ṽ(x) be
the polyaffine velocity field model:

ṽ(x) =
∑n

i=1 wi(x).Mi.x∑n
i=1 wi(x)

with log
([

Ai ti
0 1

])
=

[
Mi

0

]
, (1)

where x, wi, n, are spatial position, weight for region i and number of regions,
respectively. Now given vc, the correspondence velocity field computed by the
demons (not regularized), we can solve for Mi using linear least squares, i.e.
minimizing Cpoly(M1, . . . , Mn) =

∫
λ(x) ‖vc(x) − ṽ(x)‖2

dx, where λ is a bi-
nary mask indicating background voxels. This problem has an explicit solu-
tion given by

∑
j Mi.Σij = Bi, with Σij =

∫
λ(x).wi(x).wj(x).x.xT dx and

Bi =
∫

λ(x).wi(x).v(x).xT dx. To estimate Mi we need to solve the system
M.Σ = B, where Σ is symmetrical and thus diagonalizable and the minimal
norm solution is given using the pseudo inverse M = B.Σ+.
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OBBTree-Based Hierarchical Scheme for the Polyaffine Log-Demons.
The concept of oriented bounding boxes (OBB) has been used extensively in
computer graphics to speed up ray tracing and interference detection compu-
tations. In [6] the authors presented a hierarchical version and an algorithm to
compute it efficiently. An OBBTree is a hierarchy of OBB’s in 3D space. Let
us consider first a surface (in our case an iso-surface of the CT image). The
algorithm computes OBB’s via principle component analysis of the vertex co-
ordinates, which give the orientation (principle component directions) and the
extent (outmost point on the principle component). A refinement to avoid bias
towards densely populated patches is to sample the convex hull of the vertex
coordinates and approximate the analytic surface by a linear sum of all triangle
areas. There are two ways of calculating the hierarchy, bottom-up and top-down.
Top-down approaches start with all vertices and subdivide the points into two
groups at every subsequent hierarchical level, whereas bottom-up approaches
start by assigning one box per vertex and combine vertices until one box con-
tains all vertices. We used the top-down approach, which divides the vertices
into two groups by projecting the vertex coordinates onto the principle compo-
nents, and using the mean point as the group boundary. The algorithm stops
once there are no more divisions possible along any component. For images, the
point set could result from a random sampling weighted by the importance of
points (e.g. norm of the gradient).

The weights wi(x) are defined on the OBBTree using multidimensional Gaus-
sian functions as follows,

wi(x) = exp
(−0.5.(x − x̄i)T .[Ri. diag(σ2

i1, σ
2
i2, σ

2
i3).R

T
i ]−1.(x − x̄i)

)
, (2)

where x̄i and Ri are center point and orientation of the ith OBB, and σi1, σi2,
σi3 are the extent of the weights along each axis of the OBB. The parameter σ2

ij

can be set by the user to enforce different smoothing behavior between regions.
To obtain an intuitive understanding of the smoothing parameter σ2

ij we intro-
duce the concept of relative regional mass (RRM). The RRM defines the relative

mass for the most prominent weight in a given region: RRMi =
∫

Ωi
wi(x)dx∫

Ω
wi(x)dx

, where
Ωi and Ω are the volume given by the ellipsoid that fits inside the ith OBB and
the volume of the entire image, respectively. In the special case of RRM equal
to 1, there is no overlap between regions. In Fig. 2 (right), a range of possible
values are shown with corresponding mean squared error and harmonic energy.
In practice, we adjust σ2

ij to obtain the same RRM for all regions.

N0
1 = M0

1

N1
1 = M1

1 − M0
1 N1

2 = M1
2 − M0

1

Fig. 1. Tree of log affine transformations for the first two levels
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Algorithm 1. OBBTree Log-Demons (OBB-LD)
Sequentially register OBBTree levels l = 0, . . . , k

– Initialize demons with previous level vl = vl−1 (for starting level v0 = 0)
– Iterate until convergence

• Compute correspondence stationary velocity field vl
c (not regularized)

• Solve linear least square problem M l = Bl.Σl+

• Combine M l
1, . . . , M

l
n using the polyaffine model (1) to ṽl

• Let vl = ṽl

The integration of our hierarchical model into the demons (after rigid align-
ment) is shown in Algorithm 1. The OBBTree-based polyaffine log-demons reg-
ularizes the velocity fields during each update step. The final result is a velocity
field that includes all registration steps allowing for statistics on diffeomorphisms
as described in [2]. In addition we obtain M l

i , which is the ith log affine trans-
formation at level l, providing us with a low-parametric representation of the
anatomical structure and allowing further hierarchical statistical analysis and
modeling. The hierarchical structure is shown in Fig. 1. Since we are working in
the log-Euclidean framework we can subtract the previous log transform from
the current level to obtain N l

i , which describes the remaining transformation at
that level. The importance of such a hierarchy lies in its power of decompos-
ing features into different scales, this will be elaborated in the next section by
performing a hierarchical PCA for mandibles.

3 Experiments on Mandible CT’s

To evaluate the performance of our new method we conducted registrations
on 47 CT images of mandibles. After rigid alignment of the OBB at level 0, we
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Fig. 2. (left) Boxplot of mean squared error (MSE) of intensities for each level. G0 and
G6 are standard log-demons initialized with L0 and L6, respectively. L0 is one region
only, i.e. standard affine initialization. The red crosses indicate outliers. (right) The
relative regional mass (RRM) represents the amount of smoothing between regions,
where 1 means no overlap between regions.
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OBB Correlation PC1 front view PC1 side view

Fig. 3. (OBB) 6 levels of the OBBTree visualized on the reference mandible, starting
with level 0 up to level 5. (Correlation) Major axis of correlations between regions,
color coded from cold (blue=0.4) to warm (red=1.0). (PC1 front and side view) Red
and white surface are −2 and +2 standard deviations from the mean.
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performed an OBBTree-based registration with 0 to 6 levels (L0 to L6), each level
being initialized by the previous one. Additionally, we initialized two standard
log-demons with Gaussian regularization (G0 and G6) at the first and last level
(L0 and L6), respectively. Since L0 is one region, it is equivalent to a standard
affine initialization.

Fig. 2 (left) shows three important results: (1) Decrease of mean squared error
(MSE) with increasing amount of regions (levels). (2) G0 shows higher median,
variability and more outliers than G6, which indicates the improvements in terms
of robustness, when used as an initialization for standard demons. (3) L6 shows
similar performance as G0 and G6, this indicates that by using 26 = 64 regions,
we can model a standard demons (relative degrees of freedom: three times the
number of voxels). For example, given the dimensions of our mandible CT’s our
method uses only ≈ 0.01% degrees of freedom to reach the same MSE compared
to a standard demons.

Fig. 2 (right) depicts MSE and harmonic energy as a function of different
RRM’s. The MSE converges at RRM=0.74, whereas the harmonic energy in-
creases with increasing RRM values. For the experiments we chose a RRM of
0.74 to obtain the best MSE with highest smoothness.

Fig. 3 shows 5-level OBBTree, weight correlation structure and the first prin-
ciple component for each level. The weight correlation structure is computed
as Γij = Σ

−1/2
ii .Σij .Σ

−1/2
jj , and Γij is decomposed using singular value decom-

position to extract the major axis of correlation. The correlation of the major
axis is colored coded from cool (blue=0.4) to warm (red=1). The graph struc-
ture clearly reveals the intrinsic underlying dimensionality of the object at each
scale, going from a curve to a ribbon and finally in some areas locally to a 3D
volume. It would be interesting to study if this could be a robust alternative to
the medial axis or surface representation.

The per level PCA can be interpreted as follows: (L0) global scaling; (L1)
thickness; (L2) reorientation in the region of the masseter; (L3) relative dis-
placement of condyles and coronoid processes; (L4) change in teeth region; (L5)
change in back teeth region. This gives a visual validation of the usefulness of
per level hierarchical statistical analysis, clearly distributing feature to different
scales.

4 Conclusions

In this work we presented a geometry-aware multiscale approach for registration.
We showed that our method significantly robustifies the standard demons and
increases its repeatability when the full range of scales is used. When stopping at
a reasonable scale (here only 64 components), it even performs similarly while
presenting significant reduction of degrees of freedom of the registration. We
further visualized a per hierarchical level PCA, which suggested a clear division
of shape features into the different levels, allowing for a better interpretation, as
opposed to a PCA on the entire field with potential mixtures of features.

This new method opens a large number of potential research opportunities:
How to analysis tree-like data objects? How to enforce sparsity on these objects?
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What is the correlation between levels? How to measure anatomical meaning-
fulness of deformations quantitatively (in this work a qualitative approach visu-
alizing the modes of variation is used)? How to measure the explained variance
in trees? All these questions will be addressed in future work.

Acknowledgements. This work has been funded by the Swiss National Science
Foundation.
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Abstract. Standard image registration methods do not account for
changes in image appearance. Hence, metamorphosis approaches have
been developed which jointly estimate a space deformation and a change
in image appearance to construct a spatio-temporal trajectory smoothly
transforming a source to a target image. For standard metamorphosis,
geometric changes are not explicitly modeled. We propose a geometric
metamorphosis formulation, which explains changes in image appearance
by a global deformation, a deformation of a geometric model, and an im-
age composition model. This work is motivated by the clinical challenge
of predicting the long-term effects of traumatic brain injuries based on
time-series images. This work is also applicable to the quantification of
tumor progression (e.g., estimating its infiltrating and displacing compo-
nents) and predicting chronic blood perfusion changes after stroke. We
demonstrate the utility of the method using simulated data as well as
scans from a clinical traumatic brain injury patient.

1 Introduction and Background

Image registration is based on structural similarity between a source and a target
image. Similarity is often measured either by comparing image intensities directly
or using indirect intensity measures like mutual information or cross correlation.
However, for images with pathologies, assumptions of structural and intensity
similarity may not hold.

In traumatic brain injury (TBI) cases, one clinical challenge is distinguishing
permanent from transient changes in the brain in order to prescribe effective
treatment and rehabilitation plans. Scans are acquired upon initial presentation
in the clinic as well as after four to eight months (see Fig. 1). The geometry
of the pathology, the deformation of the brain, and infiltration of the pathology
into the brain change drastically between these scans. Determining the regions in
which the infiltration has receded can be particularly useful in predicting long-
term outcome. Similarly, in tumor cases, post-treatment assessment requires
determination of changes in tumor geometry, tumor infiltration, scarring, and
overall brain morphology. In stroke cases, there is a clinical need to predict
chronic changes in blood perfusion from acute scans. In general, these cases are

G. Fichtinger, A. Martel, and T. Peters (Eds.): MICCAI 2011, Part II, LNCS 6892, pp. 639–646, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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Fig. 1. MP-RAGE, post-contrast
MRI scans from TBI case. Left :
Initial scan. Right : Eight months
after initial scan. Rigidly regis-
tered. 1x1x1mm voxels.

characterized by global tissue deformations, local changes in the geometry of a
pathology, and local changes in the composition of the tissue and the pathology.
We refer to these changes as “geometric metamorphosis.”

While geometric metamorphosis changes may be tolerated by registration
methods with low-dimensional image transformation models, direct application
of a classical deformable registration method will likely produce unrealistic esti-
mates of deformation. To address geometric metamorphosis changes, deformable
registration approaches with weak and strong models of appearance change have
been proposed. For example, methods having strong models of brain tumor mass
effects and infiltration have been developed [4,7] and have been used to simulate
tumors in atlas images to allow for spatial normalization of subjects with brain
tumors [10]. While highly sophisticated, these methods are application-specific
and rely on a good match of the tumor model to the observed tumor. On the
other hand, image metamorphosis methods [9] use weak models to smoothly
transform a source to a target image exactly. However, the transformations esti-
mated by image metamorphosis do not explicitly model the deformation or com-
position of the pathologies and instead compromise between a globally smooth
spatial transformation and the interpolation of image intensities along individ-
ual point trajectories. Hence, image metamorphosis models will have difficulty
quantifying effects such as tumor infiltration or tissue recovery in stroke. Con-
sider also that the approach proposed in this paper is, in spirit, related to the
methods proposed in [5,8,2] in which areas that cannot be matched (because no
correspondence exists) are masked out. However, in those methods registration
results inside these masked-out areas are only driven by the spatial regularity
terms of the deformable registration algorithms. Our method explicitly includes
a deformable geometric model of the extent of the appearance change in order
to capture pathology deformations in conjunction with underlying image defor-
mations.

Sec. 2 discusses the geometric metamorphosis model. Its numerical solution
method is discussed in Sec. 3. Results are presented in Sec. 5. The paper con-
cludes with a summary and outlook on future work in Sec. 6.

2 Geometric Metamorphosis Model

Taking tumor growth as an example, changes in image appearance can be caused
by a mixture of tissue deformation, tumor growth displacing healthy tissue,
and tumor infiltration into healthy tissue. Tissue deformation and displacement
due to tumor growth could be captured (between time-points) using a standard
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registration method1. However, infiltration does not imply spatial changes. A
registration method should be able to distinguish image appearance changes
arising from the composition of background deformations of the image and fore-
ground deformations of an embedded geometric object, e.g., a tumor.

We model these transformations through a fluid-registration formulation. In
large displacement diffeomorphic metric mapping (LDDMM) [6] one minimizes

E =
∫ 1

0

‖v‖2
L dt +

1
σ2

‖I(1) − I1‖2, s.t. It + ∇IT v = 0; I(0) = I0,

where v is a sought-for time-dependent velocity field which induces a spatial
transformation warping the source image I0 to the target image I1. Typical LD-
DMM formulations register from source I0 to target I1 on the time interval [0, 1],
thus I(1) represents the warped source image. L is a differential operator (here,
L = γ − α∇2, α, γ > 0) controlling spatial regularity of v; σ > 0 controls the
influence of the image match term. This is an inexact matching that only allows
for the deformation of the source image I0, but not for a change of its appear-
ance. In order to explicitly model appearance changes, we augment this standard
image registration model with an extra control to model foreground deformation
of a geometric model (Sec. 2.1) which induces image changes through an image
composition model (Sec. 2.2).

2.1 Deformation Model

Fig. 2 illustrates the principle of the geometric metamorphosis model. Since we
model geometric metamorphosis as the composition of background and fore-
ground deformations, we introduce the (smooth) indicator functions T1 and T2

as models of the geometric object, T1(x) and T2(x) ∈ [0, 1]. We then register
the background global deformation on time [0, 1] and the foreground geometry
change on time (1, 2], solving for the time-dependent velocity fields v and vτ , re-
spectively. We define the geometric metamorphosis problem as the minimization
of

E = (1 − w)
∫ 1

0

‖v‖2
L dt + w

∫ 2

1

‖vτ‖2
L dt

+
1
σ2

1

Sim(Ic(I1, I
τ (1), T2), Ic(I(1), Iτ (1), T2)) +

1
σ2

2

Sim(Iτ (2), T2),

s.t. It+∇IT v = 0; I(0) = I0,

{
Iτ
t + ∇(Iτ )T v = 0, Iτ (0) = T1, t ∈ [0, 1],

Iτ
t + ∇(Iτ )T vτ = 0, t ∈ (1, 2],

(1)

where Iτ is the image of the geometric object and w ∈ (0, 1) controls the trade-
off between background and foreground deformations. Note that the geometric
1 We assume for simplicity that the geometric object causing image change is present

in both the source and target image, although it may undergo significant distortions.
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model T1 and its image Iτ are subject to both deformations, whereas the source
image is only subjected to the background deformation. Ic(·, ·, ·) denotes the
image composition model (see Sec. 2.2). Sim denotes a similarity measure of
choice. For simplicity, we use the L2 distance measure, Sim(I, J) = ‖I−J‖2. Two
similarity terms are used to assure matching of (i) the regions which correspond
in both images and (ii) the geometric models.

2.2 Image Composition Model

To accommodate local expansions and contractions of the geometric model af-
fecting image appearance, the image composition model needs to preserve regions
where the source and target image can be reliably matched. It needs to disre-
gard areas where no matching image information can be found due to the shape
change of the geometric model. The composition model

Ic(I, Iτ (1), T2)(x) := I(x)(1 − Iτ (1, x))(1 − T2(x)), (2)

achieves this by zeroing out regions defined by the smoothed indicator functions
Iτ (1) and T2. Since this happens for both arguments of the similarity function in
Eq. 1 the image match is effectively disregarded in these regions. This definition is
reminiscent of cost function masking as for example used when registering images
with and without lesions [2]. Here, we use regions in the source and target image
to alter the energy function and estimate the regions which should be excluded in
a joint optimization process. This allows for a combined estimation of foreground
and background deformation.

Fig. 2. Geometric Metamorphosis. An image is explained by a global deformation
(via v) and a geometric model deformation (via vτ ). Corresponding structures in the
source and target guide the estimation of v and vτ addresses additional appearance
differences at the pathology. To avoid faulty evaluation of image similarities, a suitable
image composition method is required (Sec. 2.2). Regions which carry no matchable
information are set to 0 in the image composition model. For a shrinking geometric
model (blue) this region is specified by Iτ (1) (which already includes the background
deformation) and for a growing geometric model (red) by T2. Defining the composition
model as Eq. 2 allows localized growing and shrinking simultaneously.
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3 Numerical Solution

We follow the solution method of [3] to solve the registration problem. To com-
pute the optimality conditions, we add the dynamic constraints through the
Lagrange multipliers λ and λτ . Note that λτ is allowed to be discontinuous at
t = 1 due to the energy term depending on Iτ (1). After some computations we
obtain the optimality conditions for t ∈ [0, 1)

0 = 2(1 − w)L†Lv + λ∇I + λτ∇Iτ

It + ∇IT v = 0, I(0) = I0,

−λt − div(λv) = 0, λ(1) =
2
σ2

1

(I1 − I(1))(1 − T2)2(1 − Iτ (1))2,

Iτ
t + ∇(Iτ )T v = 0, Iτ (0) = T1,

−λτ
t − div(λτ v) = 0, λτ (1−) = λτ (1+) +

2
σ2

1

(I(1) − I1)2(1 − T2)2(1 − Iτ (1)),

and for t ∈ (1, 2]

2wL†Lvτ + λτ∇Iτ = 0,

Iτ
t + ∇(Iτ )T vτ = 0,

−λτ
t − div(λτvτ ) = 0, λτ (2) = − 2

σ2
2

(Iτ (2) − T2).

The final conditions for λ and λτ in [0, 1) reflect the “don’t care” areas of the
registration: areas where T2 = 1 or Iτ (1) = 1 are zeroed out. This is sensible,
because the Lagrangian multipliers represent the image-matching error. We ob-
tain a solution fulfilling the optimality conditions through the following adjoint
solution method:

0) Initialize v, vτ to zero.
1) Solve It + ∇IT v = 0, I(0) = I0 and Iτ

t + ∇(Iτ )T v = 0, Iτ (0) = T1 forward
in time in [0, 1].

2) Continue solving for Iτ for t ∈ (1, 2] but with velocity field vτ .
3) Compute the adjoint solution λ backward for t ∈ [0, 1].
4) Compute the adjoint solution λτ backward for t ∈ (1, 2].
5) Apply the jump condition to λτ at t = 1.
6) Compute the adjoint solution λτ backward for t ∈ [0, 1).
5) Compute for every point and time-point the gradients

∇v(t)E = 2(1 − w)L†Lv + λ∇I + λτ∇Iτ , t ∈ [0, 1],
∇vτ (t)E = 2wL†Lvτ + λτ∇Iτ , t ∈ (1, 2].

6) Do a gradient descent step to update the velocities (using line search).
7) Repeat steps 1 - 6 until convergence.
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4 Estimating Geometric Deformation

Once the foreground and background velocity fields v and vτ have been esti-
mated, they can be used to represent the geometric deformation modulo the
background deformation. This allows for visualization and quantification, for
example of tumor growth. Computing (backward in time) the mapping

−Φr
t − DΦrv = 0, Φr(1) = id, t ∈ [0, 1]

where id is the identity map and D the Jacobian, shape change is computed as

S(0) = T2 ◦ Φr(0) − T1, S(1) = T2 − Iτ (1)

in the coordinate system of the source and the target image respectively. Here
positive values indicate expansion and negative values contraction with respect
to the source image.

5 Experimental Results

We test the geometric metamorphosis model on two sets of synthetic images,
and a TBI image pair. The first synthetic set (Fig. 3) illustrates four different
scenarios: (i) all change caused by infiltration, (ii) all change caused by global
deformation, (iii) global deformation and local infiltration, and (iv) global de-
formation and local recession.

The second synthetic set consists of ten different global and object warps
applied to the same source image and geometric object. After registering, we
compute the mean and standard deviation of the percent overlap for the geo-
metric object as,

Overlap(T2, I
τ (2)) = sum((Iτ

≥0.5(2)) ∩ (T2,≥0.5))/sum((T2,≥0.5)),

where I≥x is a binary mask of all pixels in I greater than or equal to x.
We also compute the background registration accuracy using six manually

selected landmarks in the tissue region as ground truth. Landmark locations are
calculated on the pixel grid and are accurate to +/- 0.5 pixels. We compare the
results of our method against the B-Spline and LDDMM registration methods.
Given the expected similar results in the regions of the image away from the
geometric object we look at the extreme percentiles of the landmark distance
mismatch values. Both LDDMM and geometric metamorphosis compute 95% of
the landmarks to within 0.5 pixels of their correct location, but our method is
able to achieve a significantly higher overlap accuracy (Fig. 3).

The TBI test case contains considerable deformation as well as object reces-
sion around the pathology site. To illustrate those changes, we provide manual
segmentations of the pathology sites in both images (Fig. 4)2. Of clinical impor-
tance, Fig. 5 shows the progression of the pathology label map over the entire
time solution interval [0,2].
2 Note that it is expected that a high segmentations accuracy is not required [1].



Geometric Metamorphosis 645

(i)

(ii)

(iii)

(iv)

Overlap Accuracy

Mean Std. Dev.

B-Spline 0.394 0.033
LDDMM 0.540 0.013
Geo. Met. 0.975 0.039

Landmark Pixel Distance
Mismatch Percentiles

90th 95th 100th

B-Spline 2.74 3.33 3.66
LDDMM 0.5 0.5 0.5
Geo. Met. 0.5 0.5 1.5

Algorithm Comparison: Ten
synthetic cases registered us-
ing B-Spline, LDDMM, and
geometric metamorphosis.

Fig. 3. Synthetic Results. Each row, left to right: I0, I1, I(1) and global deformation,
Iτ (2) and composite deformation. (i) Local infiltration. (ii) Image deformation. (iii)
Image deformation and local infiltration. (iv) Image deformation and local recession.

(a) (b) (c) (d)

(e) (f) (g)

Fig. 4. TBI Results. Top: (a) Initial scan, T1 overlaid. (b) Second scan, T2 overlaid.
(c) Image deformation and I(1). (d) Retraction area deformation and Iτ (2). Bottom:
(e) S(0): Shape change in the source image coordinate frame (f) S(1): Shape change
in the target image coordinate frame, (g) Incursion (red) and retraction (blue) in I2.

T1 Iτ (0)−→ −→ Iτ (1)

Iτ (1.1) −→ −→ Iτ (2)T2

Fig. 5. TBI Pathology Label Map. Progression of TBI pathology label map on [0,2].
Red portion of each frame shows the change from the previous time point. Top: [0,1]
Changes in global deformation. Bottom: (1,2] Changes in infiltration and recession.
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6 Conclusions and Future Work

We proposed an image registration method allowing for background deformation
of a source image, foreground deformation of a geometric object, and their com-
position to match a target image. The method can thereby account for processes
causing images to change due to pathology infiltration/recession and image de-
formation. Since it makes minimal assumptions about the underlying change,
it is generally applicable. We demonstrated its behavior for the registration of
simulated data and traumatic brain injury cases. If desired, the registration
framework can be augmented with an application-specific model, for example,
of tumor growth, as in [4]. In future work we will investigate adaptations wherein
a geometric model is only available in one of the two images and a transformed
model either needs to be estimated from the image or does not exist, e.g., when
registering a tumor patient to a healthy atlas. This work was sponsored in part
by the following grants: NIH 1R01CA138419-01, NIH 1U54EB005149-01, NIH
1R01MH091645-01A1, NIH 2P41EB002025-26A1 and NSF EECS-0925875.
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Abstract. In this paper we propose a novel approach for incorporat-
ing measures of spatial uncertainty, which are derived from non-rigid
registration, into spatially normalised statistics. Current approaches to
spatially normalised statistical analysis use point-estimates of the reg-
istration parameters. This is limiting as the registration will rarely be
completely accurate, and therefore data smoothing is often used to com-
pensate for the uncertainty of the mapping. We derive localised measure-
ments of spatial uncertainty from a probabilistic registration framework,
which provides a principled approach to image smoothing. We evalu-
ate our method using longitudinal deformation features from a set of
MR brain images acquired from the Alzheimer’s Disease Neuroimag-
ing Initiative. These images are spatially normalised using our proba-
bilistic registration algorithm. The spatially normalised longitudinal fea-
tures are adaptively smoothed according to the registration uncertainty.
The proposed adaptive smoothing shows improved classification results,
(84% correct Alzheimer’s Disease vs. controls), over either not smoothing
(79.6%), or using a Gaussian filter with σ = 2mm (78.8%).

1 Introduction

Alzheimer’s disease (AD) is a progressive neurological disease, and the most com-
mon to be associated with the symptoms of dementia. The Alzheimer’s Disease
Neuroimaging Initiative (ADNI) [7] is a large multi-site study whose primary
goal is to test whether serial magnetic resonance imaging (MRI) and other bi-
ological and imaging markers can be combined to measure the progression of
mild cognitive impairment (MCI) and early AD. Determination of sensitive and
specific markers of very early AD progression is intended to aid researchers and
clinicians to develop new treatments and monitor their effectiveness, as well as
lessen the time and cost of clinical trials. ADNI’s initial goal was to recruit 800

� This work was funded by the EPSRC through the LSI DTC.
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adults, ages 55 to 90, to participate in the research, approximately 200 cogni-
tively normal older subjects to be followed for 3 years, 400 people with MCI to
be followed for 3 years and 200 people with early AD to be followed for 2 years.

Longitudinal studies of this scale provide a platform to analyse the progres-
sion of the anatomical effects of neurodegenerative diseases. The use of imaging
tools on longitudinal data allows quantification of the rate of brain atrophy, e.g.
SIENA [11]. Feature maps can be derived from the deformation fields required to
warp between follow-up images and baseline scans, providing high-resolution in-
formation illustrating the anatomical changes taking place over time [9]. The use
of deformation derived features is known as tensor-based morphometry (TBM).
A popular feature one can choose to use is the determinant of the Jacobian of
the deformation fields, which is interpreted as the local expansion/contraction
at a particular location and in the case of longitudinal brain imaging this would
describe atrophy. Once these longitudinal features have been created, they need
to be spatially normalised to enable comparison. This spatial normalisation is
required to be sufficiently accurate to ensure robust inference. Accurate spa-
tial normalisation can be provided using non-rigid registration methods [6]. A
drawback in current approaches is that a point-estimate of the registration pa-
rameters is used, e.g. in [2], which assumes that the mapping is exactly correct.
This however, in the case of inter-subject brain registration, is highly unlikely.
In a recent comparative study of volumetric brain registration algorithms, it
was shown that no algorithm was capable of entirely correctly registering large
labelled regions [5]. This situation can be improved upon by using a probabilis-
tic registration method, which includes a level of uncertainty on the inferred
transformation. The concept of spatial uncertainty in low-level vision has been
previously explored [12]. More recently, probabilistic registration methods have
been shown to produce a map of registration uncertainty in intra-subject brain
registration following tumour resection [8]. However, although their registration
model is capable of estimating the weighting between the similarity and regu-
larisation terms, in this work they prefer to use an ad-hoc weighting of these
factors. This is probably because their approach employs Markov chain Monte
Carlo (MCMC) to infer the registration model parameters, which is particularly
computationally expensive. The significance of this weighting is that it will influ-
ences both the registration result, and the distribution of the spatial uncertainty.

In this work we propose the use of a generic and adaptive approach for prob-
abilistic non-rigid registration to provide a more principled estimate of the spa-
tial uncertainty of a transformation. Based on these estimates, local Gaussian
smoothing kernels can be automatically estimated and used to smooth image
features over the set of probable locations, rather than just the most likely.
This approach is demonstrated using longitudinal data from the ADNI dataset,
where Jacobian maps are used as image features. These are spatially normalised
using a principled probabilistic approach. This transformed data is adaptively
smoothed based on the registration derived uncertainty. Our adaptive approach
to image smoothing is compared, and performs favourably to an ad-hoc Gaussian
smoothing, or no image smoothing for multi-variate disease state classification.
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2 Methods

Image registration can be described probabilistically using a generative model,
where it is assumed that the target image data Y can be generated from a
source image X, which is deformed by a transformation, where T(X,w) is the
transformed source image, and w parametrises the transformation. The specific
form of T used in this implementation is a Free-Form Deformation (FFD) model,
where w is the set of control point displacements in each direction.

As the model will have residual error throughout the registration process, this
error estimate needs to be included. The noise is assumed to have zero mean and
be independent and identically distributed (i.i.d.) across image voxels. In this
case, the noise is assumed to be normally distributed e ≈ N(0, φ−1I), where I
represents the matrix identity. The noise distribution is assumed to have global
precision (inverse variance) across the image, φ. The generic generative model for
registration is therefore given as Y = T(X,w)+e. Using a normally distributed
noise model, as we use here, is equivalent to using the sum of squared differences
(SSD) as the image similarity term.

2.1 Priors

In a probabilistic model for registration, regularisation can be incorporated as
a prior on the transformation parameters, which is modelled using a Multivari-
ate Normal Distribution (MVN). The prior on w is described in eq. 1 where
Λ encodes the regularisation as a spatial kernel matrix providing bending en-
ergy regularisation. λ is the spatial precision parameter, controlling the level of
spatial regularisation. λ is modelled as an unknown parameter, and determined
adaptively from the data resulting in an automated approach to regularisation.
Where λ is constant, this method of regularisation is seen in other probabilistic
approaches to registration [2]. In a related approach in groupwise registration,
the covariance matrix of the deformations used to warp a template to a set
of observed images is calculated from the data [1]. This provides an alternative
principled approach to inferring the covariance between deformation parameters,
however the model inference is computationally infeasible on full 3D volumes.

Non-informative priors on the spatial precision (eq. 2) and noise precision (eq.
3) are specified using Gamma (Ga) distributions, where the subscript 0 denotes
initial parameter estimates. We use wide priors over λ and φ with initial hyper-
parameter for scale s s0 = 1010, a0 = 1010 and shape c0 = 10−10, b0 = 10−10.

P (w|λ) = MV N(w; 0, (λΛ)−1) (1)
P (λ) = Ga(λ; s0, c0) (2)
P (φ) = Ga(φ; a0, b0) (3)

2.2 Model Inference

The model parameters are inferred upon using Variational Bayes [3] which
uses an objective function of the Variational Free Energy (VFE). The VFE
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measures model fit and complexity. Model fit can be approximately considered
to be minimising the sum of squared difference, and model complexity as the
level of bending energy of the transformation. Using the VB framework, analytic
updates are derived for the approximate posterior distributions of the transfor-
mation, regularisation and noise parameters, which maximise the VFE.

VB uses the mean-field approximation, hence the posterior parameter dis-
tribution p(w, λ, φ|Y) is approximated as q(w)q(λ)q(φ). The functional forms
of the approximate posterior distributions are constrained to be conjugate to
the priors, and are given as: q(w) = MV N(w; μ, Υ ), q(λ) = Ga(λ; s, c) and
q(φ) = Ga(φ, a, b). The hyper-parameter updates (eqs. 4-9) are derived by inte-
grating out the factorised parameters from the log posterior model distribution.

Υ = (αφ̄JTJ + λ̄Λ)−1 (4)

c = c0 +
Nc

2
(5)

b = b0 +
Nvα

2
(6)

μnew = Υ
[
αφ̄JT(Jμold + k)

]
(7)

1
s

=
1
s0

+
1
2
(
Tr(ΛΥ−1) + μTΛμ

)
(8)

1
a

=
1
a0

+
1
2
α(kTk + Tr(Υ−1JTJ)) (9)

Here, J is the matrix of first order partial derivatives of the transformation
parameters with respect to the transformed image T(X, μold), centred about
the previous estimate of the mean μold. k is the vector representing the residual
image Y−T(X,w). μnew describes the current estimated transformation param-
eters, and is dependent on the old estimated values. The approximate posterior
covariance matrix of the set of transformation parameters is given by Υ . λ̄ is the
expectation of the posterior spatial precision distribution and φ̄ is the expecta-
tion of the estimated noise precision. Nc is the number of active control points
in the model and Nv is the number of active voxels, α is the virtual decimation
factor which accounts for the correlation in the image noise [4].

2.3 Spatial Uncertainty

The probabilistic registration method intrinsically provides a measurement of
uncertainty on the posterior distribution of the model parameters. This is par-
ticularly interesting for the transformation parameters, given by Υ , which has
units of mm2. The uncertainty of w represents how certain we are that a given
point in the source image should be transformed to a particular point in the
target image. By accurately estimating Υ , and interpolating the variance and
cross-directional covariance across the image, a multivariate normal distribution
illustrating the spatial uncertainty can be calculated at each voxel. The spatial
uncertainty of a particular control point is governed by 5 factors:

– The local image information which is affected by this control point’s move-
ment (JTJ).

– The noise precision: how much the image data is trusted, related to SSD.
– The spatial precision: how similar the transformation is to the spatial prior.
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– The form of the spatial prior, e.g. bending energy, membrane energy.
– The uncertainty of neighbouring control points.

This distribution provides both the magnitude and direction of the uncertainty
at a given point. As the uncertainty is dependent on the image information, it
is lower across an image boundary than along it. This results in an anisotropic
measure of spatial uncertainty, which varies across the image. The scale of uncer-
tainty will also vary across individual registrations. A straightforward approach
to compensate for the spatial uncertainty in the mapping of any given voxel
is to smooth the data according to the local uncertainty distribution, which is
an anisotropic Gaussian kernel. Where the uncertainty of the mapping is high,
smoothing the data compensates for this, but still retains potentially discriminat-
ing information. We propose this novel method to help reduce the inter-subject
variability due to mis-registration of spatially normalised image data.

3 Materials

Data was provided from the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
[7], a large multi-side longitudinal study containing MR imaging data. For this
study 125 random control subjects, and AD patients, of both sexes and a range
of ages AD (mean age 76.6 std.dev 7.67, 67M, 58F ) and Normal controls (mean
age 78.6 std.dev 5.61, 66 M, 59F) were drawn from the database. Pre-processed
images which have been corrected for geometric distortions, bias fields and ge-
ometric scaling are present on the ADNI website, and were used in this work.
Subjects were chosen with at least 2 scans with a minimum interval of 1 year.

4 Experiments

Tools from the publicly available open-source software library, FSL1 were used
to pre-process the images. To correct for difference in size and location, each of
the scans was registered to the MNI 152 template using 9 degrees of freedom.
Each scan was also re-sampled to have 1mm isotropic voxels and was processed
to remove non-brain tissue. An initial atlas was created by averaging 40 healthy
individual control scans after initial affine alignment to the MNI152 template.
To create a sharper atlas, each of these scans was then non-rigidly registered to
the affine atlas using the probabilistic registration tool with a 5mm knot spacing.

The most recent follow-up scan was registered to the baseline scan of each
individual using the probabilistic registration tool with a 5mm knot spacing,
which yielded individual maps of local atrophy. As the interval between scans
varied across subjects, the Jacobian values were linearly scaled to a single year.

The probabilistic non-rigid registration algorithm was used to provide ac-
curate spatial normalisation, which allows measurement of spatial uncertainty.
Each baseline scan was registered to the atlas, an example is given in figure 2.
Each registration result yields a map of the variance and cross-directional co-
variance of the transformation parameters. An illustration of the uncertainty in
the mapping between an AD subject to the atlas is given in figure 1.
1 http://www.fmrib.ox.ac.uk/fsl/
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Fig. 1. An example image showing the distribution of spatial uncertainty in the map-
ping between an AD patient and the atlas. Ellipsoids are plotted every 5mm showing
the full-width at half-maximum of the uncertainty distribution at each point. The
underlying image is the patient image transformed to the atlas.

AtlasRegistered SubjectSubject

Fig. 2. An example registration from the AD patient shown in figure 1 to the atlas

Each individual subject’s longitudinal Jacobian map was transformed to the
atlas space. It is then adaptively smoothed using a unique 3-D Gaussian kernel
for each spatial location derived from the uncertainty of the registration from
the baseline to atlas space. As control experiments, we compare this strategy
against not smoothing the images, and Gaussian smoothing with σ = 2mm.

5 Results

Data decomposition and feature selection was required to provide computation-
ally tractable classification on the 250 spatially normalised and smoothed Jaco-
bian maps, each of which had 2068979 voxels within the anatomical mask. The
concatenated data was processed using a principal component analysis (PCA) al-
gorithm to reduce the data dimensionality. The feature maps were masked prior
to the PCA using a voxelwise t-test between the two populations with a thresh-
old of p < 0.05 uncorrected. The percentage of voxels within the anatomical atlas
region included in the mask was 26.82% for the unsmoothed data, 31.91% for
the Gaussian smoothed data and 29.74% for the proposed method. Thresholded
z-stat maps of the 3 smoothing methods are presented in figure 3. The lowest
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Registration derived
smoothing

Gaussian smoothing 
σ = 2mm

No smoothing
30

 100

Fig. 3. Z-stat maps showing the results from an uncorrected, two-tail t-test on the
spatially normalised Jacobian maps between AD patients and control subjects. The
registration derived smoothing does not blur the boundaries between the ventricles,
unlike Gaussian smoothing, and it increases the signal to noise over no smoothing.

Table 1. Classification results using an SVM with a radial basis function kernel for
the different smoothing methods

Smoothing method Correct rate Sensitivity Specificity

No smoothing 0.796 0.704 0.888
2mm Gaussian Smoothing 0.788 0.904 0.67
Adaptive Smoothing 0.84 0.968 0.71

uncorrected p-value observed for the individual methods is 6.8736× 10−20 with
no smoothing, 1.1289× 10−20 for Gaussian smoothing and 1.5601× 10−21 when
using the proposed adaptive smoothing. In each case the most significant voxel
was located in the left hippocampus which is consistent with previous work [6].

The components which explained 99.0% of the sample variance were used
to project the data. The projected data were classified using a support vector
machine with a radial basis function kernel using σRBF = 2. A leave-two-out
methodology was used, where an instance of each class was used for testing
at each iteration, while the rest of the data were used for training. The average
classification results are given in table 1 and show an improvement in the correct
classification rate when using the proposed approach.

6 Conclusions and Future Work

Adaptive smoothing of spatially normalised image feature data, based on reg-
istration derived uncertainty, has been demonstrated to provide an increase in
the ability to classify between patients with Alzheimer’s Disease and normal
controls using longitudinal Jacobian maps as features. Although the uncertainty
measurements we derive from the image registration process are only a surro-
gate indication of the true anatomical uncertainty, we have shown that they
still provide useful information for reducing the inter-subject variability due
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to mis-registration. As the methods presented here are generic, they could be
employed in alternative applications, including probabilistic segmentation prop-
agation [10]. Future work includes a more rigorous experimental design and in-
cluding MCI subjects. Additionally, we will consider the use of the independent
uncertainty distribution for each FFD control point, as opposed to the unfac-
torised estimates used in this work. This may provide more accurate estimates
of the spatial uncertainty for use as a smoothing kernel.
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Abstract. Registration of image-time series has so far been accom-
plished (i) by concatenating registrations between image pairs, (ii) by
solving a joint estimation problem resulting in piecewise geodesic paths
between image pairs, (iii) by kernel based local averaging or (iv) by
augmenting the joint estimation with additional temporal irregularity
penalties. Here, we propose a generative model extending least squares
linear regression to the space of images by using a second-order dynamic
formulation for image registration. Unlike previous approaches, the for-
mulation allows for a compact representation of an approximation to the
full spatio-temporal trajectory through its initial values. The method also
opens up possibilities to design image-based approximation algorithms.
The resulting optimization problem is solved using an adjoint method.

1 Introduction

The analysis of image-time series is important to study brain development, ag-
ing processes, or tumor growth to name but a few application areas. Establish-
ing image correspondences and localizing change is essential if global measures
are insufficient for analysis. While image registration between image pairs has
been extensively researched for decades, considering populations of images is
more recent. Here, joint-alignment procedures [6] have become standard tools for
cross-sectional population-based image analysis. Lately, methods for longitudinal
data analysis have been proposed based on the extension of large-deformation-
diffeomorphic-metric-mapping (LDDMM) registration to image time-series [4,8]
or series of point clouds [9]. Here, only [9] provides a true generative model,
since the approach is based on an initial value formulation for the registration of
shapes. Initial value formulations have been theoretically discussed for images [7],
but only recently solved as initial value problems [11,1].

Statistics in the LDDMM setting are most naturally performed on momenta
with respect to a mean image [10]. If a piecewise geodesic estimation for a time-
series is used, this requires transporting the set of momenta (for each measure-
ment point of a time-series) to a reference coordinate frame (as proposed in [9]
for points sets)1. Instead of reformulating [9] for images using the initial-value
formulation for image registration, we investigate the behavior of an approxi-
mative time-series model, which generalizes least-square linear regression to the
1 All LDDMM models for image time-series so far estimate piecewise geodesic paths.
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d2(I(t1), Y1)

d2(I(t0), Y0)

d2(I(t2), Y2)

d2(I(t4), Y4)

Fig. 1. Principle: The
geodesic is determined by the
blue and the red images and is
closest to the dashed images

image-valued case. The method (i) is generative,
describing a full time-trajectory by an initial im-
age and momentum, (ii) will allow for compact
statistical analyses of time series based on sets of
initial momenta (one for each time series), (iii)
opens up the possibility to design approximative
algorithms for image time-series (e.g., an approxi-
mative spline, useful for random-design data), and
(iv) handles non-uniform sampling in time. We
use a second order image-based formulation and
minimize the sum of squared distances of a set of
measured images to a geodesic (Fig. 1). Once a
distance measure is defined, we only need to esti-
mate the change of the sum of squared distances
with respect to the initial conditions of the dy-
namical system. This is accomplished by an ad-

joint solution method (Sec. 4) motivated by a scalar-valued formulation (Sec. 2)
and generalized to the image-valued case (Sec. 3). Sec. 5 presents results, Sec. 6
conclusions.

2 Dynamic Formulation of Least-Squares Line Fitting

Consider least-squares linear regression from an optimal control viewpoint: Let
{yi} be a set of M measurements at time points {ti} not necessarily distinct and
ẋ1 = x2; ẋ2 = 0 be the dynamical system where the states denote y-intercept
and slope respectively. The goal is to find initial conditions x1(t0), x2(t0) s.t.

E =
∫ tM−1

t0

λ1(ẋ1 − x2) + λ2(ẋ2) dt +
M−1∑
i=0

(x1(ti) − yi)2 (1)

is minimized, where the Lagrangian multipliers λ1 and λ2 may be discontinuous.
The variation yields the state equation and a boundary value problem for λ1, λ2{

−λ̇1 = 0, λ1(t−0 ) = 0, λ1(tM−1) = −2(x1(tM−1) − yM−1),
−λ̇2 = λ1, λ2(t0) = λ2(tM−1) = 0,

with jump conditions λ1(t−i ) = λ1(t+i )−2(x1(ti)−yi). The gradients of the energy
with respect to the initial conditions are −λ1(t−0 ) = ∇x1(t0)E, −λ2 = ∇x2(t0)E.
We can explicitly solve the equations and obtain the conditions

M−1∑
i=0

(x1(ti) − yi) = 0,
M−1∑
i=0

(ti − t0)(x1(ti) − yi) = 0.

The first condition is a force balance (of model residuals) and the second a mo-
ment balance. The dynamic formulation extends to the space of images (Sec. 3).
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We obtain the mechanical interpretation that λ1 is the (backward in time) run-
ning sum of forces and λ2 is the (backward in time) running sum of moments.
Both need to vanish at optimality. The second-order constraint (ẋ2 = 0) is nec-
essary to obtain a straight line. Relaxing this constraint, the method falls back
to a piecewise geodesic model as currently used in the LDDMM framework.

3 Geodesic Regression on the Space of Images

The LDDMM framework provides a convenient Riemannian setting where
geodesics corresponds to straight lines in the scalar case. Geodesics on the space
of the deformed images are obtained by minimizing the functional

E(v) =
∫ 1

0

‖v‖2
V dt + d2(I(1), Y ) , (2)

where v is a time-dependent velocity field in V , a Reproducing Kernel Hilbert
Space (RKHS) of smooth velocity fields; d2 denotes a general squared-distance(-
like) term. Extending (2) to multiple timepoints leads to piecewise geodesic
interpolation. For a single timepoint however, it gives the geodesicity that needs
to be enforced for our least squares generalization. The Euler-Lagrange equation
for E is a special case of the EPDiff equation and parametrizes a geodesic in
image space given an initial image I(t0) and an initial momentum p(t0) [11]:

It + ∇IT v = 0, pt + div(pv) = 0, v + K � (∇Ip) = 0. (EPDiff) (3)

where K is the (translation invariant) smoothing kernel of the RKHS and � the
convolution operator. Weighted (wi ≥ 0) geodesic regression is to minimize

E = 〈p(t0)∇I(t0), K � (p(t0)∇I(t0)〉 +
M−1∑
i=0

wid
2(I(ti), Yi) (4)

wrt. the initial conditions (I(t0), p(t0)) subject to the EPDiff equation (3) that
replaces the dynamic line model ẋ1 = x2, ẋ2 = 0 in Sec. 2. More importantly,
the first term (not present in the scalar case) ensures the well-posedness of the
model by preventing high frequencies in the time-dependent velocity field.

3.1 Optimality Conditions

Evolution equations for the adjoints are valid piece-wise with jump conditions at
measurement instants. Jumps depend on how much a measured image “pulls” at
the geodesic. Weights wi for the measurements allow for the equivalent of locally
linear regression [5] on the space of images2. We obtain the state equations and
the optimality conditions for the adjoints λI , λp

2 This can be seen as an alternative to kernel based methods (as proposed in [3]) and
is expected to have improved performance at the boundaries of the time interval.
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⎧⎪⎪⎪⎨
⎪⎪⎪⎩
−λI

t − div(vλI) − div(pK ∗ λv) = 0,

λI(tM−1) = −wM−1∇I(tM−1)d
2(I(tM−1, YM−1)),

−λp
t − vT∇λp + ∇IT K ∗ λv = 0, λp(tM−1) = 0,

λI∇I − p∇λp + λv = 0, t ∈ [t+i , t−i+1], i = 0(1)M − 2.

subject to the compatibility conditions⎧⎪⎪⎪⎨
⎪⎪⎪⎩

λI(t−i ) = λI(t+i ) − wi∇I(ti)d
2(I(ti), Yi), i > 0,

λp(t−i ) = λp(t+i ), i > 0,

0 = λI(t+0 ) − wi∇I(t0)d
2(I(t0), Y0) − 2div(p(t0)K ∗ (p(t0)∇I(t00)), i = 0,

0 = −λp(t+0 ) + 2∇I(t0)T K ∗ (p(t0)∇I(t0)), i = 0.

For notational convenience define λI(t0) := λI(t+0 ) − w0∇I(t0)d
2(I(t0), Y0),

λp(t0) := λp(t+0 ). We obtain the gradients

∇I(t0)E = −λI(t0) − 2div(p(t0)K ∗ (p(t0)∇I(t0))),

∇p(t0)E = −λp(t0) + 2∇I(t0)T K ∗ (p(t0)∇I(t0)).

Note that both initial momentum and the initial image are unknowns. To fully
define the problem we need to specify the distance measure d2 and its gradient.

3.2 Choices for d2

Selecting d2 is a design choice. The gradients (wrt. I(ti)) can be viewed as forces
pulling on the geodesic. We discuss the gradients for distances based on the L2

metric and LDDMM registration; a metamorphosis approach could also be used.

L2, Interpolation-Based Image-Match Term. The squared L2 distance
between images and its (infinite-dimensional) derivative is

d2(J, Y ) := ‖J − Y ‖2; ∇Jd2(J, Y ) = 2(J − Y ).

Note that other similarity measure such as cross-correlation or mutual-
information could also be used. This definition simplifies computations. It is only
meaningful if the geodesic is close to the measured images. If large distances are
admissible the squared distances can be defined by registration themselves.

Approximation-Based Inexact Image-Match Term. We use the same sec-
ond order model as for the regression line for image-to-image registration to
define:

d2(J, Y ) = argmin
p(0)

〈p(0)∇I(0)K � p(0)∇I(0)〉L2 +
1
σ2

‖I(1) − Y ‖2, (5)

subject to the EPDiff equation with initial image given by I(0) = J . This is
a special case of the geodesic regression problem with two images with an L2
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distance measure. For an optimal set {I∗, p∗, v, λI∗, λp∗, λv∗}) the gradient of the
squared distance measure with respect to J is hence given by

∇Jd2(J, Y ) = −λI(0) − 2div(p(0)K ∗ (p(0)∇I(0))).

Note the slight abuse of notation, since here λI is not the Lagrangian multiplier
for geodesic regression, but for the geodesic of the registration problem.

3.3 Mechanical Interpretation

A similar mechanical interpretation as for the scalar-valued case holds. Since the
state and the adjoint equations are more involved, we can no longer explicitly
solve the optimality conditions. However, the Lagrangian multipliers λI can be
considered as the generalized running sum of forces and λp as the generalized
running sum for the moment. The gradients of the squared distance measures
with respect to the respective source images can be considered generalized forces.
The additional terms appearing in the energy gradients with respect to the initial
conditions result from penalizing the length of the geodesic.

4 Numerical Solution

To obtain a solution fulfilling the optimality conditions, we compute the gradi-
ents with respect to I(t0) and p(t0) through the adjoints. We use a multi-scale
approach to speed up convergence. The algorithm proceeds as follows

0) Specify an initial (I(t0), p(t0)).
1) Solve the state equation forward, while saving computed values I(t) and p(t).
2) Solve the adjoint equations backward while applying jump conditions at

every time-point with an available measured image.
3) Compute ∇I(t0)E and ∇p(t0)E from λI(t0), λp(t0), I(t0) and p(t0).
4) Use the gradients to update I(t0) and p(t0) through a line search.
5) Repeat from step 1 until converged.

We solve the advection equation for I and the scalar conservation law for p using
a map-based approach as proposed in [2] to minimize numerical dissipation. We
use a similar approach to solve for the adjoints λI and λp, but treat all terms
which cannot be explained by advection or scalar conservation as source terms
which are added to the solutions at each time step as in [11,8]. If it is desired to
obtain a least squares fit such that I(t0) = I0 (where I0 is a given fixed initial
image) the gradient with respect to I(t0) can simply be disregarded. In the scalar
case this amounts to fixing the y intercept at t0 and searching for the best slope.

5 Experimental Results

We tested the geodesic regression model using synthetic and real images. Note
that this paper focuses on the formulation and solution of the geodesic regression
model. Validation in the context of population studies will be future work.
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5.1 Synthetic Images

We applied the method to a translating circle with wi = 0.1 and a Gaussian ker-
nel K with σ = 4 pixels. Fig. 2 (right) shows the original images and the geodesic
regression results when updating initial momentum and the initial image. Since
the displacements between consecutive images is small we used the L2 distance.
The geodesic regression captures the translation well. As expected for a fluid
registration non-uniform compressions and dilations occur. Fig. 2 (left) shows
an example geodesic regression trajectory for a fixed initial template through
three distinct geometric objects. Since this is an approximative algorithm, the
shapes are not perfectly recovered, but instead an intermediate solution is ob-
tained, which approximates the square as a shape in-between the circle and the
diamond-shape. The size of all synthetic images is 64×64 pixels.

Fig. 2. Left: Geodesic regression result with initial image fixed. The trajectory is a
compromise between the shapes. A perfect match of the square and the circle would
require a local contraction (with respect to the diamond shape) followed by an expan-
sion, which cannot be expressed. Right: Translation experiment and results for geodesic
regression with initial image and momentum free. The translation is well captured.

5.2 Real Images: Brain Slices from the OASIS Database

To illustrate the behavior for real images, we took 5 brain slices (176×208 pixels)
from 5 subjects at different ages from the OASIS database and applied geodesic
regression with wi = 10 and a Gaussian kernel with σ = 5 pixels using the L2

distance. Cases were selected to exhibit an expansion of the ventricles. Since
the ventricle topology is different for the subjects, perfect matching cannot be
achieved. Even though large scale deformations were present, geodesic regression
approximates the temporal evolution of the ventricles. This experiment illus-
trates that reasonable approximations can be obtained. Computing the geodesic
from young to old is numerically challenging, because of the large expansions
occurring, which need to be represented by relatively few grid cells in the im-
age. Fig. 3 (left) therefore also shows the estimation results when the geodesic is
represented in the space of the oldest subject. Computed deformations are bet-
ter behaved, because they are easier to represent numerically. In comparison to
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time-series approaches estimating piece-wise geodesics [8,4], geodesic regression
results in a smooth temporal evolution. This is shown in Fig. 3 (right) which
compares a coronal cross section (through the ventricles) for the slices over time.
Kinks are visible for the piece-wise geodesic approach (at the time-points of the
images), but not for the geodesic regression approach.

Much smaller changes are expected for longitudinal data. Fig. 4 shows four
slices (128×161 pixels) for a longitudinal dataset from the OASIS database.
Changes are subtle and most easily seen around the ventricles. The top row
shows overlays with respect to the youngest image and illustrates the increase
in ventricle size. The ventricle expansion is well captured by geodesic regression.

Fig. 3. Left: Brain slices of subjects with increasing age (left to right, 38, 52, 58, 73, 81
[years]) and geodesic regression results. Results with initial conditions in the space of
the 38 year old (middle row) and the 81 year old (bottom row) subject. Right: Coronal
cross sections through ventricles for piecewise-geodesic approach (left) and for geodesic
regression (right) with fixed initial image.

Fig. 4. Brain slices for longitudinal subject data (left to right, age: 67, 68, 71, 73
[years]). Top: original images overlaid with image at age 67. Bottom: geodesic regression
results overlaid with original images. Yellow indicates agreement. Zoom in to view.
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6 Discussion and Conclusions

We proposed a generative model for image time-series, where trajectories are
fully parametrized by their initial conditions. To measure distances from the
regression geodesic we proposed an L2 and a registration-based distance and
integrated them into an adjoint solution method. Geodesic regression is an ap-
proximative estimation method, which opens possibilities for other approxima-
tion methods on the space of images (e.g., approximating splines). We addressed
how to estimate an individual trajectory. To perform statistical analysis for pop-
ulations requires comparing the initial momenta in a common coordinate sys-
tem, which can be achieved by transporting the initial momenta to a common
atlas-space [12]. Geodesic regression simplifies statistical analysis, because of its
compact representation of image time-series. It generalizes to piecewise geodesic
approximations by concatenating geodesic regressions at specified time-points.
This allows standardized representations to compare time-series data with non-
uniform temporal sampling. This work was sponsored by NIH 1R01MH091645-
01A1, NIH 2P41EB002025-26A1 and NSF EECS-0925875.
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Abstract. Mapping the effects of different clinical conditions on the
evolution of the brain structural changes is of central interest in the field
of neuroimaging. A reliable description of the cross-sectional longitudi-
nal changes requires the consistent integration of intra and inter-subject
variability in order to detect the subtle modifications in populations. In
computational anatomy, the changes in the brain are often measured
by deformation fields obtained through non rigid registration, and the
stationary velocity field (SVF) parametrization provides a computation-
ally efficient registration scheme. The aim of this study is to extend
this framework into an efficient and robust multilevel one for accurately
modeling the longitudinal changes in populations. This setting is used to
investigate the subtle effects of the positivity of the CSF Aβ1−42 levels
on brain atrophy in healthy aging. Thanks to the higher sensitivity of
our framework, we obtain statistically significant results that highlight
the relationship between brain damage and positivity to the marker of
Alzheimer’s disease and suggest the presence of a presymptomatic pat-
tern of the disease progression.

1 Introduction

The ability to map the different areas involved in the neurodegenerative pro-
cesses is of primary importance for the formulation of new clinical hypotheses
on the pathological mechanisms. Moreover, the availability of a longitudinal
model of the disease progression would provide a reliable standard for diagnostic
purposes. The problem is particularly relevant in the field of Alzheimer’s disease
(AD) which is characterized by the progressive abnormal configuration of the
� Data used in preparation of this article were obtained from the Alzheimer’s Dis-

ease Neuroimaging Initiative (ADNI) database (www.loni.ucla.edu/ADNI). As such,
the investigators within the ADNI contributed to the design and implementa-
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www.loni.ucla.edu/ADNI/Collaboration/ADNI_Authorship_list.pdf
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biochemical, functional and structural markers in the brain which may occur
up to decades before the clinical assessment [5]. Among the earliest potential
markers, the pathological configuration of the CSF Aβ1−42 was shown to be
associated with a general increased predisposition to clinical conversion to AD.
It is therefore of great interest to model the subtle differential evolution from
normal aging of the brain changes in subjects who are not affected by the disease
but present lower Aβ1−42 levels. For this purpose, robust, sensitive, accurate and
reproducible modeling techniques are required.

The non-rigid registration is a candidate instrument to quantify the structural
differences between brain images and the new generation registration algorithms
provide diffeomorphic registration ([14], [9]). Among them, the Log-Demons al-
gorithm provides an accurate and computationally efficient approach, by using
stationary velocity fields (SVF) as parametrization of the deformations.

The analysis of longitudinal data requires to go one step further and to in-
tegrate the temporal dimension into the registration procedure. The main com-
plexity of the problem lies in the different levels of variation introduced by the
different nature of the small intra (longitudinal) and large inter-subject (cross-
sectional) changes: the measurements from time series of a specific subject must
be normalized into a comprehensive spatio-temporal atlas. Although different
approaches have been proposed in the past for the group-wise analysis of lon-
gitudinal dataset ([2], [15]), a consensus on the optimal strategy to handle the
different levels of information is still missing, for instance for the choice of the
different metrics for intra and inter subject normalization.

We believe that the reliable quantification of the group-wise longitudinal
changes should independently address the different sources of variability with
proper methods, and consistently integrate the different levels into a general
framework. In previous works the SVF setting was shown to provide:

1. An efficient pairwise-registration scheme with Log-Demons [14];
2. A straightforward way to model the subject-specific deformation trend from

time series with a spatio/temporal regularization procedure [7];
3. A stable way to transport the subject-specific trends in the atlas geometry

using the parallel transport given by the Schild’s Ladder procedure [8].

The goal of this paper is 1) to combine these previous contributions in a robust,
efficient and precise tool for modeling group-wise deformation, and 2) to use the
framework to analyze and model the subtle effects of the CSF Aβ1−42 levels on
longitudinal brain atrophy in healthy elders.

2 Modeling Changes in Time Series of Images with the
SVF Framework

We assume that the subject specific evolutions are random realizations of an
underlying ideal population trend. The hierarchical generative model is therefore
composed of the following levels:
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1. We model the population trend as the deformation μG(t) of a template T0

over time. The (spatially normalized) deformation trend of subject K in the
template space is assumed to be a random realization of a Gaussian process
μK(t) = μG(t)+ εK . It is the goal of step 4 to estimate the population trend
μG(t) from the spatially normalized subject’s longitudinal trends.

2. To account for the spatial variability of the anatomy across the population,
the subjects specific coordinate system is defined by a spatial changes of
coordinates φK(−1) from the template to the subject. The subject specific
deformation trend vK(t) is then modeled as the parallel transport of the
spatially normalized subject’s longitudinal trend μK(t) along the template-
to-subject spatial change of coordinates φK(−1). Step 3 is taking care of
solving the reverse problem in a discrete time setting.

3. Subject specific longitudinal trends are then sampled in time (modeling the
discrete acquisition times) and a deformation noise accounting for the influ-
ence of random confounding factors (hydratation, vasodilation, etc) is added
independently at each time point to obtain the subject-specific deformation
vK

i = vK(ti)+εi at time point ti. Step 2 aims at solving the inverse problem.
4. Last but not least, the subject time series of images is generated by deforming

the subject baseline image IK
0 with an acquisition noise on intensities: IK

i =
exp(vK

i ) ∗ IK
0 + εI

i . Step 1 is solving the inverse problem using non-linear
registration.

Let us now address the inverse problem: estimating the population trend from
the time series of patient images. We detail below step by step the solution we
propose to solve each level of the generative model (in the reverse order).

Step 1: Robust pairwise registration with the Log-Demons algorithm.
For each subject K, the longitudinal changes along the time series of images
IK
i , i = 0, . . . , n acquired at time t0 = 0, . . . , tn, are evaluated by non rigid

registration with respect to the reference time point, here the baseline IK
0 .

The Log-Demons algorithm aims at matching the images I0 and Ii by looking
for the deformation ϕ which maximises their similarity. The deformation ϕ be-
longs to the one-parameter subgroup generated by an optimal vector field v, and
the parametrisation is defined by the group exponential map ϕ = exp(v) [1].

In the standard log-Demons algorithm the “unregularized” correspondence field
vx is given by the minimization of the sum of squared differences (SSD) between
the intensities of the two images, which is not robust to the intensity biases. In
order not to mistake spurious intensity variations for morphological differences,
we first propose to resort to the local correlation coefficient, introduced in [3]:

E(I0, Ii,vx,v) = min(a,b)

∫
GσS ∗ ‖(a(x) · I0(x) + b(x)) − Ii(x) ◦ exp(vx)(x)‖2+

+
1
σ2

x

‖ log(exp(−v)(x) ◦ exp(vx)(x))‖2
L2

(1)

The spatially varying coefficients a(x), b(x) account for the additive and multi-
plicative biases for the intensities. Moreover the bias estimation is local, thanks
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to the Gaussian weights on the error norm. In practice, the standard correspon-
dence energy of the Log-Demons is replaced by E(I0, Ii,vx,v), while preserving
the remaining structure of the algorithm. As proposed in [3], the minimization of
(1) is operated through a two step procedure: a first step evaluates the optimal
scaling factors a and b voxel-wise, that are then reintroduced for the optimiza-
tion of vx through a Gauss-Newton scheme. Experiments on both synthetic and
real data showed that the local similarity criteria allows to robustly compute
deformations in presence of bias and generally provides smoother estimation of
the anatomical differences (data not shown due to space constraints). The im-
portant robustness improvements came at the price of a reasonable increase of
the computational time (around 25 minutes on a Pentium Intel Core Duo 2.4Ghz
for registering images with resolution 182x182x218, voxel size 1x1x1) .

Step 2: Modeling the subject specific longitudinal trends. In order to
obtain smoother estimations of the subject specific trajectory and to reduce the
intra-subject variability given by possible confounding factors, the Step 2 con-
sists in introducing a temporal correlation into the estimated serial deformations
through a 4D registration scheme [7]. The procedure is particularly indicated
here, since we are going to investigate the subtle morphological changes occur-
ring in the brain of cognitively healthy subjects on a small number of time points
(around 4 for the ADNI dataset), and we do not expect to model sharp variations
or sudden modification of the longitudinal series.

The subject specific trend v̄K(t) = L(vK
i , ti, t) is estimated with a linear

model in time (which is a non-linear deformation model) from the time series of
static velocity fields vK

i evaluated in the Step 1 for the pairs IK
0 , IK

i . The 4D
registration integrates the v̄K(t) in a new registration step in order to provide a
temporal prior for finally estimate the spatio-temporal regularized sequence of
the static velocity fields v

′K
i .

The solution at each time point ti is represented by the weighted average
between the temporal prior v̄K(ti) and the spatial correspondence vx provided
by the similarity measure. Previous experiments showed that the 2:1 trade-off
between spatial and temporal weights defines sufficiently smooth trajectories
while not biasing the changes towards a completely linear model.

Step 3: Transporting the subjects trajectories in the atlas geometry.
In order to compare the longitudinal trajectories between the different subjects
and to perform statistical analysis, we need to transport the series of veloc-
ity fields v

′K
i in a common reference. For this purpose, we base the transport

on the Schild’s Ladder method [8]. The method relies on the technique intro-
duced in the field of theoretical physics for computing the parallel transport of
tangent vectors on a general manifold without requiring the knowledge of the
global geometrical properties of the space. It is based on the construction of
a “geodesic parallelogram” for transporting vectors along any curve (and not
just the geodesics of a specific choice of metric)1. More precisely, the parallel
1 In the case of SVF, the geodesic parallelogram is based on the one-parameter sub-

groups which are the geodesics of the Cartan connections [12].
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transport of the trajectory v
′K
i from Step 2 along φK = exp(tuK) connecting

IK
0 and T0 is the field v∗K

i = ΠφK

(v
′K
i ) � v

′K
i + [uK ,v

′K
i ] + 1

2 [uK , [uK ,v
′K
i ]].

Step 4: Longitudinal group-wise modeling. The transported time series of
SVF v∗K

i = ΠφK

(v
′K
i ) belonging to different subjects can now be easily com-

pared in the reference space T0. In order to develop a group-wise model for
the trajectories, we propose here a random effect analysis based on the lon-
gitudinal transported trends. Let μK(t) = L(v∗K

i , ti, t) be the spatially nor-
malized subject trend modeled in the reference space with a linear model in
time2. The different subject trends μK(t) characterize the trajectories across the
populations and by comparing them it is possible to provide a description of the
group-wise evolutions. In the following, the different evolutions across the groups
(say + and -) will be statistically assessed on the group-wise mean deformation
trends μ+(t) and μ−(t). However, the visual differences between the trends will
be illustrated by applying the longitudinal evolutions to the template image:
T +(t) = exp(μ+(t)) ∗ T0 and T−(t) = exp(μ−(t)) ∗ T0.

3 Effects of Aβ1−42 Positivity on Healthy Aging

The T1 weighted longitudinal scans (baseline, 6, 12, 24 and 36 months) were
selected for 98 healthy subjects from the ADNI dataset [10]. Two subgroups
were then defined based on the positivity to the Aβ1−42 marker defined by values
below the threshold of 192 pg/ml and resulted in 41 subjects Aβ1−42 positives
and 57 negatives (Aβ+

1−42 and Aβ−
1−42). The two groups were similar at baseline

for gender (% of women: 45 % for Aβ+
1−42 , 51 % for Aβ−

1−42), age (75±5, 75±5)
and education (15.8±3.17, 15.5±2.7). For each subject, the time series of images
were aligned through an unbiased procedure consisting on the iterative rigid
registration to the median image computed voxel-wise. The final median image
was linearly registered to the MNI132 template and the affine transformation
was then applied to the series.

The 4D registration algorithm was applied to the longitudinal series of each
subject, with σS = 10mm for the local similarity criteria, σfluid = 0.5mm and
σelastic = 1mm for the regularization. The Schild’s Ladder was used to transport
the longitudinal trajectories from the subject to an unbiased population-based
Template T , computed as in [6] (Inter-subject registrations were also computed
with the log-Demons algorithm).

The mean trends μ− of the Aβ−
1−42 and μ+ of the Aβ+

1−42 groups were com-
puted from the estimated subject-specific trends. Their difference was assessed
on a voxel-by-voxel basis by a multivariate analysis based on the Hotelling’s two-
sample T 2 statistic (Figure 2C). The statistical significance was assessed after
correction for multiple comparisons by means of permutation test (1000 permu-
tations). Moreover, the trends allowed to compute the mean evolutions for the

2 We notice that the model fitted in the Log-domain does not imply a linear trend for
the parametrized deformations.
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Fig. 1. Average SVF from baseline for the Aβ−
1−42 (left) and Aβ+

1−42 (right) groups. For
both groups the average forces increase longitudinally, but we can notice an acceleration
for the changes across the hippocampus and the temporal regions for the Aβ+

1−42 group.

Template space and to qualitatively assess the differential progression between
the two groups (Figure 2A/B). Finally, a region of interest (ROI) based analysis
was performed on the average log-Jacobian values of the estimated trajecto-
ries in selected areas of the Template space, segmented through an automated
procedure(Ventricles, Hippocampus, Amygdalae, Caudate and Thalamus) [11].

4 Results

Figure 1 shows the average SVF estimated for the two groups from baseline.
Althought the two groups show a similar pattern for the ventricular expan-
sion, the Aβ+

1−42 shows an increased flow of vectors across the temporal regions
and hippocampus. Figure 2A highlights the modeled longitudinal changes from
baseline for the Aβ−

1−42 group. The aging effect can be appreciated in the ven-
tricular expansion and in the spread cortical changes. The additional changes
due to the positivity to the marker Aβ1−42 are displayed in Figure 2B. The
positivity to Aβ1−42 is characterized by increased longitudinal changes located
in the temporal areas and by ventricles expansion. We notice that the average
progression built from the estimated SVF allowed to extrapolate the expected
evolution 2 years after the end of the study. The multivariate statistical assess-
ment of the differences between the evolution of the two groups is shown in
Figure 2C. It involves hippocampi, ventricles and the temporal regions. Interest-
ingly, the voxel-by-voxel statistical analysis on the associated log-Jacobian scalar
maps showed similar patterns but failed to reach the statistical significance af-
ter the correction for multiple comparisons. This suggests a higher sensitivity of
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Fig. 2. Modeled longitudinal annual % intensity changes for A) the Aβ−
1−42 group

with respect to the baseline, and for B) the Aβ+
1−42 group with respect to the Aβ−

1−42

longitudinal progression. In C) are shown the areas of statistically significant difference
between the trends of the Aβ−

1−42 and the Aβ+
1−42 groups (p<0.05 corrected). Last row:

modeled additional loss with respect to the Aβ−
1−42 progression for an AD group from

the ADNI dataset. We can notice the analogies with the Aβ+
1−42 trend.

the analysis when performed on the multivariate SVF v rather than on scalar
higher order quantities such det(∇v). Supplementary material can be found
in http://www.inria.fr/sophia/members/Marco.Lorenzi/SVF_Framework. The
regional differences were confirmed by the ROI based analysis, where significant
differences for the volume change/year were found in the ventricles (3.84% for
Aβ−

1−42, 6.72% for Aβ+
1−42, p=0.009) and in the hippocampus (0.14%, 0.24%,

p= 0.014 ) while no significant differences were detected in the other regions.

5 Conclusions

The present work introduces a consistent and effective framework for the analysis
of longitudinal data of 3D MRI images. It allowed to model the subtle changes
which differentiate the longitudinal evolution of healthy people with abnormal
Aβ1−42 level from those in the normal range, given by increased ventricular
expansion and spread matter loss in the temporal regions ([4], [13]). The resulting
trajectories incorporate a wide range of informations (velocities, deformations,
volume changes, . . . ) which could provide new insights for the understanding
of the biological phenomenas, like modeling the pathological evolutions (such
as in Figure 2). For instance, the extrapolation result is an appealing feature
in epidemiology as it enables previsions that could motivate clinical hypothesis.
Moreover, the soundness of the extrapolated data indicate the stability and the
robustness of the proposed method.
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Abstract. Accurate and consistent reconstruction of cortical surfaces from 
longitudinal human brain MR images is of great importance in studying subtle 
morphological changes of the cerebral cortex. This paper presents a new 
deformable surface method for consistent and accurate reconstruction of inner, 
central and outer cortical surfaces from longitudinal MR images. Specifically, 
the cortical surfaces of the group-mean image of all aligned longitudinal 
images of the same subject are first reconstructed by a deformable surface 
method driven by a force derived from the Laplace’s equation. And then the 
longitudinal cortical surfaces are consistently reconstructed by jointly 
deforming the cortical surfaces from the group-mean image to all longitudinal 
images. The proposed method has been successfully applied to both simulated 
and real longitudinal images, demonstrating its validity. 

Keywords: Cortical surface reconstruction, longitudinal cortical surface.  

1   Introduction 

The human cerebral cortex is a thin, highly folded sheet of gray matter with the 
thickness varying between 1 and 5 mm [1-3]. Reconstruction of cortical surfaces from 
brain MR images plays a vital role in studying structure and function of human brains, 
and many methods have been proposed in the literature [1-7]. However, most existing 
cortical surface reconstruction methods were designed for working on a single image. 
For studying longitudinal change of cortical structures, which is important to normal 
development, aging, and disease progression of human brains, it requires more 
accurate and consistent cortical surfaces reconstruction and representation, since 
longitudinal cortical changes are usually very subtle, especially in normal aging and 
Alzheimer’s disease. Therefore, applying these existing cross-sectional methods 
independently to reconstruction of cortical surfaces at each time point in a 
longitudinal imaging study may generate longitudinally-inconsistent cortical surfaces, 
due to the inconsistency of tissue segmentation, topology correction, and surface 
tessellation. Accordingly, efforts have been made toward the reconstruction of 
cortical surfaces from longitudinal images [8, 9], e.g., the longitudinal processing 
pipeline in FreeSurfer [8], in which cortical surfaces of the mean image of rigidly-
aligned longitudinal images or the median image are used as initialization for each 
longitudinal image and then independently deformed at each time point.   
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Fig. 1. (a) The flow chart of the longitudinal cortical surface reconstruction method. (b) The 
flow chart of the cortical surface reconstruction for the group-mean image.  

This paper presents a new method for consistent reconstruction of inner, central, 
and outer cortical surfaces from longitudinal brain MR images. The inner cortical 
surface is the interface between white matter (WM) and gray matter (GM), and the 
outer cortical surface is the interface between GM and cerebrospinal fluid (CSF). The 
central cortical surface is defined as the layer lying in the geometric center of the 
cortex, approximately corresponding to the cytoarchitechtonic layer four [3, 4, 7]. For 
consistent reconstruction of cortical surfaces from longitudinal images, in our method, 
the cortical surfaces of a group-mean image of all non-rigidly aligned longitudinal 
images are first reconstructed using a deformable surface method, and then the 
cortical surfaces of the group-mean image are used as the initialization to reconstruct 
all longitudinal cortical surfaces simultaneously. To drive the deformable surfaces 
towards the target surfaces (inner, central and outer surfaces), a force derived from the 
Laplace’s equation [10] is adopted. Our method has been successfully applied to both 
simulated and real longitudinal images, demonstrating its validity. 

Our proposed method has several advantages over exiting methods. First, temporal 
constraints are incorporated in longitudinal cortical surface reconstruction by jointly 
deforming cortical surfaces of all longitudinal images simultaneously in contrast to 
the existing methods which independently deform the cortical surfaces from the mean 
image to each time point [8, 9]. Second, a force derived from Laplace’s equation [10] 
is used to drive the deformable surface to help preserve the topology of the 
deformable surface. Third, the group-mean image is obtained by a nonlinear 
groupwise registration method in contrast to the rigid alignment used in the existing 
methods [8, 9]. At last, a longitudinally-consistent tissue segmentation method is 
adopted to facilitate the longitudinally consistent cortical surface reconstruction. 

2   Methods 

Given longitudinal brain MR images of a subject, our method for consistent cortical 
surface reconstruction consists of the following 4 major steps, as shown in Fig. 1. 
First, longitudinal images are preprocessed. Second, longitudinal images are 
groupwisely registered to obtain a group-mean image, and also their tissues are 
consistently segmented into WM, GM, and CSF. Third, the cortical surfaces of the 
group-mean image are reconstructed using a deformable surface method. Finally, the 
cortical surfaces of the group-mean image are warped to each longitudinal image and 
jointly deformed to reconstruct longitudinal cortical surfaces.  
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2.1   Preprocessing 

The preprocessing procedure includes the following steps: (1) intensity 
inhomogeneity correction, (2) rigid registration of follow-up images onto the baseline 
image using FLIRT, (3) removing of non-brain tissues of the baseline images, and (4) 
masking of the brains of follow-up images using the brain mask of the baseline image.  

2.2   Groupwise Registration and Consistent Longitudinal Tissue Segmentation 

Considering the nonlinear longitudinal changes of brains, instead of averaging rigidly 
aligned images as did in existing methods [8, 9], a groupwise registration method [11] 
is adopted to obtain the group-mean image of longitudinal images, as well as the 
deformation fields from each longitudinal image to the group-mean image. To 
achieve longitudinally-consistent tissue segmentation, CLASSIC [12] is adopted to 
perform tissue segmentation on longitudinal images. To recover deep and narrow 
sulci, we use the ACE method [3] to modify the segmented GM volume to generate a 
no-more-than-one-voxel thick separation between opposite sulcal GM banks. 

2.3   Cortical Surface Reconstruction for Group-Mean Image 

To reconstruct cortical surfaces of the group-mean image, the inner cortical surface is 
reconstructed first in our method, and then the inner surface is deformed to 
reconstruct both central and outer surfaces. To obtain the topologically-correct inner 
surface, the topology of the WM volume is first corrected by a graph based method in 
[5] to ensure a spherical topology, and then the Marching cubes method is used to 
convert the boundary of the corrected WM volume to an explicit surface 
representation. Using a deformable surface method, this reconstructed rough inner 
surface is deformed under imposed forces to obtain the refined inner surface, as well 
as to obtain the reconstruction of the central and outer surfaces one-by-one. Since the 
deformable surface for cortical surface reconstruction from a single image can be 
considered as a special case of longitudinal cortical surface reconstruction, the general 
deformable surface will be detailed in Section 2.4. Fig. 2 shows an example of the 
reconstructed inner, central, and outer surfaces from an image by our method. 

 

Fig. 2. Reconstructed surfaces of an image. (a) Inner surface. (b) Central surface. (c) Outer 
surface. (d) Surfaces overlaid on a slice. Dark blue: inner; orange: central; light blue: outer. 
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2.4   Cortical Surfaces Reconstruction for Longitudinal Images 

The cortical surfaces of the group-mean image are warped to each longitudinal image 
and further jointly deformed for longitudinal surface reconstruction using a 
deformable surface method. For longitudinal surface reconstruction with n time 
points, the deformable surfaces at 4D (3D spatial + 1D temporal) domain are 
parameterized as {ܠ୲ሺܝሻ ൌ ሾݔ௧ሺܝሻ, ,ሻܝ௧ሺݕ ܝ ,ሻሿ்ܝ௧ሺݖ ൌ ሺݑଵ, ଶሻݑ א ሾ0, 1ሿ ൈ ሾ0, 1ሿ, ݐ ,ሼ1א … , ݊ሽ}, which can be obtained by minimizing the following energy function:      ܧ ൌ ∑ ሺ ଵଶ ቀߙ ∑ หܠ௧,หଶଶୀଵ  ߚ ∑ หܠ௧,หଶଶ,ୀଵ  ,௧ܠ|ߛ |ଶቁ  ሻ௧ୀଵܝ௧ሻ݀ܠ௫௧ሺܧ              (1) 

where parameters α and β control the tension and rigidity of surfaces, respectively. 
And the parameters γ controls the temporal smoothness of surfaces. ܠ௧,  and ܠ௧, 
denote the first and second partial derivative of ܠ௧ w.r.t. ܝ, respectively. And ܠ௧,  denotes the finite difference of ܠ௧ w.r.t. t. ܧ௫௧ሺܠ௧ሻ is the external energy derived 
from the image at time t. The solution to the above energy minimization problem can 
be obtained by solving the following dynamic equation [4, 7]:                  ܠ௧,ఛሺ߬ሻ ൌ ۴௧ሺܠ௧ሺ߬ሻሻ  ۴௫௧ሺܠ௧ሺ߬ሻሻ        

(2)

where the internal force ۴௧ሺܠ௧ሺ߬ሻሻ ൌ ௧ሺ߬ሻܠܝ∆ߙ െ ௧ሺ߬ሻሻܠܝ∆ሺܝ∆ߚ   and the external ,,ݐܠߛ
force ۴௫௧ሺܠ௧ሺ߬ሻሻ will be defined later. ∆ܝൌ ∂ଶ/ሺ∂ݑଵሻଶ  ∂ଶ/ሺ∂ݑଶሻଶ is the Laplacian 
operator to ܠ ,ܝ௧,, denotes the second order finite difference of ܠ௧ w.r.t. t. The first two 
terms in ۴௧ሺܠ௧ሺ߬ሻሻ is the spatial regularizing force, and the third term is the temporal 
regularizing force, enforcing the temporal smoothness along the time t. Note that the 
deformable surface is treated as a function of surface evolution time τ. If only one 
time point exists, the temporal regularizing force will be 0 and the deformable surface 
can be used for surface reconstruction for the group-mean image as mentioned above.  

The external force driving initial surfaces towards target surfaces is designed as:  ۴௫௧ሺܠ௧ሺ߬ሻሻ ൌ Gሺܠ௧ሺ߬ሻሻ · ۴ீெሺܠ௧ሺ߬ሻሻ  ൫1 െ Gሺܠ௧ሺ߬ሻሻ൯ · ۴ேீெሺܠ௧ሺ߬ሻሻ         (3)

where ܩሺݐܠሺ߬ሻሻ is the GM indicator function and ۴ீெሺܠ௧ሺ߬ሻሻ is a force activated inside 
of GM and derived from the Laplace’s equation [10]. ۴ேீெሺܠ௧ሺ߬ሻሻ is a force 
activated outside of GM and defined as:                ۴ேீெሺܠ௧ሺ߬ሻሻ ൌ ௧ሺ߬ሻሻܠሺܦ · ሺ2ܹ൫ܠ௧ሺ߬ሻ൯ െ 1ሻ ·         ௧ሺ߬ሻሻܠሺܖ

(4)

where ܹሺܠ௧ሺ߬ሻሻ is the WM indicator function, and ܖሺܠ௧ሺ߬ሻሻ is the outward-oriented 
unit normal vector. ܦሺܜܠሺ߬ሻሻ is the force strength at vertex ܠ୲ሺ߬ሻ. For inner and outer 
surface reconstruction, ܦሺܠ௧ሺ߬ሻሻ is the distance along the direction of ሺ2ܹሺܠ௧ሺ߬ሻሻ െ1ሻ ·  ௧ሺ߬ሻሻ to the WM/GM and GM/CSF interfaces, respectively. For central surfaceܠሺܖ
reconstruction, ܦሺ࢞௧ሺ߬ሻሻ is set as the average distance along the direction of ሺ2ܹሺܠ௧ሺ߬ሻሻ െ 1ሻ ·  .௧ሺ߬ሻሻ to WM/GM and GM/CSF interfacesܠሺܖ
     ۴ீெሺܠ௧ሺ߬ሻሻ is derived from Laplace’s equation of the GM [10], which is a second-
order partial differential equation for a scalar field φ enclosed between two interfaces:      ∆߮ ൌ பమఝப௫మ  பమఝப௬మ  பమఝப௭మ ൌ 0           (5)
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By setting the WM as the minimal value and the CSF as the maximum value,  
the Laplace’s equation is solved inside of the GM to obtain the harmonic function. 
The normalized gradient vector field of the harmonic function ܂ሺܠ௧ሺ߬ሻሻ and the 
streamlines to both WM/GM and GM/CSF interfaces are computed for each point in 
GM. The Laplace’s equation establishes a one-to-one correspondence between 
WM/GM and GM/CSF interfaces and the streamlines of the harmonic function never 
intersect each other. This elegant property helps preserve the topology of the 
deformable surface. Denote the streamline lengths from a point  ܠ௧ሺ߬ሻ in GM to 
WM/GM and GM/CSF interfaces as ܮሺܠ௧ሺ߬ሻሻ and ܮଵሺܠ௧ሺ߬ሻሻ, respectively. ۴ீெሺܠ௧ሺ߬ሻሻ 
for inner, central and outer surfaces reconstruction are respectively defined as: ۴ீெ ሺܠ௧ሺ߬ሻሻ ൌ െ܂ሺܠ௧ሺ߬ሻሻ ·                          ௧ሺ߬ሻሻܠሺܮ

(6)

        ۴௧ீெ ሺܠ௧ሺ߬ሻሻ ൌ ௧ሺ߬ሻሻܠሺ܂ · ሺܮଵሺܠ௧ሺ߬ሻሻ െ ௧ሺ߬ሻሻሻ                     (7)ܠሺܮ

   ۴௨௧ீெ ሺܠ௧ሺ߬ሻሻ ൌ ௧ሺ߬ሻሻܠሺ܂ · ௧ሺ߬ሻሻ              (8)ܠଵሺܮ

The central idea is that the direction of ۴ீெሺܠ௧ሺ߬ሻሻ should point toward the target 
surface and the magnitude of ۴ீெሺܠ௧ሺ߬ሻሻ should be directly proportional to the 
distance to the target surface. Fig. 3 illustrates the streamlines to GM/CSF interface 
and the force directions in GM.  

 

Fig. 3. Illustrations of the streamlines to GM/CSF interface and the force directions in GM. (a) 
Streamlines. (b) Zooming view of the yellow rectangular region in (a). (c) and (d) Force 
directions for central and outer surface reconstruction, respectively.  

 

Fig. 4. An example of reconstructed longitudinal outer surfaces, color-coded by thickness  
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To prevent from self-intersection, a triangle-triangle intersection detection method 
[13] is used in triangle faces contained in a local sub-volume. Once self-intersection is 
detected, the deformation is cropped to a valid location. Fig. 4 shows an example of 
reconstructed longitudinal outer surfaces of a subject with color-coded cortical 
thickness, calculated as the closest distance between the inner and outer surfaces. We 
can observe the overall decline trend of the cortical thickness in aging. 

3   Results 

Data used in experiments are from ADNI [15]. The parameter ߚ controls the rigidity 
of the deformable surface and is set as 0, as suggested in [4, 7]. Experimentally, ߙ and ߛ are set as 0.25 and 0.1, respectively. In experiments, we also find that results are not 
sensitive to subtle changes of parameters. 

Real Data. To evaluate the accuracy of the longitudinal inner and outer cortical 
surface reconstruction results, we compare the GM volume in the tissue-segmented 
image by CLASSIC [12] (denote as A) with the GM volume enclosed by the 
corresponding reconstructed inner and outer surfaces (denote as B). Three statistical 
values are calculated, including: (1) true positive: ሺܣ ת ܣfalse negative: ሺ (2) ,ܣ/ሻܤ ҧܣfalse positive: ሺ (3) ,ܣ/തሻܤת ת  similar to the measurements adopted in [14]. To ,ܣ/ሻܤ
evaluate the accuracy of the longitudinal central cortical surface, we calculate the 
percentage of vertices of the reconstructed central surface falling outside the GM 
(non-GM vertices), as adopted in [7], since the central surface is converged to the 
inside of GM. The proposed method is applied to 10 normal healthy subjects, each 
with 4 longitudinal scans. The average true positive, false negative, false positive and 
percentage of non-GM vertices of 4 time points for each subject are shown in Fig. 5 
(a). The above measurements are further compared to the values reported in the 
literature. Compared to those reported in [14] for validation of inner and outer 
surfaces, the average true positive of our method is around 0.77, which is higher than 
the value in [14] which is less than 0.70. And the average false negative is 0.23, 
compared to the value of around 0.35 in [14]. And the false positive of our method is 
0.15, which is similar to the value in [14]. Compared to those reported in [7] for 
validation of central surfaces, the average percentage of non-GM vertices of the 
reconstructed central surfaces by our method is around 0.03, which is less than the 
value of 0.06 in [7]. Although different dataset are adopted in [7] and [14], we believe 
that this comparison can reflect the accuracy of our method to some degree. 

Simulated Data. To further validate the inner and outer surfaces, we simulate images 
from the reconstructed inner and outer surfaces using the method in [14]. Briefly, the 
voxels inside the inner surface are labeled as WM, and the voxels between inner and 
outer surface are labeled as GM, and the voxels between skull and outer surface are 
labeled as CSF. The longitudinal image sequences are simulated from the 
corresponding reconstructed inner and outer surfaces. Then the inner and outer 
surfaces reconstructed from the simulated longitudinal images are compared to those 
original cortical surfaces, which are treated as the “ground truth”. The average 
distance errors between the two sets of surface are calculated and further averaged for 
4 time points of each subject. To validate the central surfaces, we also simulate 



 Consistent Reconstruction of Cortical Surfaces from Longitudinal Brain MR Images 677 

 

images from the reconstructed central surfaces using the method in [7]. Specifically, a 
thickness value following a Gaussian distribution with the mean 3.0mm and variance 
1.0mm is generated for each point of the central surface, and all voxels inside the half 
thickness range are labeled as GM. Also, all voxels enclosed by GM are defined as 
WM, and all voxels between the skull and GM are labeled as CSF. The reconstructed 
central surfaces from the simulated longitudinal images are compared to those 
original central surfaces. The distance errors of inner, central, and outer surfaces of 10 
simulated subjects are shown in Fig 5(b). The average distance errors of inner, central 
and outer surfaces are all around 0.6mm, indicating the accuracy of our method. 

 

Fig. 5. (a) The average true positive, false negative, false positive and percentage of non-GM 
vertices of 4 time points for each subject. (b) The average distance errors of inner, central and 
outer surfaces of 4 time points for each subject compared to the “ground truth”.  

 

Fig. 6. The longitudinal change of average cortical thickness on 15 normal subjects. (a) Our 
method with temporal constraint. (b) Our method without temporal constraint.    

Longitudinal Thickness Changes. To test the capability of consistently capturing 
longitudinal cortical changes, we apply the proposed method on 15 normal healthy 
subjects and calculate the cortical thickness. The trajectory of the average cortical 
thickness for each subject is shown in Fig. 6 (a). For comparison, the results from our 
method without temporal constraint (by setting ߛ ൌ 0) is shown in Fig. 6 (b). For 
quantitative comparison, a linear regression is performed on the longitudinal curves of 
average thickness of each subject, and the residuals are calculated. The average 
residuals of our method with and without temporal constraint are 0.01 േ 0.005݉݉ and 0.024 േ 0.02݉݉, respectively. As we can see, the results with temporal constraint are 
more longitudinally consistent and smoother than those without temporal constraint. 
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Abstract. We present a novel framework for inferring 3D carpal bone kinematics
and bone shapes from a single view fluoroscopic sequence. A hybrid statistical
model representing both the kinematics and shape variation of the carpal bones
is built, based on a number of 3D CT data sets obtained from different subjects
at different poses. Given a fluoroscopic sequence, the wrist pose, carpal bone
kinematics and bone shapes are estimated iteratively by matching the statistical
model with the 2D images. A specially designed cost function enables smoothed
parameter estimation across frames. We have evaluated the proposed method on
both simulated data and real fluoroscopic sequences. It was found that the relative
positions between carpal bones can be accurately estimated, which is potentially
useful for detection of conditions such as scapholunate dissociation.

Keywords: Carpal bones kinematics, 2D 3D registration, Statistical model.

1 Introduction

Chronic pain in the wrist arises due to a number of conditions, such as instability
patterns, nonunion or malunion of fractures, primary osteoarthritis and inflammatory
arthritis. The result for patients is a severe reduction in quality of life due to impairment
of everyday functions, lost work time, increased morbidity and loss of the capacity to
live independently. The current method of distinguishing between these conditions is by
examining 2D video fluoroscopy sequences showing movement of the hand from full
ulnar to full radial deviation and from full flexion to extension in two orthogonal views.
From these images clinicians can infer the three-dimensional translations and rotations
of the carpal bones that take place during wrist movement, and arrive at a differential
diagnosis on the basis of variations from normal bone kinematics. The interpretation is
difficult and the accuracy of diagnosis depends wholly on the experience of the practi-
tioner. Currently, accurate diagnosis requires referral to a specialist hand consultant and
treatment is often delayed to the detriment of the patient.

The aim of the project is computer interpretation of the fluoroscopy sequences to
attain a higher degree of objectivity and quantification in the diagnostic process. During
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wrist movement, the eight carpal bones follow a complex, multi-dimensional trajectory,
making interpretation of radiographs difficult. For this study we have trained a hybrid
statistical model (SM) from a set of CT images from different subjects at different
poses. Subsequently, the full 3D carpal bone motions can be recovered by matching
the SM with the fluoroscopy sequences through 3D-2D image registration techniques.
A number of studies have sought to represent the carpal kinematics using CT or MR
data, mainly concentrating on representing ‘average’ kinematics over a small number of
individuals (e.g. [1], [2]). More recently, Van deGiessen et al. [3] presented a 3D rigid
registration method based on segmented meshes, which aims to build SM of carpal
bones. A study of carpal bone kinematics based on a 4D imaging system was reported
in [4]. 3D-2D registration has been the subject of many studies (e.g. [5]), mainly in the
field of registration of pre-operative MR or CT images to intra-operative 2D images.
Our work differs from the above in that we seek to achieve registration of a 2D image
sequence to a 3D model (not derived from the same individual) to derive the kinematics
of an individual wrist. Zheng [6] took a similar approach to estimate the orientation of
pelvis from a single X-ray image.

The main contributions of this paper, distinguishing it from these studies, are: (1) A
hybrid SM is developed representing both the complex kinematics and shape variation
of the eight carpal bones plus radius and ulna. (2) The full 3D motion and bone shapes
are recovered by matching the SM with a single view fluoroscopy sequence: a difficult
ill-posed problem. (3) Our initial results show that the relative positions between the
carpal bones can be estimated accurately through the proposed framework. We are not
aware of any study which attempts to make a 2D to 3D inference in a system of this
level of complexity.

The system consists of a training phase and a 3D-2D image registration phase. We
currently have CT data from 10 subjects, each at five poses (neutral pose and two ex-
treme poses in flexion-extension and radial-ulnar deviation). In the training phase, only
the data from the neutral pose and two extreme poses in the radial-ulnar movement were
used, as the radial-ulnar movement is the current concern of this paper. The segmenta-
tion of each bone and rigid registration parameters that align bones at different poses
within and across the subjects were obtained using an iterative segmentation and regis-
tration algorithm [7]. A hybrid statistical model, representing both the kinematics and
shape variation, was built efficiently from the results of the segmentation-registration
framework. The kinematic model was built based on the transformation parameters,
while the segmentation result was used to build the statistical shape model for each in-
dividual bone. In the 3D-2D image registration phase, the 3D rigid transformation, the
kinematic motion and bone shapes were estimated in sequence from each frame of the
fluoroscopy sequences. Detailed descriptions are given in the following sections.

2 Problem Parameterisation

We use a perspective projection model to represent the relationship between the 2D
fluoroscopy image and the 3D configuration of bones. Almost all parameters necessary
for this model (pixel size and optical centre) are known. The distance from the X-ray
source and the detector needs to be measured for each patient. If this parameter is not
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accurate, it will lead to a scale difference of the estimated 3D model. The resulting
translation effects on the relative motion between carpal bones at pixels away from the
centre of the field is very small.

Three sets of parameters need to be estimated during image registration in order to
interpret the true 3D motion of the carpal bones: (1) Rigid transformation parameters
of the wrist and a global scale factor, denoted by θ={tx, ty, tz, α, β, γ, sglobal}. tx, ty and
tz denote the translations, and α, β and γ denote the rotation angles. sglobal controls the
distance between the centroid of each bone to the origin in the radius, and the global
size of the bones. (2) Kinematic model parameters M representing the carpal bone poses
during movement. (3) Shape model parameters Qi and scale factor si for each bone (i).

3 Training of Kinematic Model and Shape Model

We use the six rigid transformation parameters for each bone to train the kinematic
model. The common coordinate system for all pose and scale parameters has an origin
at the centroid of the head of radius for one subject. The pose of one subject is described
by (tx1, ty1, tz1, α1, β1, γ1, ..., tx10, ty10, tz10, α10, β10, γ10)t . (8 carpal bones, 1 radius
and 1 ulna). The orientation parameters all occupy values distant from the angular dis-
continuity. Then the kinematic model can be parameterised as,

M = µm + φmbm (1)

where the mean pose µm (m is a notation indicating the model parameters) and the prin-
cipal subspace matrix φm are computed from 3 (poses)× 10 (subjects) training samples
using PCA. The vector bm represents the kinematic parameters that describe the pose of
M along each principal direction. In our experiments, the first 8 significant modes are
used, which keeps 98% of variation.

The statistical shape model of each bone is a point distribution model, built using
the segmented volume of the same training subjects. The 3D structure of each bone is
described by a set of approximately 1000 points on the segmented surface. Correspon-
dence between these points across subjects was established by the minimum description
length algorithm [8]. The deformable shape model is then described as,

Qi = µq
i + φq

i bq
i (2)

where µq
i and φq

i (q is a notation indicating the shape parameters) are the mean shape
and the principal subspace matrix for the ith bone. bq

i is the shape model parameter to
be estimated. In order to keep the complexity within limits, only the first 3 significant
modes are used which keeps 84% of variation.

Based on the point distribution model of each bone and the kinematic model, a hybrid
statistical mesh model can be built by using the Crust mesh construction algorithm [9].
Figure 1 shows the poses of the first mode of the kinematic model (represented by the
mean shapes of each bone) and the shapes of the first mode of the scaphoid.

4 3D-2D Image Registration

The statistical mesh model from the training data is then used to match with the flu-
oroscopic sequence to infer the 3D motion and bone shapes. Figure 2(a) summarises
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Fig. 1. Top row: The poses of the first mode of kinematic model. Bottom row: the first mode of
the shape model of the scaphoid. In each case the mean +/-1.5s.d. are shown.
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Fig. 2. Overview of the 3D-2D image registration process. (b) The gradient magnitude map of
the fluoroscopic image after enhancement (cropped to show the region of interest) (top) and the
simulated image from mesh model (bottom).

the registration process, in which the preprocessed fluoroscopic image is iteratively
matched with a simulated projection generated from an updated pose of the mesh
model. Detailed descriptions are given in the following subsections.

4.1 Fluoroscopic Image Enhancement and Projection Simulation

As the edges are strong features that can be used for image matching, the fluoroscopic
image was firstly pre-processed to enhance the edges and reduce noise in homogenous
regions. Local intensity normalisation was achieved by subtraction of the local mean
intensity and division by the local standard deviation. The anisotropic diffusion [10]
filter is then used to smooth the image while preserving the edges. Figure 2(b) shows an
example of the gradient magnitude map of the fluoroscopic image after enhancement.

To optimise the pose parameters we iteratively generate projections from the mesh
model with updated parameters, using the perspective projection described in section
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2. The mesh model is considered to be a binary volume, and the projected intensity is
negatively proportional to the sum of binary values along the ray from the source to
each pixel in the image plane. Figure 2(b) shows an example.

4.2 Cost Function

To evaluate the similarity between the fluoroscopic image and the simulated image,
we investigated several forms of the cost function, achieving best results from the one
shown in Eqn. (3), based on the gradient along horizontal and vertical directions as well
as the gradient magnitude of the two images. Additionally, the adjacent frames of the
current fluoroscopic image were also taken into account in the cost function to make
the estimated poses smooth across frames.

Taking C(A,B) as the Normalised Correlation Coefficient between two images A and
B, we can write the cost function as:

E = C(Omk−1,Omk)+ ∑
p=k−1,k,k+1

wp(C(Imp,Dmk)+C(Ixp,Dxk)+C(Iyp,Dyk)) (3)

where k is the current frame number of the fluoroscopic sequence. Imp, Ixp and Iyp are
the gradient magnitude image, vertical gradient and horizontal gradient of the fluoro-
scopic image at the pth frame respectively. Dmk, Dxk and Dyk are the corresponding
values of the simulated image. The second term calculates a cross-correlation between
sets of three adjacent frames with weights wk−1, wk and wk+1= 0.2, 0.6, 0.2 respectively,
making the estimated pose smooth across frames. For the first term of the cost function,
the vertices in the statistical mesh model are projected to the image plane, we assume
the intensities at those projected points are similar across adjacent frames. Omk−1 and
Omk represent the gradient magnitude of the previous frame and the current frame at the
projected correspondence positions. The first term makes the shape of the cost function
sharper, leading to a faster and more accurate optimisation result. The (k− 1)th frame
and (k + 1)th frame are not evaluated for the first and last frame respectively.

4.3 Optimisation

The optimisation method used is the best neighbour search combined with parabola
fitting. The multi-dimensional search space (θ, M and Q) is explored by iteratively
individual 1D line search. The cost function is evaluated at the current position, positive
and negative neighbour positions (defined by a search range), then an optimum is found
by fitting a parabola to the 3 evaluated positions. The optimum is iteratively refined by
reducing the search range until convergence.

In our case, the true sizes of the bones are unknown; recovering the 3D pose from a
single image is therefore a difficult, ill posed, problem. Any movement along the out-
of-plane translation, could be compensated by scaling of the bone. In order to minimise
this effect, the optimisation is carefully sequenced. We firstly assume that the wrist is
not moving along the out-of-plane direction during radial-ulnar movement (ty=0), as it
is placed on a flat surface. The position of the model is firstly initialised by clicking the
centre of the radius in the first frame of the fluoroscopic sequence. In the first step of the
optimisation, only the first frame of the fluoroscopic sequence is used, and only the in-
plane rigid transformation parameters (tx, tz, β) are estimated along with the global scale
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factor (sglobal) and the relative scale parameters of each bone (si). The first significant
parameter of the kinematic model (bm) is also estimated to provide an estimate of the
overall pose. Other, less significant modes may include components of deviation along
the out-of-plane direction that would affect the estimation of the global scale parameter.
Inclusion of this first step resulted in significantly lower estimated error along the out-
of-plane direction than optimisation without this step. Starting from this initial estimate
of pose, the first frame is evaluated again, taking all the parameters into account (except
ty) in the following sequence: tx, tz, β, α, γ, bm, sglobal , si and bq

i . After convergence, the
estimated pose of the current frame is used as the starting pose for the next frame. The
shape model parameters bq

i are only estimated once in the first frame. From our initial
experiments, the shape parameters are not improved significantly when we include more
frames and the fitting is made significantly more complex and time consuming. At each
stage, when tx, tz, β, α and γ are estimated, only the region immediately surrounding
the radius and ulna are used for cost function evaluation, while the larger region that
includes the carpal bones is used for estimating the other parameters. There are about
60-80 frames per sequence. The whole process was performed in a 3-level multi-scale
framework at each frame to enhance the robustness of the registration.

5 Evaluation

The ground truth of the recovered 3D pose corresponding to real fluoroscopic sequences
is almost impossible to obtain. It would require the synchronisation of 3D imaging with
the fluoroscopy. Hence, we evaluated our framework based on a number of simulated
fluoroscopic sequences generated from the 3D CT data. All CT volumes have been
resampled to an isocubic volume with voxel dimension of 0.5 mm. We linearly interpo-
lated a number of poses between the neutral pose and two extreme poses of radial-ulnar
deviation in a full movement cycle containing 50 poses for each of 10 subjects. The
ray-casting method was then used to generate a simulated fluoroscopic sequence from
those interpolated 3D data. We evaluated the proposed framework in the leave-one-out
manner. The 3D pose of the simulated test subject was then calculated as described in
section 4, and registration error measured by the 3D Euclidian distance of each corre-
sponding point of the mesh between the target pose and the estimated pose is presented
in Table 1. The error of the registration is mainly caused by the ill posed problem (con-
fusion between the scale and translation along the out-of-plane direction), whereas the
errors along the in-plane directions are very small with average error of about 2 pixels
and maximum error within 4 pixels.

It is important to mention that the relative positions of the carpal bones with respect
to each other can be estimated much more accurately than the absolute positions of the
individual bones. The registration error of the 3D distance between the centroid of Tri-
quetrum and the centroid of Lunate (dTL), and the distance between the centroid of Lu-
nate and the centroid of Scaphoid (dLS) were also measured. The errors are 1.18±0.74
and 1.82±0.99 pixels for dTL and dLS respectively, compared to a bone size of about
30 pixels. One of the conditions that may be assessed using this method is dissociations,
where the distance between the bones is larger than normal. Scapholunate dissociation
is one of the most common of these. We normalise the dLS by dividing it by the es-
timated global scale factor sglobal and an average of the scale factor si for lunate and
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Table 1. The average error, measured in 3D, between the target and estimated correspondence
points of each carpal bone of 10 subjects: Triquetrum(Tri), Lunate(Lun), Scaphoid(Sca), Pisi-
form(Pis), Hamate(Ham), Capitate (Cap), Trapezoid (Trd) Trapezium (Trm). The measurement
errors of dTL and dLS.

eTri eLun eSca ePis eHam eCap eTrd eTrm Total eTL eLS
Err3D 5.4±2.6 5.1±2.5 6.5±3.6 6.8±3.7 6.5±3.8 6.6±4.0 6.5±4.6 7.6±4.3 6.3 ±3.7 1.18±0.74 1.82±0.99
ErrX 1.6±1.3 2.0±1.6 2.1±1.8 2.4±1.9 1.8±1.4 2.1±1.5 1.8±1.4 2.2±1.8 2.1 ± 1.7 / /
ErrY 3.7±2.8 3.0±2.6 4.9±3.7 4.8±3.9 5.4±4.2 5.3±4.4 5.5±5.0 6.1±4.6 4.6±4.0 / /
ErrZ 2.5±2.0 2.5±1.9 2.2±1.8 2.6±2.1 1.6±1.3 1.7±1.3 1.5±1.2 2.2±2.0 2.3±1.9 / /
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Fig. 3. Registration result of one frame from a real fluoroscopic sequence. The registration result
for the whole sequence can be found in [11].

scaphoid. From the tested 10 subjects, we successfully identified the subjects suffer-
ing from scapholunate dissociation (dLS=38.78±1.53 pixels) from the normal subjects
(dLS=34.49±0.83 pixels). Making this type of measurement without a 3D statistical
model would be impossible.

We also tested our framework on real fluoroscopic sequences. Although the match-
ing error cannot be quantified, the registration results show good visual correspondence
and have been confirmed by a clinician. A sample frame of the matching result and
the corresponding 3D pose are shown in Fig. 3 in which the projected contours from
the 3D mesh model are superimposed on the preprocessed fluoroscopy image. The es-
timated 3D mesh model in the palmar and dorsal views are shown in middle and right
respectively. The registration result for the whole sequence can be found in [11].

6 Concluding Remarks

We have presented a complete framework that is able to infer the 3D motion of carpal
bones from a single view fluoroscopic sequence. It uses a hybrid statistical model to es-
timate both the kinematics and bone shapes from the fluoroscopic sequences allowing
the motion of carpal bones during radial-ulnar deviation to be estimated. Particularly,
the relative positions between carpal bones can be estimated accurately. This is poten-
tially useful for detection of dissociation conditions, such as scapholunate dissociation,
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where the underlying pathology is a rupture of one or more ligaments, and the diagnosis
rests on a judgement regarding the joint separation.

In further work we will extend the current statistical model with more training data
(in progress) and test the framework for the flexion-extension movement.
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Bogunović, Hrvoje III-330, III-395
Boone, Darren I-508
Booth, Brian G. II-90
Borgeat, Louis I-323
Bouget, David I-331



690 Author Index

Bouix, S. II-58
Bou-Sleiman, Habib II-409
Boussaid, Haithem III-346
Bousse, Alexandre I-581
Brady, J. Michael II-541
Brambilla, Paolo II-426
Brattain, Laura J. I-105
Bricault, Ivan I-137
Brieu, Nicolas III-579
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